

Supporting Information

Unlocking Superior Lithium Storage via Synergistic Confinement: Metal-Organic Frameworks Derived Carbon-Confined Metal Sulfides

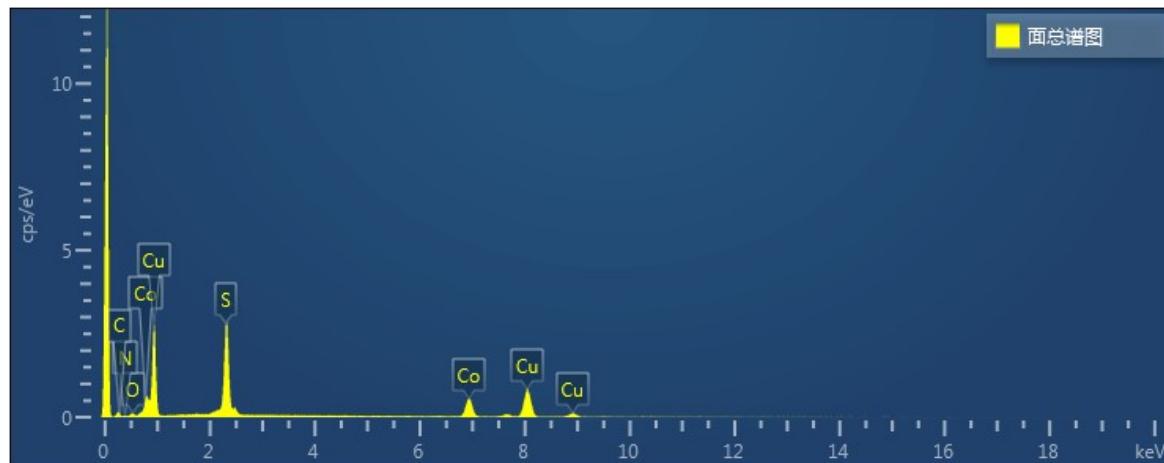


Figure S1 EDS spectrum of $\text{Cu}_9\text{S}_5/\text{NC}@\text{Co}_3\text{S}_4/\text{NC}$.

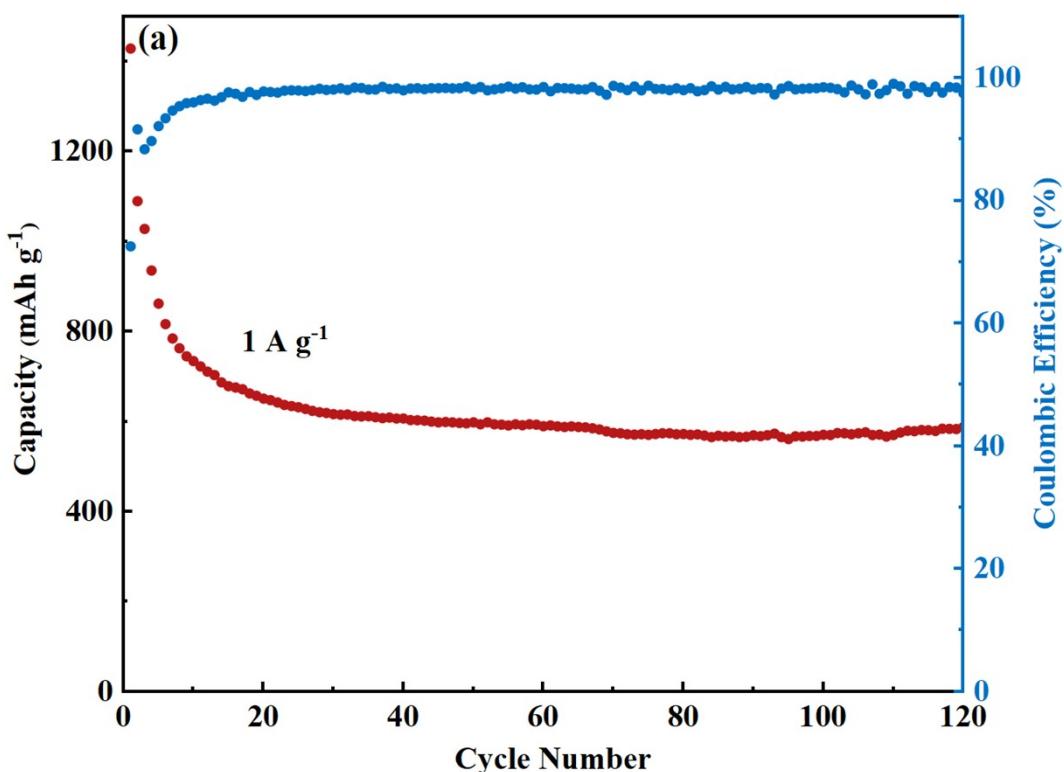
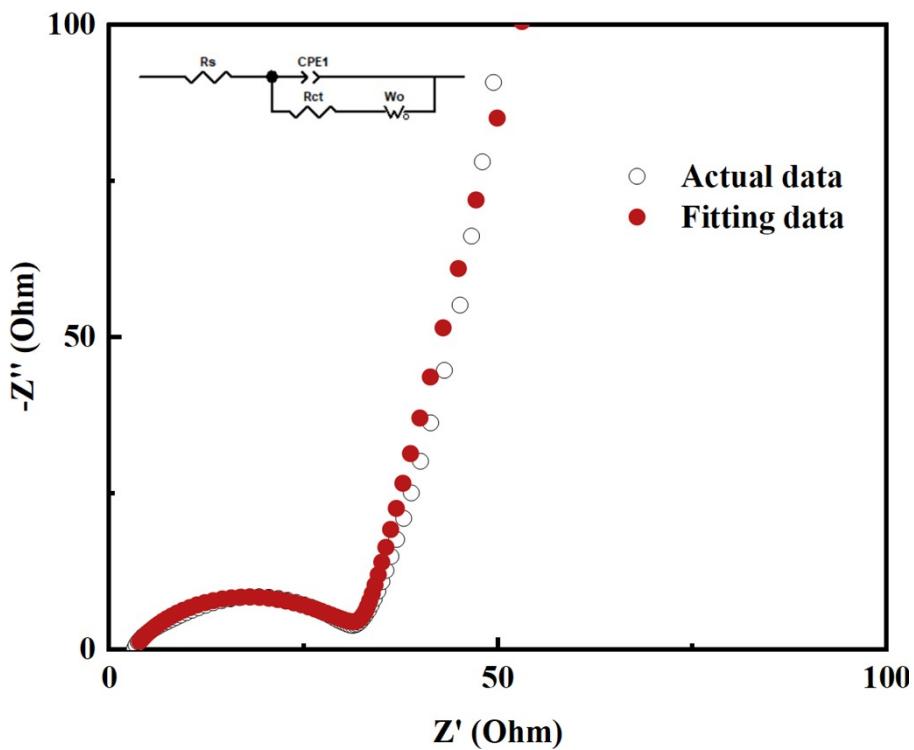



Figure S2 Cycling performance of $\text{Cu}_9\text{S}_5/\text{NC}@\text{Co}_3\text{S}_4/\text{NC}$ anodes at 1 A g^{-1} .

Figure S3 EIS of the $\text{Cu}_9\text{S}_5/\text{NC}@\text{Co}_3\text{S}_4/\text{NC}$ anode before and after fitting.

Table S1 Comparison of the capacity of this work with previously reported anodes.

Samples	Current density (mA g ⁻¹)	Cycle number	Capacity (mAh g ⁻¹)	Ref.
$\text{ZnS}/\text{Co}_3\text{S}_4$	1000	200	750	[1]
$\text{Cu}_9\text{S}_5/\text{CNFs}$	100	100	709.2	[2]
$\text{CNTs}@\text{NC}@\text{Co}_3\text{S}_4$	5000	500	311	[3]
$\text{Ni}_3\text{S}_4/\text{Co}_3\text{S}_4@\text{NSC}$	100	100	825.4	[4]
$\text{Ni}_3\text{S}_2/\text{CNWs}$	200	200	906	[5]
$\text{PW}_{12}@\text{Co}_3\text{S}_4@\text{GO}$	100	200	1036.4	[6]
$\text{Cu}_9\text{S}_5-\text{MoS}_x$	2000	3600	376	[7]

Fe ₃ S ₄ /Co ₉ S ₈	100	100	945	[8]
CNT/PAN@Co ₉ S ₈ @C	2000	100	455	[9]
Cu ₄ SnS ₄ /CuS@C	100	60	881.9	[10]
Cu ₉ S ₅ /NC@Co ₃ S ₄ /NC	100/5000	120/700	1067.3/444.8	this work

Table S2 Impedance fitting results

Sample	R_s (Ω)	R_{ct} (Ω)	R_{total} (Ω)
Cu ₉ S ₅ /NC@Co ₃ S ₄ /NC	3.9	28.2	32.1

Reference

[1] Zheng Zhang, Ying Huang, Xudong Liu, et al. Zeolitic imidazolate frameworks derived ZnS/Co₃S₄ composite nanoparticles doping on polyhedral carbon framework for efficient lithium/sodium storage anode materials. *Carbon*, 2020, 157, 244-254.

[2] Rou Lu, Shuang Zhou, Simin Chai, et al. Cu₉S₅ nanoparticles encapsulated in N, S co-doped carbon nanofibers as anodes for high-performance lithium-ion and sodium-ion batteries. *Journal of Physics D-Applied Physics*, 2022, 55, 334001.

[3] Guangming Wang, Hailong Yue, Rencheng Jin, et al. Co₃S₄ ultrathin nanosheets entangled on N-doped amorphous carbon coated carbon nanotubes with C-S bonding for high performance Li-ion batteries. *Journal of Electroanalytical Chemistry*, 2020, 858, 113794.

[4] Kairui Xu, Yongqiang Ren, Bei Zhang. et al. Engineering of Ni₃S₄/Co₃S₄ nanosheets@N, S co-doped carbon anode for lithium-ion batteries. *Ionics*, 2021, 27, 5089-5096.

[5] Haijun Chen, Yan Wang, Xudong Ma, et al. Cation-adsorption-assisted Ni₃S₂/Carbon nanowalls composites with three-dimensional interconnected porous structures for high-

performance lithium-ion battery anodes. *Journal of Materials Science*, 2020, 55, 17081-17093.

[6] Lingling Liu, Tong Wang, Junkai Zhao, et al. Insight into lithiation mechanism of Co_3S_4 anode for lithium-ion batteries triggered by keggin POMs and GO. *Chemical Engineering Journal*, 2025, 506, 159999.

[7] Xiaoming Yu, Hongxin Yu, Linwei Yin, et al. Tubular-like nanocomposites with embedded $\text{Cu}_9\text{S}_5\text{-MoS}_x$ crystalline-amorphous heterostructure in N-doped carbon as Li-ion batteries anode toward ultralong cycling stability. *ACS Applied Materials & Interfaces*, 2024, 34(16), 44678-44688.

[8] Qiang Liu, Zizhong Chen, Rong Qin, et al. Hierarchical mulberry-like $\text{Fe}_3\text{S}_4/\text{Co}_9\text{S}_8$ nanoparticles as highly reversible anode for lithium-ion batteries. *Electrochimica Acta*, 2019, 304, 405-414.

[9] Junting Gao, Xingchao Wang, Yudai Huang, et al. Hollow core-shell structured CNT/PAN@ Co_9S_8 @C coaxial nanocables as high-performance anode material for lithium ion batteries. *Journal of Alloys and Compounds*, 2021, 853, 157354.

[10] Shurong Xu, Shoujing Mao, Wenxin Liu, et al. Construction of $\text{Cu}_4\text{SnS}_4/\text{CuS}$ @C nanorods with high initial coulombic efficiency for lithium-ion batteries. *Journal of Energy Storage*, 2025, 115, 115885.