Electronic Supplementary Information

Implications of magnetic dilution of $PrFeO_3$ with Bi^{3+} on its dielectric and magnetic properties

Shivangi Rao,^a Subhajit Sau,^b V. Kanchana,^b G. Vaitheeswaran,^{*c} and Rajamani Nagarajan^{*a}

^a Materials Chemistry Group, Department of Chemistry, University of Delhi, Delhi-110007, India. E-mail: 18darklotus@gmail.com, rnagarajan@chemistry.du.ac.in

^b Department of Physics, Indian Institute of Technology Hyderabad, Kandi - 502285, Sangareddy, Telangana, India. Email: ph21resch01001@iith.ac.in, kanchana@phy.iith.ac.in

^c School of Physics, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, 500046, Telangana, India. E-mail: vaithee@uohyd.ac.in

Fig.S1: Line profile of PrFeO₃ (ICSD No: : 98-002-7274) and PXRD pattern of the calcined precursor of $Pr_{0.70}Bi_{0.30}FeO_3$ at 800 °C for 12 h in the air. The reflections marked with '•' and '*' correspond to tetragonal $Bi_2O_{2.5}$ (ICSD No: 98-001-0470), and hexagonal Pr_2O_3 (ICSD No: 98-006-1179), respectively.

Fig.S2: Comparison of line profiles of $PrFeO_3$ and possible secondary phases, including Pr_2O_3 and various polymorphs of Bi_2O_3 with the PXRD pattern of $Pr_{0.50}Bi_{0.50}FeO_3$ sample prepared under flowing argon atmosphere.

Fig.S3: Octahedral tilting occurring in the orthorhombically distorted perovskite structure of $Pr_{1-x}Bi_xFeO_3$ with x, (a) 0.00, (b) 0.10, (c) 0.20, (d) 0.30, (e) 0.40, and (f) 0.50.

Fig.S4: SEM images and particle size distribution of $Pr_{1-x}Bi_xFeO_3$ samples with x being (a) 0.10, (b) 0.20, (c) 0.40, and (d) 0.50.

Fig.S5: EDS spectrum of $Pr_{1-x}Bi_xFeO_3$ samples with x being 0.00 (a), 0.10 (b), 0.20 (c), 0.30 (d), 0.40 (e), and 0.50 (f).

Fig.S6: Room temperature EPR spectra of $Pr_{1-x}Bi_xFeO_3$ samples.

Fig.S7: UV-Visible absorbance spectra of $Pr_{1-x}Bi_xFeO_3$ (a) 0.00, (b) 0.10, (c) 0.20, (d) 0.30, (e) 0.40 and (f) 0.50. The digital images of the samples are shown as insets.

Fig.S8: Magnetic configuration in (a) Fe with A-AFM and Pr with A-AFM like arrangement. (b) Fe with A-AFM and Pr with C-AFM like arrangement. (c) Fe with A-AFM and Pr with G-AFM like arrangement. Similarly, for (d-f) spin arrangement of Pr was varied in A-, C-, and G- like configurations with fixed Fe C-AFM. (g-i) spin arrangement of Pr was varied in A-, C-, and G- like configurations with G-AFM, and (j) FM configurations of pristine PrFeO₃ considered in the present work (O atoms not shown in the figures). (h) is the ground state configuration.

Fig.S9: (a-c) Three possible combinatorial configurations with 50% Bi substituted $PrFeO_3$. The energy was calculated in Pr(up)-Pr(up), Pr(up)-Pr(dn), and Pr(dn)-Pr(dn) spin for each structure with Fe atoms' G-AFM configuration (A- and C-AFM spin arrangement of Fe not considered here). Among these three structures, (b) is the ground state with both Pr up spin and Fe with G-AFM configuration.

Fig.S10: (a) and (b) Plots of magnetization vs. magnetic field of $Pr_{1-x}Bi_xFeO_3$ samples, x being 0.10, 0.20, 0.40, and 0.50 at 298 and 2 K, respectively.

Fig.S11: Temperature dependence of molar magnetic susceptibility of $Pr_{1-x}Bi_xFeO_3$ samples x being 0.00 (a), 0.10 (b), 0.20 (c), 0.30 (d), 0.40 (e) and 0.50 (f) measured under ZFC (data in blue) and FC (data in red) conditions at 0.1 T.

Fig.S12: Plots of the temperature dependence of inverse molar susceptibility $(1/\chi_m \text{ vs. T})$ of $\Pr_{1-x}Bi_xFeO_3$ samples with x being (a) 0.00, (b) 0.10, (c) 0.20, (d) 0.30, (e) 0.40 and (f) 0.50 (data in wine), considering the field cooled (FC) curves measured at H = 0.1 T and fitted with Curie–Weiss law in the temperature range of 150 to 300 K.

Fig.S13: (a-e) Plot of log $(f\varepsilon)$ vs log f of the $Pr_{1-x}Bi_xFeO_3$ samples (x = 0.10-0.50).

Fig.S 14: Ferroelectric-hysteresis loops of (a) $Pr_{0.90}Bi_{0.10}FeO_3$, (b) $Pr_{0.80}Bi_{0.20}FeO_3$, (c) $Pr_{0.70}Bi_{0.30}FeO_3$ and (d) $Pr_{0.60}Bi_{0.40}FeO_3$ samples.

Fig.S15: (a) C-V plot, (b) PUND characteristics at an applied field of 20 kV and pulse width 1 ms, and (c) P-E loop after PUND analysis for $Pr_{0.60}Bi_{0.40}FeO_3$ sample.

S. No	Composition	$\mathbf{Pr}_{2}\mathbf{O}_{3},\mathbf{g}$	Bi_2O_3, g	Fe metal powder, g	CA, g
		(mmol)	(mmol)	(mmol)	(mmol)
1	$\Pr{FeO_3}$	0.1649	—	0.0558	0.3458
		(0.50)		(1.00)	(1.80)
2	$\mathrm{Pr}_{0.90}\mathrm{Bi}_{0.10}\mathrm{FeO}_3$	0.1484	0.0232	0.0058	0.3458
		(0.45)	(0.05)	(1.00)	(1.80)
3	$\mathrm{Pr}_{0.80}\mathrm{Bi}_{0.20}\mathrm{FeO}_3$	0.1319	0.0466	0.0058	0.3458
		(0.40)	(0.10)	(1.00)	(1.80)
4	$\mathrm{Pr}_{0.70}\mathrm{Bi}_{0.30}\mathrm{FeO}_3$	0.1154	0.0698	0.0058	0.03458
		(0.35)	(0.15)	(1.00)	(1.80)
5	$\mathrm{Pr}_{0.60}\mathrm{Bi}_{0.40}\mathrm{FeO}_3$	0.0989	0.0931	0.0058	0.3458
		(0.30)	(0.20)	(1.00)	(1.80)
6	$\mathrm{Pr}_{0.50}\mathrm{Bi}_{0.50}\mathrm{FeO}_3$	0.0822	0.1165	0.0058	0.3458
		(0.25)	(0.25)	(1.00)	(1.80)

Table S1: Details of the amounts of reactants used to synthesize Bi-substituted $PrFeO_3$ samples.

Composition (x)	Atoms	Wyck	x/a	y/b	z/c	SOF	U(iso) Å ²
0.00	\Pr	4c	0.4569(2)	0.25	0.0092(5)	1.0	0.022(4)
	Fe	4a	0	0	0	1.0	0.017(8)
	01	8d	0.2072(2)	0.0347(1)	0.2879(2)	1.0	0.023(3)
	O2	4c	0.5183(2)	0.25	0.5827(3)	1.0	0.027(4)
0.10	Pr	4c	0.4567(2)	0.25	0.0094(5)	0.88(9)	0.023(4)
	Bi	4c	0.4567(2)	0.25	0.0094(5)	0.12(9)	0.023(4)
	Fe	4a	0	0	0	1.0	0.018(1)
	01	8d	0.2121(2)	0.0330(2)	0.2894(2)	1.0	0.016(3)
	O2	4c	0.5188(2)	0.25	0.5758(2)	1.0	0.027(5)
0.20	Pr	4c	0.4565(2)	0.25	0.0089(5)	0.79(2)	0.03(7)
	Bi	4c	0.4565(2)	0.25	0.0089(5)	0.21(2)	0.03(7)
	Fe	4a	0	0	0	1.0	0.028(1)
	O1	8d	0.2057(2)	0.0293(2)	0.2934(3)	1.0	0.021(4)
	O2	4c	0.5235(3)	0.25	0.577(4)	1.0	0.034(8)
0.30	Pr	4c	0.4566(1)	0.25	0.0093(5)	0.74(2)	0.023(2)
	Bi	4c	0.4566(1)	0.25	0.0093(5)	0.26(2)	0.023(2)
	Fe	4a	0	0	0	1.0	0.020(5)
	O1	8d	0.2027(3)	0.0292(3)	0.2816(4)	1.0	0.028(4)
	O2	4c	0.5221(4)	0.25	0.567(4)	1.0	0.025(3)
0.40	Pr	4c	0.4565(2)	0.25	0.0088(2)	0.63(5)	0.024(6)
	Bi	4c	0.4565(2)	0.25	0.0088(2)	0.37(5)	0.024(6)
	Fe	4a	0	0	0	1.0	0.021(4)
	O1	8d	0.2096(1)	0.0292(2)	0.2887(4)	1.0	0.024(3)
	O2	4c	0.5181(3)	0.25	0.5668(2)	1.0	0.027(5)
0.50	\Pr	4c	0.4566(1)	0.25	0.009(3)	0.58(7)	0.023(2)
	Bi	4c	0.4566(1)	0.25	0.009(3)	0.42(7)	0.023(2)
	Fe	4a	0	0	0	1.0	0.017(5)
	O1	8d	0.2151(2)	0.0378(1)	0.2758(2)	1.0	0.019(2)
	O2	4c	0.5173(1)	0.25	0.5646(2)	1.0	0.02(3)

Table S2: Atomic parameters from the final refinement cycle of the PXRD patterns for $Pr_{1-x}Bi_xFeO_3$ samples (x = 0.00, 0.10, 0.20, 0.30, 0.40, and 0.50) by the Rietveld method.

Table S3: Lattice parameters and selected bond distances and angles of the $Pr_{1-x}Bi_xFeO_3$ samples (x = 0.00, 0.10, 0.20, 0.30, 0.40, and 0.50) from the final refinement cycle of the PXRD patterns by the Rietveld method.

Composition (x)	0.00	0.10	0.20	0.30	0.40	0.50
a (Å)	5.5774(7)	5.5785(4)	5.5853(7)	5.5943(2)	5.6089(1)	5.6104(1)
b (Å)	7.7908(1)	7.7922(2)	7.797(1)	7.7995(3)	7.8371(2)	7.8385(2)
c (Å)	5.4848(7)	5.4862(2)	5.4874(8)	5.4875(2)	5.4941(2)	5.4972(1)
Cell Volume (Å ³)	238.32(6)	238.48(8)	238.82(5)	240.11(7)	241.51(5)	241.8(6)
Fe–O1	1.9939(5)	1.9943(4)	1.9950(7)	1.9978(2)	1.9989(2)	2.0005(2)
$(\times 2)$						
Fe–O1	1.9960(4)	1.9968(4)	1.9983(7)	1.9991(2)	2.0005(3)	2.0011(2)
$(\times 2)$						
Fe–O2	1.9898(3)	1.9936(5)	1.9945(7)	1.9972(3)	1.9991(3)	2.0002(2)
$(\times 2)$						
Fe–O	1.9932	1.9949	1.9959	1.9980	1.9995	2.0006
Fe–O1–Fe	155.11(2)	155.35(5)	156.20(2)	157.51(7)	158.88(3)	160.59(6)
Fe–O2–Fe	153.76(5)	154.58(6)	155.17(2)	157.14(2)	157.81(4)	158.08(4)
$\theta = \mid$ Fe–O–Fe \mid	154.44	154.97	155.68	157.32	158.34	159.33
$\phi =$						
(180° - $ \angle {\rm Fe-O-Fe})/2$	12.78	12.52	12.16	11.34	10.82	10.34

Table S4: Summary of magnetic properties of pristine and $Pr_{1-x}Bi_xFeO_3$ samples.

Composition	H_c (T)		$M_r (emu/g)$		Std. error at 298K (emu)
	at $2 \mathrm{K}$	at 298 K	at 2 K $$	at 298 K	
$\Pr FeO_3$	0.067	0.200	0.900	0.120	1.77×10^{-5}
$Pr_{0.90}Bi_{0.10}FeO_3$	0.083	0.003	0.500	0.016	1.81×10^{-5}
Pr _{0.80} Bi _{0.20} FeO ₃	0.071	0.018	0.300	0.0117	2.09×10^{-5}
Pr _{0.70} Bi _{0.30} FeO ₃	0.065	-	0.200	-	1.72×10^{-5}
$Pr_{0.60}Bi_{0.40}FeO_3$	0.011	-	0.013	-	2.15×10^{-5}
$Pr_{0.50}Bi_{0.50}FeO_3$	0.002	-	0.010	-	1.93×10^{-5}