Theoretical Study on the Structures and Vibrational Spectra of $(H_2O-Ar_n)^+$, n=1,2: Formation of Hemi-bond of Water Radical Cation

Jing-Min Liu^{a,b*}, Qian-Rui Huang^b, Chih-Kai Lin^{b,c}, Jer-Lai Kuo^{b*}

^a State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical

Physics, Chinese Academy of Sciences, Dalian, 116023, China.

^b Institute of Atomic and Molecular Science, Academia Sinica, Taipei 10617, Taiwan.

^cDepartment of Chemistry, National Taiwan University, Taipei, 10617, Taiwan,

Republic of China.

*Corresponding author: jingminliu@dicp.ac.cn

*Corresponding author: jlkuo@pub.iams.sinica.edu.tw (J.-L. K)

Contents:

- I. Table S1. Relative stability of H_2O^+ -Ar_n (n=1,2)
- II. Table S2. Vibrational transitions of H₂O⁺-Ar₂ in MIR and NIR window with assignments for isomer one
- III. Figure S1. The four/five normal modes for conformers of H₂O⁺-Ar_n (*n*=1,2) complex
- IV. Figure S2. Normal modes of conformer IIa of H₂O⁺-Ar
- V. Figure S3. Normal modes of conformer IIa of H₂O⁺-Ar₂
- VI. Figure S4. Vibrational spectra of IIa conformer of the H₂O⁺-Ar₂ complex based on 5D and 7D Hamiltonia

	<u>Ia</u>	<u>Ib</u>	<u>IIa</u>	<u>IIb</u>	IIc
MP2/aVDZ ^a	0.0	2.45	0.0	1.92	3.93
CCSD/aVDZ ^b	0.0	1.20	0.0	1.17	2.37
CCSD/VDZ ^c	0.0	1.77	0.0	1.61	2.90
MP2/CCSD/aVDZ ^d	0.0	1.06			
MP2/aVTZ ^e	0.0	3.06	0.0	2.44	5.03
$MP2/VTZ^{f}$	0.0	3.46			
CCSD/aVTZ ^g	0.0	1.78	0.0	1.71	3.42
CCSD/VTZ ^h	0.0	2.27			
MP2/CCSD/aVTZ ⁱ	0.0	1.62			
CCSD(T)/aVTZ ^j	0.0	1.53	0.0	1.22	2.92
$CCSD(T)/aVnZ^k$	0.0	0.92	0.0	1.28	2.54
VPT2, CCSD(T)/VnZ ¹	0.0	0.56	0.0	0.84	2.40

Table S1. Relative stability of H₂O⁺-Ar_n (in kcal/mol)

^a optimized at MP2/aVDZ level

^b optimized at CCSD/aVDZ level

^c optimized at CCSD/VDZ level

^d full anharmonic correction using our anharmonic algorithm with CCSD/1-,2-

body/MP2/6-body/aVDZ level.

^e optimized at MP2/aVTZ level

^f optimized at MP2/VTZ level

^g optimized at CCSD/aVTZ level

^h optimized at CCSD/VTZ level

ⁱ full anharmonic correction with CCSD/1-,2-body/MP2/6-body/aVTZ level.

^j optimized at CCSD(T)/aVTZ level

^k optimized at CCSD(T)/aVTZ level; electron part calculated at CCSD(T)/aV5Z

 $^{\rm l}$ simulated by Duncan with VPT2, CCSD(T)/VTZ for H_2O^+-Ar_1 and VPT2,

CCSD(T)/VDZ for $H_2O^+-Ar_2$

	Fre.(cm ⁻¹)	Assignments	Experiment ²	VPT2 ²
IIb	2797.5	$2v_2$		
	2886.7	ν_1	2700	2867
	3347.9	v_3	3324	3301
	4745.5	$v_2 + v_3$		
	5390.2	$2v_1$		
	5499.2	$2v_1 + v_s^{H-Ar}$		
	6548.8	$2v_3$		
IIc	3259.5	v_1		3263
	3322.3	v_3		3345
	4711.2	$v_2 + v_3$		
	6418.0	$2v_1$		
	6429.1	$v_1 + v_3$		
	6599.5	$2v_3$		

assignments for isomer one (IIb and IIc).

Table S2. vibrational transitions of H_2O^+ -Ar₂ in MIR and NIR window with

Figure S1. The four/five normal modes for conformers of H_2O^+ -Ar_n (*n*=1,2) complex whose notations are in parenthesis, respectively. The major displacement vectors are indicated. Conformer IIa belongs to $C_{2\nu}$ symmetry, the corresponding irreducible representation are given in the picture.

Figure S3. Normal modes of conformer IIa of H_2O^+ -Ar₂ which has $C_{2\nu}$ symmetry. The

corresponding irreducible representation of each mode are presented in parentheses.

Figure S4. Vibrational spectra of IIa conformer of the H_2O^+ -Ar₂ complex:(a) simulated basing on 5-dimensional Hamiltonian. (b) simulated basing on 7-dimensional Hamiltonian (including two out-plane bending modes)

References

1. Wagner, J. P.; McDonald, D. C.; Duncan, M. A., Near-infrared spectroscopy and anharmonic theory of the $H2O+Ar_{1,2}$ cation complexes. The Journal of Chemical Physics 2017, 147 (10), 104302.

2. Dopfer, O.; Roth, D.; Maier, J. P., Microsolvation of the Water Cation in Argon: II. Infrared Photodissociation Spectra of H2O+ $-Ar_n$ (n = 1–14). The Journal of Physical Chemistry A 2000, 104 (50), 11702-11713.