Supporting Information

Super strain enhanced thermal conductivity of monolayer aluminum/gallium nitride (Al_xGa_{1-x}N) alloys

Xiaoxia Wang¹, Zhunyun Tang¹, Linfeng Yu², Donghai Wei², Qikun Tian², Chao Tang¹, Hongjun Xiang³, Huimin Wang¹*, Tao Ouyang¹*, and Guangzhao Qin^{2,4}*

¹ School of Physics and Optoelectronics and Hunan Key Laboratory for Micro-Nano Energy Materials

& Device, Xiangtan University, Xiangtan 411105, Hunan, China

² State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, College of

Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, P. R. China

³ Key Laboratory of Computational Physical Sciences (Ministry of Education), State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China

⁴ Key Laboratory of Computational Physical Sciences (Fudan University), Ministry of Education,

China

^{*} Author to whom all correspondence should be addressed. E-Mail: wanghmin@xtu.edu.cn

^{*} Author to whom all correspondence should be addressed. E-Mail: <u>ouyangtao@xtu.edu.cn</u>

^{*} Author to whom all correspondence should be addressed. E-Mail: gzqin@hnu.edu.cn

Fig. S1. Phonon dispersion convergence tests for $3\times3\times1$ and $4\times4\times1$ expanded supercells of(a) Al_{0.75}Ga_{0.25}N, (b) Al_{0.5}Ga_{0.5}N, and (c) Al_{0.25}Ga_{0.75}N.

As shown in Fig. S1, we calculated the phonon dispersion based on $3 \times 3 \times 1$ and $4 \times 4 \times 1$ supercells. The difference between the results is very small and is sufficient to ensure convergence under the $3 \times 3 \times 1$ supercell strategy.

Fig. S2. The electron localization function (ELF) for (a) GaN and (b) Al_{0.75}Ga_{0.25}N.