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1 Methods

1.1 The curated database of proton-conducting metal–organic frameworks (MOFs)

Information on proton conductivity of MOFs was collected from scientific publications. The Google
Scholar search engine was utilized with the following query: (“metal organic framework” OR “MOF” OR
“coordination polymer”) AND (“proton conductivity” OR “proton conductor”). Topical reviews
were examined as well. We manually collected proton conductivity values from tables and plots containing
temperature dependences of the quantity; the WebPlotDigitizer[1] tool was used to extract numerical data.
To ensure the reliability of the structural data, we chose only MOFs that were deposited in the Cambridge
Structural Database[2] (available as of June 2023). The downloaded crystal structures were curated by
elimination of solvent molecules/ions and via resolving of disorder. Connected atomic components in a crys-
tal graph were determined using a simple distance-based criterion (the sum of the corresponding covalent
radii[3] and a tolerance distance of 0.5 Å): components with less than 10 atoms were removed from the
crystal structure. Then, we reassigned site occupancy values as follows: OCC = 1 IF OCC_INIT > 0.5 ELSE
OCC = 0. Hydrogen atoms missing in organic linkers were added by means of the HSite module integrated
into the ToposPro package[4]. In total, 219 distinct MOFs were included in the database. Each entry in
the database contains a curated crystal structure and physicochemical properties, including temperature,
relative humidity, and proton conductivity. Besides, solvent molecules were taken into account by an analysis
of the acid dissociation constant (in the logarithmic form: pKa) and of the degree of protonation. Activation
energies of proton transfer were computed from the temperature dependencies of proton conductivity, under
the assumption of the Arrhenius behavior.

1.2 Neural networks for predicting proton-conducting properties

MOFTransformer[5], a multimodal Transformer encoder pretrained on 1 million hypothetical MOFs, was
chosen as a basic model for predicting proton conductivity of MOFs. The original model, which included
two modalities (a crystal graph and energy grids), was modified to incorporate task-specific global-state
features. Temperature, relative humidity, the acid dissociation constant, and the degree of protonation of
a guest protic carrier were encoded via special tokens (as was done to normalized cell volume [VOL] in the
original architecture) and were added in this form at the final position of input embedding, which consisted
of the aforementioned local and global-state features.
For consistent estimation of model performance, we applied the stratified k-fold iterator with nonoverlapping
groups[6] corresponding to distinct chemical compounds. In other words, the data points that share a
common MOF structure were assigned together to either the training or test subset. Fivefold cross-validation
was conducted through training of 10-model ensembles. In our experiments, we evaluated two pretraining
strategies. In the first one, the models trained on structural features (MOF topology prediction, void fraction
prediction, and metal cluster–organic linker classification) as provided by authors were used for further
(pre)training. In the second strategy, we trained models on band gap values taken from the Quantum-MOF
database[7]. In particular, a set of 20,374 values calculated using the Perdew–Burke–Ernzerhof exchange-
correlation functional[8] was split into training (80%), validation (10%), and test (10%) subsets. The obtained
metrics for band gap prediction—MAE of 0.30 eV and RMSE of 0.45 eV—were lower in comparison with the
previous results; we explain this outcome by a modification of model architecture: global-state embeddings
were not trained at this stage and were added to make the model compatible with the subsequent fine-tuning
procedure.
The conventional mean square error served as a loss function for band gap predictors, whereas the following
uncertainty-aware expression[9] was utilized to model proton conductivity as a variable, µ, with associated
heteroscedastic variance σ2:

L =
1

N

N∑
i

1

2
exp (−si) ‖yi − µi‖2 +

si
2

(1)

where N is the number of data points, yi and µi are ground-truth and predicted values of the ith example,
and si is log-variance of aleatoric uncertainty (i.e., si = logσ2

i ). Total uncertainty was approximated as a
sum of the aforementioned data-related uncertainty and epistemic uncertainty calculated as a variance of
ensemble predictions. The combination of the sigmoid layer and cross entropy served as a loss function in
the case of classifiers trained on binarized activation energy values (BCEWithLogitsLoss as implemented in
the PyTorch library[10]). Models for predicting the band gap were trained at a learning rate of 10–4 and a
batch size of 16. Models for predicting proton conductivity were trained at a learning rate of 3 × 10–4 and
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a batch size of 32. Models for classifying a proton conduction mechanism were trained at a learning rate of
3 × 10–4 and a batch size of 8. Optimal values of the above hyperparameters were identified by the grid
search method. All models were trained for 20 epochs.

1.3 High-throughput screening of the Cambridge Structural Database

We assessed the density functional theory–ready dataset (prepared in accordance with a procedure de-
scribed in ref.[7]) as a starting point to perform high-throughput screening for the discovery of superprotonic
conductors. In short, the “non-disordered” CSD MOF subset was curated by elimination of crystal struc-
tures with the following drawbacks: CSD-flagged errors, the absence of hydrogen and carbon atoms, any
disorder, unbounded atoms, ions in a crystal graph, atoms with missing 3D coordinates, or interatomic
distances less than 0.75 Å. The QMOF-42349 dataset was then preprocessed via removal of unbound solvent
molecules included in the CSD list of solvents[2]; atomic connectivity was calculated by the MOFfragmentor
routine[11]. Then, duplicate crystal structures were detected with the help of StructureMatcher (as im-
plemented in the pymatgen package[12]) and were excluded from the consideration. The final curated set
containing 32,929 structures was utilized as input data for predicting proton conductivity at 80 °C and 98%
relative humidity. We processed outputs taken from five 10-model ensembles that led to total uncertainty√
σ2
aleatoric + σ2

epistemic < 0.2 lg(S cm−1), resulting in a subset containing 7,739 structures. Two-dimensional
projection of chemical space was generated by the uniform manifold approximation and projection (UMAP)
algorithm[13], which was applied to materials embeddings produced by the MOFTransformer model.

2 Metrics

Classification metrics can be natively defined within confusion matrix C for K classes. Its element Cij contains
the number of entities of class i that were assigned to class j by a predictive model.

overall accuracy =
c

s
(2)

recallk =
Ckk
tk

(3)

balanced accuracy =
1

K

K∑
k

recallk (4)

where c =
∑K

k Ckk, s =
∑K

i

∑K
j Cij , and tk =

∑K
i Cki.

The receiver-operating characteristic curve is a two-dimensional curve in which the true positive rate is
plotted against the false positive rate. The area under the receiver-operating characteristic curve (ROC
AUC) can serve as a measure of (binary) classifier performance[14].
If a set of N test samples is used, then the following regression metrics can be computed:

mean absolute error (MAE) = 1

N

N∑
i

|yi − ŷi| (5)

root mean square error (RMSE) = 1

N

N∑
i

(yi − ŷi)
2 (6)

where yi and ŷi are respectively the true value and predicted value of the ith sample.
The Spearman correlation coefficient can be computed as follows, assuming that all ranks of the observations
are distinct integers:

rs = 1−
6
∑N

i d2i
N (N 2 − 1)

(7)

where di = R[yi] − R[ŷi] is the difference between ranks of the true value and predicted value of the ith
sample.
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Figure S1. The expansion of the dataset with time. The distribution (by year) of CSD structures
having associated proton conduction data.
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Figure S2. Predictive performance in the case of a specific class of MOFs. A scatter plot
of experimental and predicted proton conductivity values; three porphyrinylphosphonate-based MOFs are
examined here.
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Figure S3. The residual distribution for the test dataset.
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Figure S4. Aleatoric and epistemic components of expected error for the test dataset.
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