Supplementary Information

Theoretical exploration of single-atom catalyst anchored on β₁₂-borophene for electrochemical nitrate reduction: catalyst screening and mechanistic insight

Yuqing Liu¹, Junjie Zhao¹, Ming Zhang*, Longteng Qu, Tian Wang, Jian Wu,

Zhuoran Xu, Ruzhi Wang

College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124,

People's Republic of China

^{*} Corresponding author: mzhang@bjut.edu.cn

The elementary steps of the NO₃RR process:

Common Steps:

$$* + NO_3^- \rightarrow *NO_3 + e^-$$
 (S1)

Pathway 1:

$$*NO_3 + H^+ + e^- \rightarrow (*ONO + *OH)$$
(S2)

$$(*ONO + *OH) + H^+ + e^- \rightarrow *O_2N + H_2O$$
(S3)

$$*O_2N + H^+ + e^- \rightarrow *O_2NH$$
 (S4)

$$*O_2NH + H^+ + e^- \rightarrow *O_2NH_2$$
(S5)

$$*O_2NH_2 + H^+ + e^- \rightarrow 2*O + NH_3$$
(S6)

$$2^{*}O + H^{+} + e^{-} \rightarrow ^{*}O + ^{*}OH$$
(S7)

$$*O + *OH + H^+ + e^- \rightarrow *O + H_2O$$
(S8)

$$*O + H^+ + e^- \rightarrow *OH \tag{S9}$$

$$*OH + H^+ + e^- \rightarrow *+ H_2O$$
 (S10)

Pathway 2:

$$*NO_3 + H^+ + e^- \rightarrow (*ONO + *OH)$$
(S2)

$$(*ONO + *OH) + H^+ + e^- \rightarrow *O*NO + H_2O$$
(S11)

$$*O*NO + H^+ + e^- \rightarrow (*OH + *NO)$$
(S12)

$$(*OH + *NO) + H^+ + e^- \rightarrow *N*O + H_2O$$
 (S13)

*N*O + H⁺+ e⁻
$$\rightarrow$$
 *NH*O (S14)

*NH*O + H⁺+ e⁻
$$\rightarrow$$
 *NH₂*O (S15)

$$*NH_2*O + H^+ + e^- \rightarrow (*NH_2 + *OH)$$
 (S16)

$$(*NH_2 + *OH) + H^+ + e^- \rightarrow *OH + NH_3$$
(S17)

$$*OH + H^+ + e^- \rightarrow *+ H_2O \tag{S10}$$

Pathway 3:

$$*NO_3 + H^+ + e^- \rightarrow (*ONO + *OH)$$
(S2)

$$(*ONO + *OH) + H^+ + e^- \rightarrow *O*NO + H_2O$$
(S11)

$$*O*NO + H^+ + e^- \rightarrow (*OH + *NO)$$
(S12)

$$(*OH + *NO) + H^+ + e^- \rightarrow *NO + H_2O$$
(S18)

*NO + H⁺+ e⁻
$$\rightarrow$$
 *NHO (S19)

*NHO + H⁺+ e⁻
$$\rightarrow$$
 *NH₂*O (S20)

$$*NH_2*O + H^+ + e^- \rightarrow *O + NH_3$$
(S21)

$$^{*}O + H^{+} + e^{-} \rightarrow ^{*}OH$$
 (S9)

$$*OH + H^+ + e^- \rightarrow *+ H_2O$$
 (S10)

Pathway 4:

$$*NO_3 + H^+ + e^- \rightarrow (*ONO + *OH)$$
(S2)

$$(*ONO + *OH) + H^+ + e^- \rightarrow *O*NO + H_2O$$
(S11)

$$*O*NO + H^+ + e^- \rightarrow (*OH + *NO)$$
 (S12)

$$(*OH + *NO) + H^+ + e^- \rightarrow *N*O + H_2O$$
 (S13)

*N*O + H⁺+ e⁻
$$\rightarrow$$
 *NH*O (S14)

*NH*O + H⁺+ e⁻
$$\rightarrow$$
 *NH₂*O (S15)

$$*\mathrm{NH}_2*\mathrm{O} + \mathrm{H}^+\!\!+ \mathrm{e}^-\!\!\to *\mathrm{O} + \mathrm{NH}_3 \tag{S21}$$

$$^{*}O + H^{+} + e^{-} \rightarrow ^{*}OH \tag{S9}$$

$$*OH + H^+ + e^- \rightarrow *+ H_2O$$
 (S10)

Pathway 5:

$$*NO_3 + H^+ + e^- \rightarrow (*ONO + *OH)$$
(S2)

$$(*ONO + *OH) + H^+ + e^- \rightarrow *O*NO + H_2O$$
(S11)

$$*O*NO + H^+ e^- \rightarrow (*OH + *NO)$$
 (S12)

$$(*OH + *NO) + H^+ + e^- \rightarrow *NO + H_2O$$
(S18)

*NO + H⁺+ e⁻
$$\rightarrow$$
 *NOH (S22)

*NOH + H⁺+ e⁻
$$\rightarrow$$
 *NHOH (S23)

*NHOH + H⁺+ e⁻
$$\rightarrow$$
 *NH + H₂O (S24)

$$*NH + H^+ + e^- \rightarrow *NH_2$$
 (S25)

$$*NH_2 + H^+ + e^- \rightarrow *NH_3$$
 (S26)

Pathway 6:

$$*NO_3 + H^+ + e^- \rightarrow (*ONO + *OH)$$
(S2)

$$(*ONO + *OH) + H^+ + e^- \rightarrow *O*NO + H_2O$$
 (S11)

$$*O*NO + H^+ + e^- \rightarrow (*OH + *NO)$$
(S12)

$$(*OH + *NO) + H^+ + e^- \rightarrow *NO + H_2O$$
(S18)

*NO + H⁺+ e⁻
$$\rightarrow$$
 *NOH (S22)

*NOH + H⁺+ e⁻
$$\rightarrow$$
 *N + H₂O (S27)

$$*N + H^+ + e^- \rightarrow *NH \tag{S28}$$

$$*NH + H^+ + e^- \rightarrow *NH_2$$
 (S25)

$$*NH_2 + H^+ + e^- \rightarrow *NH_3$$
 (S26)

Pathway 7:

$$*NO_3 + H^+ + e^- \rightarrow (*ONO + *OH)$$
(S2)

$$(*ONO + *OH) + H^+ + e^- \rightarrow *O*NO + H_2O$$
(S11)

$$*O*NO + H^+ + e^- \rightarrow (*OH + *NO)$$
 (S12)

$$(*OH + *NO) + H^+ + e^- \rightarrow *NO + H_2O$$
(S18)

*NO + H⁺+ e⁻
$$\rightarrow$$
 *NH*O (S27)

$$*NH*O + H^+ + e^- \rightarrow *NH_2*O$$
 (S15)

$$*NH_2*O + H^+ e^- \rightarrow (*NH_2 + *OH)$$
 (S16)

$$(*NH_2 + *OH) + H^+ + e^- \rightarrow *OH + NH_3$$
(S17)

$$*OH + H^+ + e^- \rightarrow *+ H_2O$$
 (S10)

Pathway 8:

$$*NO_3 + H^+ + e^- \rightarrow *O_2NOH$$
 (S28)

$$*O_2NOH + H^+ + e^- \rightarrow *NO_2 + H_2O$$
(S29)

$$*NO_2 + H^+ + e^- \to *NO_2H$$
(S30)

$$*NO_2H + H^+ + e^- \rightarrow *NO + H_2O$$
(S31)

*NO + H⁺+ e⁻
$$\rightarrow$$
 *NHO (S19)

*NHO + H⁺+ e⁻
$$\rightarrow$$
 *NH₂*O (S20)

$$*NH_2*O + H^+ + e^- \rightarrow *O + NH_3$$
(S21)

$$*O + H^+ + e^- \to *OH \tag{S9}$$

$$*OH + H^+ + e^- \rightarrow *+ H_2O \tag{S10}$$

Pathway 9:

$$*NO_3 + H^+ + e^- \rightarrow *ONO_2H$$
(S32)

$$*ONO_2H + H^+ + e^- \rightarrow *O^*NO + H_2O$$
(S33)

$$*O*NO + H^+ + e^- \rightarrow *NO_2H$$
 (S34)

$$*NO_2H + H^+ + e^- \rightarrow *NO + H_2O$$
 (S31)

*NO + H⁺+ e⁻
$$\rightarrow$$
 *NHO (S19)

*NHO + H⁺+ e⁻
$$\rightarrow$$
 *NH₂*O (S20)

$$*NH_2*O + H^+ + e^- \rightarrow *O + NH_3$$
(S21)

$$^{*}O + H^{+} + e^{-} \rightarrow ^{*}OH$$
 (S9)

$$*OH + H^+ + e^- \rightarrow *+ H_2O \tag{S10}$$

Pathway 10:

$$*NO_3 + H^+ + e^- \rightarrow (*ONO + *OH)$$
(S2)

$$(*ONO + *OH) + H^+ + e^- \rightarrow *O*NO + H_2O$$
(S11)

$$*O*NO + H^+ + e^- \rightarrow (*OH + *NO)$$
 (S12)

$$(*OH + *NO) + H^+ + e^- \rightarrow *NO + H_2O$$
(S18)

*NO + H⁺+ e⁻
$$\rightarrow$$
 *NH*O (S27)

$$*NH*O + H^+ + e^- \rightarrow *NH_2*O$$
 (S15)

$$*NH_2*O + H^+ + e^- \rightarrow *O + NH_3$$
(S21)

$$*O + H^+ + e^- \to *OH \tag{S9}$$

$$*OH + H^+ + e^- \rightarrow *+ H_2O \tag{S10}$$

Metal	$E_{\rm f}({\rm eV})$	$U_{diss}\left(\mathrm{V} ight)$	a (Å)	b (Å)	$d_{M ext{-}B(min)}$ (Å)	d _{M-B(max)} (Å)	$Q_M(\mathbf{e})$
Ti	-6.52	1.63	8.76	14.85	2.11	2.21	1.23
V	-5.65	1.65	8.76	14.86	2.00	2.09	1.03
Cr	-3.32	0.75	8.78	15.23	2.27	2.28	0.82
Mn	-3.81	0.72	8.78	15.14	2.14	2.17	0.74
Fe	-4.98	2.04	8.78	14.91	1.88	1.93	0.20
Co	-5.71	2.58	8.79	15.22	1.86	1.89	-0.22
Ni	-4.29	1.88	8.78	15.22	2.13	2,15	0.28
Cu	-3.34	2.01	8.79	15.23	2.16	2.17	0.33
Zr	-7.19	0.35	8.77	14.81	2.24	2.36	1.35
Nb	-6.70	1.13	8.77	14.81	2.14	2.24	1.15
Mo	-5.41	1.60	8.77	14.80	2.07	2.15	0.68
Ru	-5.78	3.35	8.77	15.20	2.28	2.22	0.18
Rh	-5.48	3.34	8.77	15.18	2.22	2.29	0.05
Pd	-3.70	2.80	8.78	15.20	2.35	2.38	0.11
Ag	-2.21	3.01	8.78	15.23	2.49	2.50	0.34
Hf	-9.95	0.94	8.77	14.82	2.21	2.32	1.36
Та	-7.67	1.96	8.77	14.81	2.12	2.22	1.19
W	-7.32	2.54	8.77	14.83	2.06	2.15	0.71
Re	-6.17	2.36	8.77	14.92	2.04	2.10	0.08
Os	-5.89	1.58	8.77	15.22	2.15	2.19	-0.01
Ir	-6.13	3.20	8.76	15.20	2.20	2.26	-0.13
Pt	-4.90	3.63	8.78	15.20	2.29	2.35	-0.11
Au	-2.38	2.29	8.79	15.23	2.46	2.47	0.04

Table S1. The formation energies (E_f) , dissolution potentials (U_{diss}) ; the lattice parameters *a* and *b* of the fully relaxed $M@\beta_{12}$; the shortest $(d_{M-B(min)})$ and longest $(d_{M-B(max)})$ bond lengths of M - B bonds, respectively; and charges on $M(Q_M)$

Table S2. The total energies (E_{1-0}, E_{2-0}) of two possible NO₃⁻ adsorption configurations on $M@\beta_{12}$; "-" represents convergence no achieved for the corresponding geometry optimization; the bonds lengths (d_{O1-M}, d_{O2-M}) of *M*-O bonds between metal atom and NO₃⁻; charges on the metal atom (Q_M) and *NO₃ (Q_{NO3}) ; adsorption energies for *NO₃ (ΔG_{*NO3}) and *H on $M@\beta_{12}$, respectively

Metal	E_{1-O} (eV)	E_{2-O} (eV)	$d_{\text{O1-M}}$	$d_{\text{O2-M}}$	$Q_M(\mathbf{e})$	$Q_{\rm NO3}$	ΔG_{*NO3}	$\Delta G_{*\mathrm{H}}$
	015.10	215.54	(A)	(A)	1.45	(e)	(ev)	(ev)
T1	-317.12	-317.76	2.12	2.11	1.45	-0.63	-1.52	0.20
V	-317.83	-318.36	2.07	2.06	1.26	-0.60	-1.55	-0.01
Cr	—	-317.63	2.04	2.05	1.18	-0.63	-1.21	0.23
Mn	—	-317.12	2.03	2.03	1.08	-0.61	-0.61	-0.22
Fe	—	-315.82	1.97	1.97	0.68	-0.54	0.23	_
Co	_	-314.60	1.97	1.97	0.63	-0.55	0.36	_
Ni	-312.10	-313.07	1.97	1.98	0.60	-0.56	-0.43	-0.09
Cu	_	-310.98	2.05	2.05	0.66	-0.61	0.20	_
Zr	-317.74	-318.39	2.28	2.26	1.69	-0.67	-1.69	0.06
Nb	-318.81	-319.39	2.23	2.23	1.56	-0.68	-1.90	-0.42
Мо	-318.69	-319.32	2.17	2.17	1.10	-0.59	-1.74	-0.38
Ru	-	-316.52	2.12	2.12	0.54	-0.54	-0.97	0.01
Rh	-313.63	-314.61	2.13	2.14	0.41	-0.54	-0.37	0.20
Pd	-311.58	-312.55	2.19	2.19	0.39	-0.53	0.10	_
Ag	-309.58	-309.60	2.28	2.29	0.56	-0.59	0.46	_
Hf	-319.30	-319.95	2.24	2.22	1.74	-0.67	-2.05	-0.28
Ta	-320.81	-321.41	2.20	2.20	1.60	-0.65	-2.62	-0.91
W	-320.61	-321.16	2.15	2.15	1.24	-0.62	-2.15	-0.97
Re	-	-319.88	2.11	2.12	0.80	-0.59	-1.49	-0.84
Os	-	-317.93	2.10	2.10	0.52	-0.57	-1.59	-0.69
Ir	-	-315.70	2.10	2.13	0.35	-0.53	-0.83	-0.42
Pt	_	-313.23	2.17	2.17	0.28	-0.51	-0.29	-0.18
Au	-	-310.07	2.26	2.27	0.31	-0.54	0.29	_

		HNO ₃			NO ₂			NO	
	*O ₂ NOH	*HNO+*OH	ONO ₂ H	*O ₂ N	*0*N0	*NO ₂	*N*O	*NO	*ON
Ti	-1.55	-3.20	-	-2.05	-2.12	-	-2.04	-1.90	-1.39
V	-1.84	-2.87	_	-2.09	-2.33	-	-2.43	-2.40	-1.67
Cr	-2.36	-2.77	_	-2.85	-2.34	-	_	_	_
Mn	-1.23	-2.02	_	-2.07	-2.10	-	-1.98	-2.38	-0.57
Ni	-0.75	-	-0.78	-1.82	-2.04	-	-	-2.85	-1.26
Zr	-3.00	-3.91	-	-3.76	-3.79	-	-1.83	-1.95	-1.48
Nb	-2.17	-3.46	-	-3.49	-3.53	-	-2.43	-2.58	-1.97
Mo	-2.63	-3.40	_	-3.46	-3.52	-	-2.78	-2.96	-1.98
Ru	-1.60	-2.10	_	-2.55	-2.53	-	_	_	_
Rh	-0.58	-0.37	_	-1.58	_	-1.84	-	-2.57	-0.72
Hf	-3.36	-4.44	_	-3.47	-3.48	-	-2.09	-2.25	-1.76
Та	-3.09	-4.24	_	-4.01	-4.08	-	-2.94	-3.02	-2.42
W	-3.17	-4.19	_	-3.62	-3.65	-	-3.01	-3.21	-2.04
Re	-2.92	-3.25	_	-3.16	-3.11	-	_	_	_
Os	-2.64	-3.13	-	-3.15	-3.16	-	-3.20	-4.41	-1.82
Ir	-1.50	-2.14	-	-2.23	-2.42	-	-	-3.55	-0.96

Table S3. The adsorption energies for HNO₃, NO₂, and NO species with various adsorption configurations on $M@\beta_{12}$; "–" denotes that no such adsorption configuration can be formed

	Pathway1			Pathway2	Pathway3	Pathway4	Pathway5	
$\Delta G(eV)$	Cr	Ru	Re	Ti	Mn	V	Мо	W
ΔG_1	-1.21	-0.97	-1.49	-1.52	-0.61	-1.55	-1.74	-2.15
ΔG_2	-1.18	-0.74	-1.37	-1.28	-1.02	-0.93	-1.26	-1.65
ΔG_3	-0.35	-0.76	-0.07	_	_	_	_	_
ΔG_4	-0.22	0.15	-0.35	_	_	_	_	_
ΔG_5	0.08	0.10	0.32	_	_	_	_	_
ΔG_6	-2.64	-1.66	-3.25	_	_	_	_	_
ΔG_7	-0.34	-0.77	-0.40	_	_	_	_	_
ΔG_8	-0.78	-1.59	-1.02	_	_	_	_	_
ΔG_9	0.03	0.02	0.45	_	0.23	-0.64	_	_
ΔG_{10}	1.08	0.70	1.64	1.46	0.33	1.73	_	_
ΔG_{11}	—	_	_	-0.08	-0.54	-0.60	-0.10	0.19
ΔG_{12}	—	_	_	-1.54	-1.51	-1.34	-1.53	-1.62
ΔG_{13}	_	_	_	0.99	_	0.63	_	_
ΔG_{14}	_	_	_	-0.76	_	-0.45	_	_
ΔG_{15}	—	_	_	-0.78	_	-0.99	_	_
ΔG_{16}	_	_	_	-1.85	_	_	_	_
ΔG_{17}	_	_	_	-0.15	_	_		_
ΔG_{18}	_	_	_	_	-0.04	_	0.56	0.65
ΔG_{19}	_	_	_	_	0.06	_	_	_
ΔG_{20}	_	_	_	_	-0.48	_	_	_
ΔG_{21}	_	_	_	_	-1.93	-1.36	_	_
ΔG_{22}	_	_	_	_	_	_	-0.10	-0.20
ΔG_{23}	_	_	_	_	_	_	-0.11	-0.08
ΔG_{24}	_	_	_	_	_	_	-2.11	-2.27
ΔG_{25}	_	_	_	_	_	_	-0.57	-0.40
ΔG_{26}	_	_	_	_	_	_	-0.53	0.69
ΔG_{27}	_	_	_	_	-	_	_	_
ΔG_{28}	_	_	_	_	_	_	_	_
ΔG_{29}	—	_	_	_	_	_	_	_
ΔG_{30}	_	_	—	_	_	—	_	_

Table S4. Gibbs free energy change of each elementary step for all $M@\beta_{12}$ along their preferred reaction pathways

ΔG_{31}	—	—	—	—	—	-	-	—
ΔG_{32}	—	—	—	—	_	_	—	—
ΔG_{33}	_	_	-	—	_	—	—	_
ΔG_{34}	—	—	—	—	_	_	-	—

ΔG	Pathway6		Pathy	way7	Pathway8	Pathway9	thway9 Pathway10		
(eV)	Os	Ir	Zr	Hf	Rh	Ni	Nb	Та	
ΔG_1	-1.59	-0.83	-1.69	-2.05	-0.37	-0.43	-1.90	-2.62	
ΔG_2	-1.14	-0.91	-1.83	-2.01	_	—	-1.17	-1.22	
ΔG_3	-	—	—	—	_	_	_	_	
ΔG_4	—	_	_	_	_	_	_	_	
ΔG_5	_	_	_	_	_	_	_	_	
ΔG_6	_	_	_	_	_	_	_	_	
ΔG_7	_	_	_	_	_	_	_	_	
ΔG_8	_	_	_	_	—	—	—	_	
ΔG_9	_	_	_		-0.94	-1.49	-0.83	-0.96	
ΔG_{10}	-	_	1.63	2.06	-0.07	-0.03	1.99	2.59	
ΔG_{11}	-0.31	-0.49	0.43	0.64	_	_	-0.23	0.01	
ΔG_{12}	-1.94	-1.43	-1.72	-1.90	—		-1.47	-1.65	
ΔG_{13}	—	_	—	_	—	_	—	_	
ΔG_{14}	—	_	—		—	_	—	_	
ΔG_{15}	—	_	-0.82	-0.71	—	_	-0.93	-0.94	
ΔG_{16}	_	_	-2.23	-2.55	_	_	_	_	
ΔG_{17}	-	_	0.23	0.43	_	_	_	_	
ΔG_{18}	-0.60	-1.12	1.44	1.66	_		0.99	1.26	
ΔG_{19}	_	_			0.56	0.78			
ΔG_{20}	_	_			-0.39	-0.47			
ΔG_{21}	_	_		_	-0.81	-0.17	-1.27	-1.27	
ΔG_{22}	0.54	0.90	_	_	-	_	_	_	
ΔG_{23}	_	_	_	_	-	_	_	_	
ΔG_{24}	_	_	_	_	-	_	_	_	
ΔG_{25}	0.25	-0.63	_	_	-	_	_	_	
ΔG_{26}	0.28	-0.15	_	_	_	—	_	_	
ΔG_{27}	-1.84	-1.69	-0.95	-1.10	_	—	-0.70	-0.70	
ΔG_{28}	-0.34	-0.09	_	_	0.72	_	_	_	
ΔG_{29}	_	_	_	_	-2.15	_	_	_	
ΔG_{30}	-	_	_	_	-0.18	—	_	—	

Table S4 (Continued). Gibbs free energy change of each elementary step for all $M@\beta_{12}$ along their preferred reaction pathways

ΔG_{31}	_	—	_	_	-1.90	-1.98	—	_
ΔG_{32}	—	—	—	—	—	0.68		_
ΔG_{33}	—	—	—	—	—	-2.24	—	—
ΔG_{34}	-	—	—	—	—	-0.17	—	—

Figure S1. Optimized adsorption structures of $M@\beta_{12}$. The green balls represent B atoms, while other colors denote metal atoms as labeled.

Figure S2-1

Figure S2-2

Figure S2-3

Figure S2-4

Figure S2-5

Figure S2-6

Figure S2-7

Figure S2-8

Figure S2-9

Figure S2-10

Figure S2-11

Figure S2-12

Figure S2-13

Figure S2-14

Figure S2-15

Figure S2. Free energy diagrams and the adsorption configurations of reaction intermediates on $M@\beta_{12}$ (excluding $Mn@\beta_{12}$). The green, red, pale blue and white balls represent B, O, N and H atoms respectively, while other colors denote metal atoms as labeled.

Figure S3 illustrates the Gibbs free energies for the reaction steps $NO_3^- \rightarrow *NO_3$ (blue line), $H^+ \rightarrow *H$ (red line), $*NO \rightarrow *HNO$ (olive gold line), $*NO \rightarrow NO$ (brown line), $*NO_2 \rightarrow *HNO_2$ (green line), and $*NO_2 \rightarrow NO_2$ (purple line)as a function of pH.

Figure S4. The total DOSs of the $M@\beta_{12}$.

22 / 23

Figure S5. The relationship between $U_{\rm L}$ and ΔG_{*NO3} (a), and the scaling relationship between the d-band center $\varepsilon_{\rm d}$ and the empty orbitals (b).