Supplementary Information

Decomposition of Methanol Activated by Surface Under-

coordinated Pd on Layered PdTe₂

Jing-Wen Hsueh¹, Lai-Hsiang Kuo¹, Po-Han Chen², Wan-Hsin Chen³, Chi-Yao Chuang³, Chia-Nung

Kuo^{4,5}, Chin-Shan Lue^{4,5,6}, Hung-Wei Shiu⁷, Bo-Hong Liu⁷, Chia-Hsin Wang⁷, Yao-Jane Hsu⁷, Chun-

Liang Lin,^{3,8*} Jyh-Pin Chou^{9,*} and Meng-Fan Luo^{1,*}

¹Department of Physics, National Central University, No. 300 Jhongda Rd., Jhongli District, Taoyuan 320317, Taiwan ²Department of Materials Science and Engineering, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 300044, Taiwan ³Department of Electrophysics, National Yang Ming Chiao Tung University, No. 1001 University Rd., Hsinchu 300039, Taiwan ⁴Department of Physics, National Cheng Kung University, No. 1 University Rd., Tainan 70101, Taiwan ⁵Taiwan Consortium of Emergent Crystalline Materials, National Science and Technology Council, Taipei 10601, Taiwan ⁶Program on Key Materials, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan 70101, Taiwan ⁷National Synchrotron Radiation Research Center, No.101 Hsin-Ann Rd., Hsinchu Science Park, Hsinchu 300092, Taiwan ⁸Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, No. 1001 University Rd., Hsinchu 300039, Taiwan ⁹Graduate School of Advanced Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan

Corresponding authors: Meng-Fan Luo (<u>mfl28@phy.ncu.edu.tw</u>); Jyh-Pin Chou (<u>jpchou@cc.ncue.edu.tw</u>); Chun-Liang Lin (clin@nycu.edu.tw)

Figure S1 shows a wide-range PES spectrum from the as-cleaved PdTe₂. Such a wide-range PES survey was performed before each set of experiments to confirm negligible contamination (primarily carbon species). As shown in the figure, the signals associated with carbon species, near 284 -287 eV, are negligible.

Figure S2 compares the STM image (Figure S2a) to the DFT-simulated one (Figure S2b) produced based on a single Te_{top} vacancy model (Figure 1e). The well match of these two images corroborates that the dark spots (areas) indeed correspond to the Te_{top} vacancies.

Figures S3a,b exemplify the surface morphology of PdTe₂ bombarded with Ar^+ for longer time (a greater Ar^+ dosage). In addition to the formation of Te_{top} vacancies, the roughness was obviously increased. The lateral profile (Figure S3b) shows that both the islands' heights and cavities' depths exceed evidently the depth of Te_{top} vacancies (~ 0.12 nm). These islands could be PdTe₂ patches and Pd-Te nanoclusters formed by nucleation of re-deposited Pd and Te. Therefore, structurally different Pduc-X, such as those at the edges of PdTe₂ patches and re-deposited Pd-Te nanoclusters, were generated with such a greater Ar^+ dosage. To reduce the structural complexity, a controlled Ar^+ dosage was employed to prepare our samples for the investigation of catalytic properties. Figures S3c,d compare the RHEED patterns obtained from at the [100] azimuth of PdTe₂ before and after Ar^+ bombardment. The sharp and bright reflection rods from as-cleaved PdTe₂ (Figure S3c) suggest a highly crystalline PdTe₂ surface; the patterns correspond to a hexagonal lattice with a lattice constant of 4.11 Å, quite close to the value obtained from STM (Figure 1). The reflection rods became faint

(Figure S3d) after Ar^+ bombardment, suggesting attenuated surface crystallinity — the extent of ordered PdTe₂ structures decreased. Besides, no additional diffraction patterns were formed so the redeposited Pd-Te nanoclusters had no long-range structural ordering.

Figure S4 shows Pd 3d and Te 4d PES spectra from layered PdTe₂ as cleaved and bombarded by Ar^+ (0.5 keV) for (a,b) 120 and (c,d) 30 s. The Pd 3d lines broadened after the Ar^+ bombardment (lower panel), because an additional feature grew at a BE slightly smaller than that of the main Pd feature, 341.6 eV for Pd 3d_{3/2} and 336.3 eV for Pd 3d_{5/2}, indicated by red fitted curves. The smaller BE for Pd 3d implies less oxidized Pd, such as Pd_{ue}, at the PdTe₂ surface and therefore the removal of Te atoms by the Ar⁺ bombardment. In contrast, the Te 4d doublet altered little in its line shape after Ar⁺ bombardment. These spectral features for varied Ar⁺ dosages are similar despite varied intensities of the Pd_{ue} features. The Pd_{ue} signals thus correspond not only to the Pd_{ue} at the Te_{top} vacancies (Pd_{ue}-V) but possibly to those at other surface defects (Pd_{ue}-X) generated by greater Ar⁺ dosages (Figure S3).

Figure S5a shows the C 1s signals were absent for the Ar^+ -bombarded PdTe₂ exposed to CO at 145 K. The result indicates that CO did not adsorb on defective PdTe₂ surface at 145 K. Therefore, the carbon species (from decomposed methanol) which yielded C 1s signals about 285.2 eV, is assigned to CH_xO* species, instead of CO*. Figure S3b shows the C* yielded signals centered at 284.3 eV; accordingly, the carbon species which yielded C 1s signals about 283.6 eV, is not C* but CH_x*.

Figure S6 shows the DFT modelling for adsorption of methanol and its decomposition intermediates or fragments on structurally perfect PdTe₂ surface and the Te_{top} divacancy. Varied

adsorption configurations and corresponding adsorption energies are also given. The results indicate that the adsorption energies on the Te_{top} divacancy are in general stronger than those on pristine $PdTe_2$ surface; either methanol or its decomposition intermediates (or fragments) is preferentially bonded to Pd_{uc} -V at the Te_{top} divacancy.

Figures S7 –S17 shows the computed energetic barriers of three main decomposition processes, including dehydrogenation from either oxygen or carbon, and C-O bond scission (deoxygenation and dehydroxylation), at varied stages on the Te_{top}-divacancy site. There are no barriers for the inverse processes CHOH* + H* \rightarrow CH₂OH* (Figure S13) and CH₂O* + H* \rightarrow CH₂OH* (Figure S14). The result suggests that the dehydrogenation of CH₂OH* to either CHOH* or CH₂O* would not occur; instead, CH₂O* can readily combine with H* to yield CH₂OH*. As CH₂O* also readily combines with H* to yield CH₃O* (Figure 6b), no stable CH₂O* exists on the surface. We thus observed no desorption of CH₂O_(g). Figures S15-S17 shows the barriers for dehydrogenation of CH_x* to CH_{x-1}* (x = 1-3). It is noted these barriers are evidently greater than those of hydrogenation, the inverse processes. Accordingly, CH₄*, instead of C*, is preferentially formed. Figure S18 shows a small barrier for the hydrogenation of CH₃* to CH₄*. The CH_{4(g)} is thus heavily produced whereas C* is little.

Figure S19 shows the calculated barriers of a hydroxyl group (OH*) diffusing from the Pd_{uc} -V sites to the basal plane and between Te_{top} sites on the basal plane (Figure S19). These barriers 0.95 and 0.27 eV are smaller than those for the reactions (Figure 6b), so with the progress of methanol decomposition, the produced OH* diffuses easily away from the active sites or combines with H* to

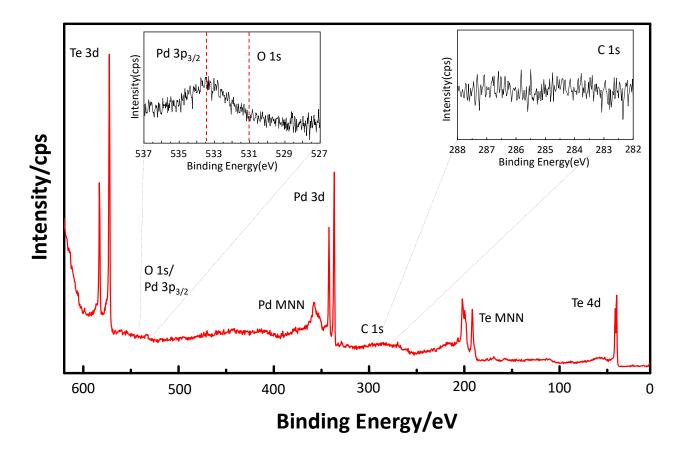
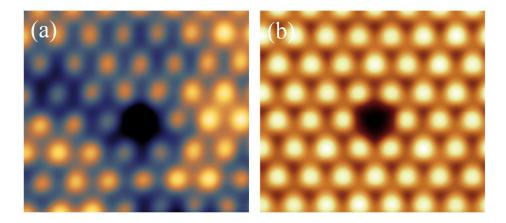
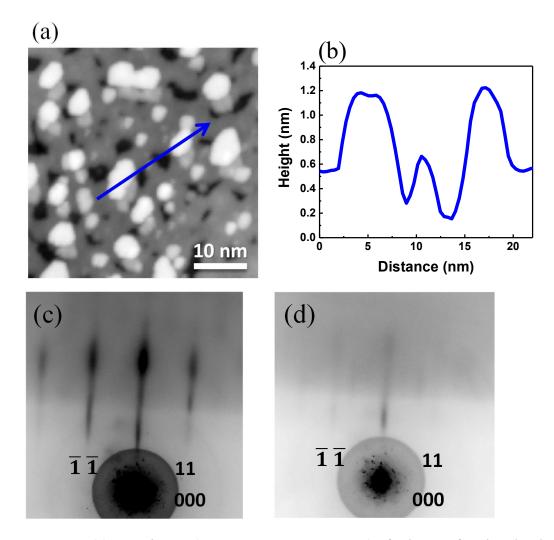
desorb as $H_2O_{(g)}$ (Figure 5c). The obstruction of the active Pd_{uc} -V sites by either C* and OH* during the reaction is ignorable.

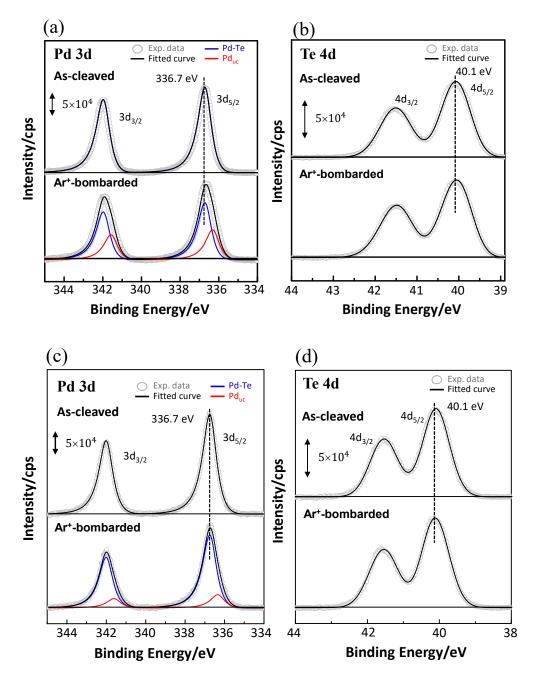
Figure S20 compares projected density of states (PDOS) of Pd_{uc0-3} -V at $PdTe_2$ surface and Pd at Pd(111) surface; Pd_{uc0} -V stands for the Pd in structurally perfect $PdTe_2$, Pd_{uc1-3} -V stands for Pd with 1-3 missing Te-Pd bonds (coordination number 5-3) at PdTe₂ surface. Figures S21-S25 show the simulated dehydrogenation of CH₃OH* to CH₂O* and CH₂OH*, and dehydroxylation of CH₂OH* to CH₂* in the Te_{top}-trivacancy model. The simulation suggests the reaction should proceed in a manner similar to that on a Te_{top}-divacancy model. Enlarging the Te_{top} vacancies (increasing the number of Pd_{uc3}-V) is expected to yield similar results, instead of altering the reaction pathway.

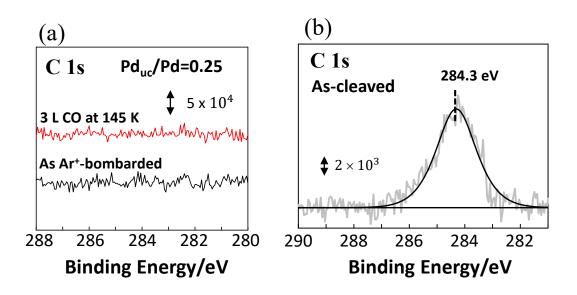
As the coordination (to Te) number of Pd_{uc} -V determines its electronic structure and as larger Te_{top} vacancies are also generated in the present study, we introduce a Te_{top} -trivacancy model with a Pd_{uc3} -V at the center to confirm the effect of the coordination number of Pd_{uc} -V on the catalytic performance. The adsorption energies of the main intermediates and the reaction barriers of several key processes in the divacancy and trivacancy models are shown to be comparable (Figure. S21). For instance, the computed barriers for dehydrogenation of CH_3OH^* to CH_3O^* and then to CH_2O^* amount to 1.65 and 1.17 eV (Figures S22 and S23), respectively; the dehydrogenation of CH_3OH^* to CH_2OH^* does not occur (Figure S24) and the dehydroxylation of CH_2OH^* to CH_2^* and OH^* has a barrier about 1.81 eV (Figure S25). The comparison suggests that Pd_{uc3} -V and Pd_{uc2} -V as single-atom catalysts toward methanol decomposition play similar roles; enlarging the Te_{top} vacancies (increasing the

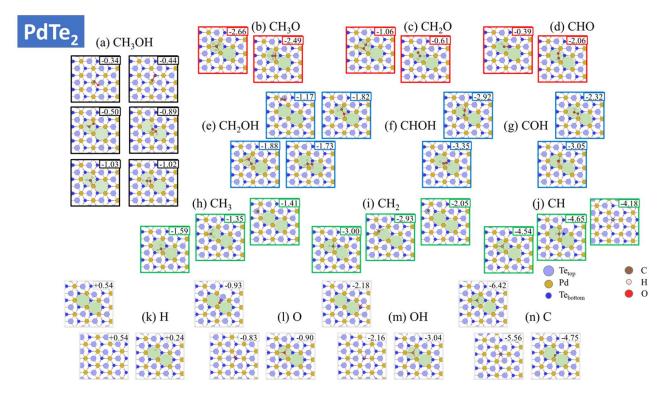
number of Pd_{uc3} -V) is expected to yield similar results, instead of altering the reaction pathway. The different catalytic properties observed at Pd_{uc} concentrations > 20 % (Figure 4) result from structurally different Pd_{uc} -X.

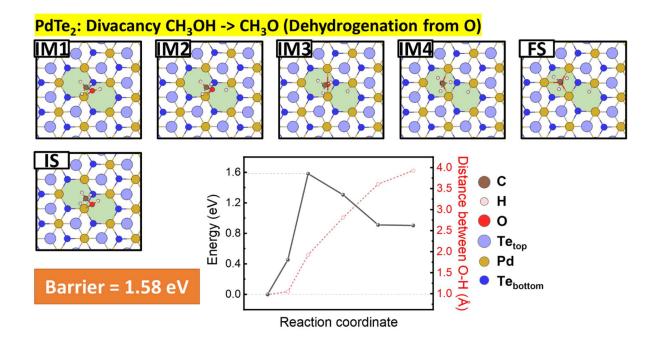
Figure S26 schematically illustrates the structure of the edges of a PdTe₂ island and also shows the activation energies for dehydrogenation and dehydroxylation of methanol (CH₃OH) on the edge sites of a PdTe₂ island. The Pd_{uc} at the edges consist primarily of Pd_{uc1}-X atoms; details about this edge-site model can be found in Ref. 1. The detailed information on the energy barrier calculations is provided in Figures S27 - S28. Also, the adsorption energies of related species are calculated and indicated in the parentheses. In the light of a much smaller barrier for desorption (0.66 eV), the methanol would prefer desorption to decomposition. The result implies that increasing the edge Pd_{uc1}-X x sites decreases the average conversion probability (to both CH_xO* and CH_x*) on Pd_{uc} sites.

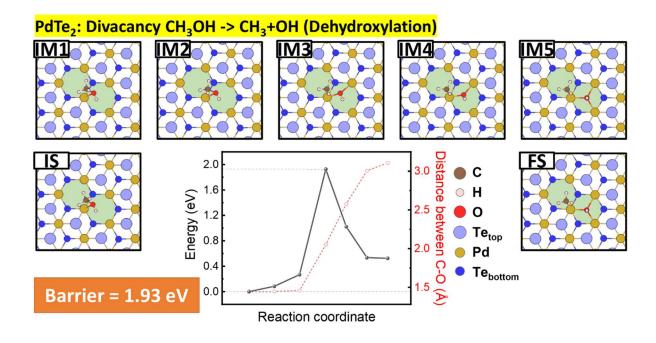




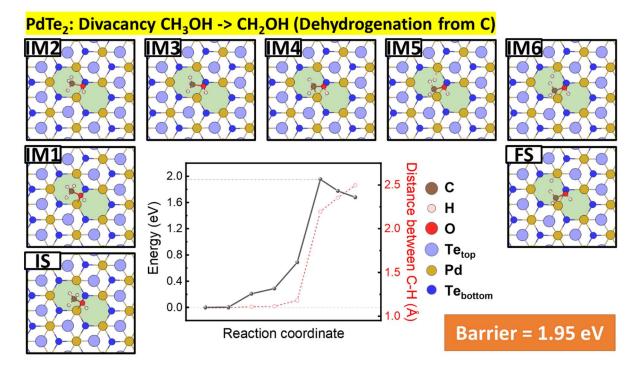

Figure S1 a wide-range PES spectrum from the as-cleaved $PdTe_2$. A photon energy 680 eV was used for the measurement.

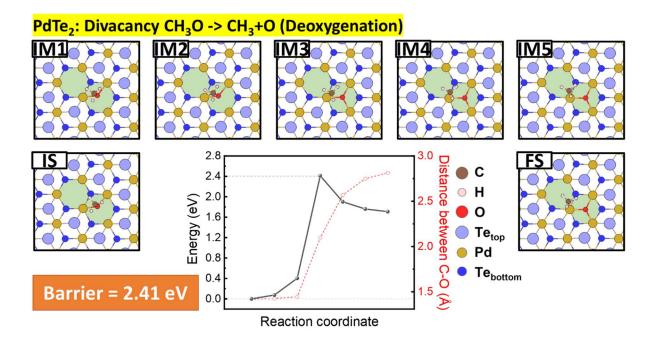

Figure S2. Comparison of (a) the STM image ($V_s = -1.0$ V, $I_t = 0.3$ nA) with (b) the DFT-simulated one produced based on a single Te_{top} vacancy model (as shown Figure 1e). In (b), yellow balls denote the simulated images for the Te_{top} atoms; the simulated image was derived with a bias of -1.0 V.

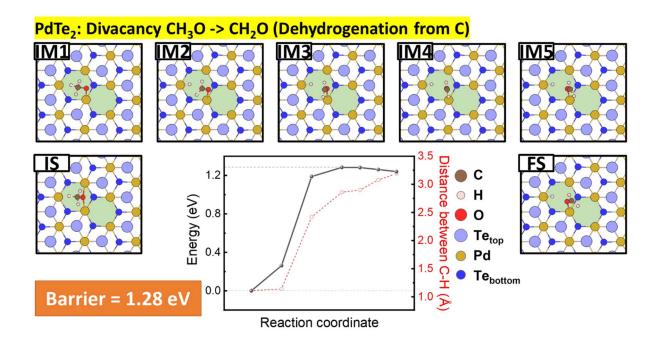

Figure S3. (a) STM image ($V_s = -810 \text{ mV}$, $I_t = 0.5 \text{ nA}$) of PdTe₂ surface bombarded by Ar⁺ (0.5 keV, 0.7 μ A · 180 s); (b) a depth profile along the blue arrow in (a). Comparison of RHEED patterns obtained from PdTe₂ (c) before and (d) after Ar⁺ bombardment (0.5 keV, 0.7 μ A · 180 s). The RHEED measurements were performed with an incident electron beam of 25 keV at a grazing angle of 2° to 3° relative to the surface, and the patterns were obtained at the [100] azimuth of PdTe₂ substrate.


Figure S4 PES spectra of Pd 3d and Te 4d core levels from layered PdTe₂ as cleaved and bombarded by Ar^+ (0.5 keV) for (a,b) 120 and (c,d) 30 s; In (a) - (d), gray circles and black lines denote the spectra and the sum of fitted curves, respectively; the signals from intact Pd and Pd_{uc} in the layered PdTe₂ are fitted with blue and red lines, respectively.


Figure S5. PES spectra of C 1s core level for (a) Ar⁺-bombarded PdTe₂ exposed to 3.0 L CO at 145 K (red line) and (b) as-cleaved PdTe₂ surface contaminated by atomic carbon (C*). In (a), the C 1s spectrum for Ar⁺-bombarded PdTe₂ without exposure to CO was also presented (bottom, black line) as a comparison. In (c), the black curve is the fitted one for the C* signals.


Figure S6. Varied adsorption configurations of methanol and its decomposition intermediates or fragments in the Te_{top} divacancy model. For the sake of clarity, the Te_{top} -divacancy site is shadowed with green. The value at the top-right corner of each graph is provided for the corresponding adsorption energy.


Figure S7. The energy profile of dehydrogenation of methanol (CH₃OH) to methoxy (CH₃O) on the Te_{top}-divacancy site (shadowed with green). The energy barrier is 1.58 eV. Details of initial state (IS), CINEB images (IM) and final state (FS) are presented. The red dashed line indicates the variation of the O-H distance.


Figure S8. The energy profile of methanol (CH₃OH) C-O bond scission on the Te_{top}-divacancy site (shadowed with green). The energy barrier is 1.93 eV. Details of initial state (IS), CINEB images (IM) and final state (FS) are presented. The red dashed line indicates the variation of the C-O distance.

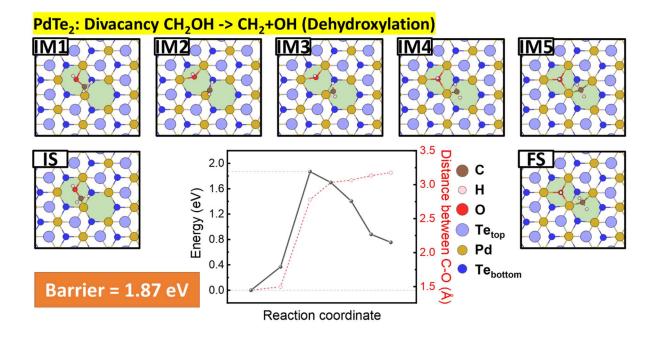

Figure S9. The energy profile of dehydrogenation of methanol (CH₃OH) to hydroxymethyl (CH₂OH) on the Te_{top}-divacancy site (shadowed with green). The energy barrier is 1.95 eV. Details of initial state (IS), CINEB images (IM) and final state (FS) are presented. The red dashed line indicates the variation of the C-H distance.

Figure S10. The energy profile of methoxy (CH₃O) C-O bond scission on the Te_{top}-divacancy site (shadowed with green). The energy barrier is 2.41 eV. Details of initial state (IS), CINEB images (IM) and final state (FS) are presented. The red dashed line indicates the variation of the C-O distance.

Figure S11. The energy profile of dehydrogenation of methoxy (CH₃O) to formaldehyde (CH₂O) on the Te_{top}-divacancy site (shadowed with green). The energy barrier is 1.28 eV. Details of initial state (IS), CINEB images (IM) and final state (FS) are presented. The red dashed line indicates the variation of the C-H distance.

Figure S12. The energy profile of hydroxymethyl (CH₂OH) C-O bond scission on the Te_{top}-divacancy site (shadowed with green). The energy barrier is 1.87 eV. Details of initial state (IS), CINEB images (IM) and final state (FS) are presented. The red dashed line indicates the variation of the C-O distance.

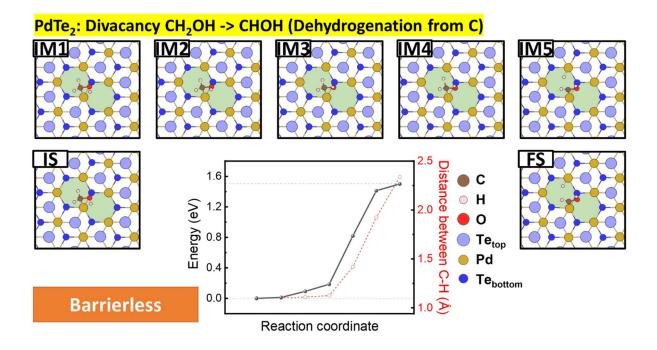


Figure S13. The energy profile of dehydrogenation of hydroxymethyl (CH₂OH) to CHOH on the Te_{top}divacancy site (shadowed with green). The energy barrier is 1.46 eV but the inverse process (CHOH* + H* \rightarrow CH₂OH*) has a negligible barrier and CH₂OH* has a lower total energy. Therefore, the process will not occur. Details of initial state (IS), CINEB images (IM) and final state (FS) are presented. The red dashed line indicates the variation of the C-H distance.

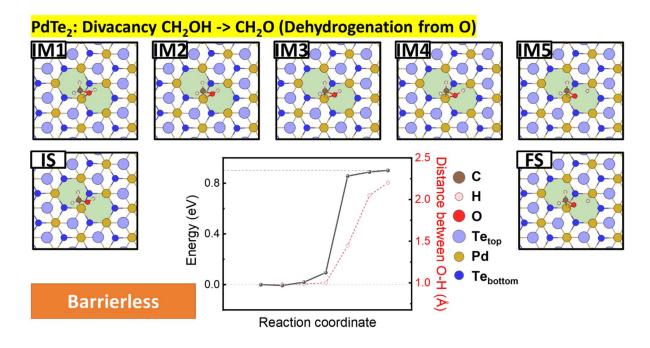


Figure S14. The energy profile of dehydrogenation of hydroxymethyl (CH₂OH) to formaldehyde (CH₂O) on the Te_{top}-divacancy site (shadowed with green). The energy barrier is 0.90 eV but the inverse process (CH₂O* + H* \rightarrow CH₂OH*) has a negligible barrier and CH₂OH* has a lower total energy. Therefore, the process will not occur. Details of initial state (IS), CINEB images (IM) and final state (FS) are presented. The red dashed line indicates the variation of the O-H distance.

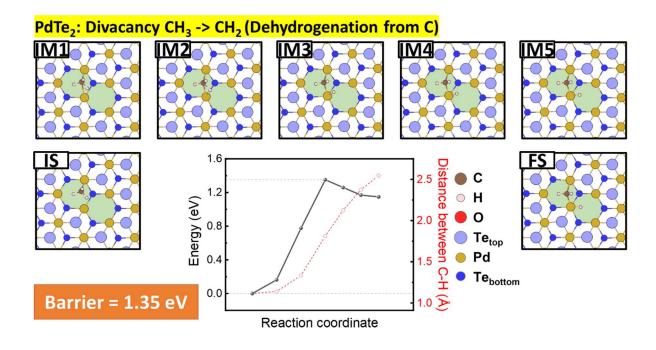


Figure S15. The energy profile of dehydrogenation of CH_3^* to CH_2^* on the Te_{top}-divacancy site (shadowed with green). The energy barrier is 1.35 eV but the inverse process ($CH_2^* + H^* \rightarrow CH_3^*$) has a barrier 0.20 eV and CH_3^* has a lower total energy. Details of initial state (IS), CINEB images (IM) and final state (FS) are presented. The red dashed line indicates the variation of the C-H distance.

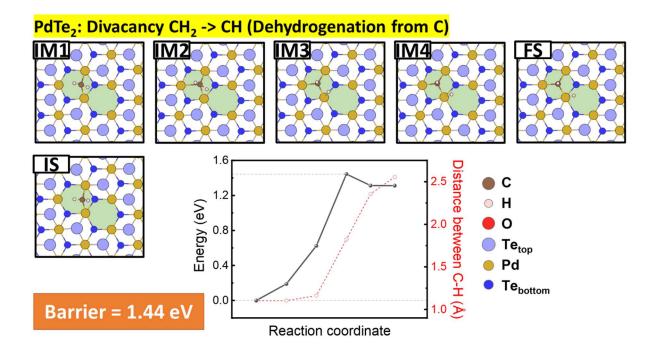
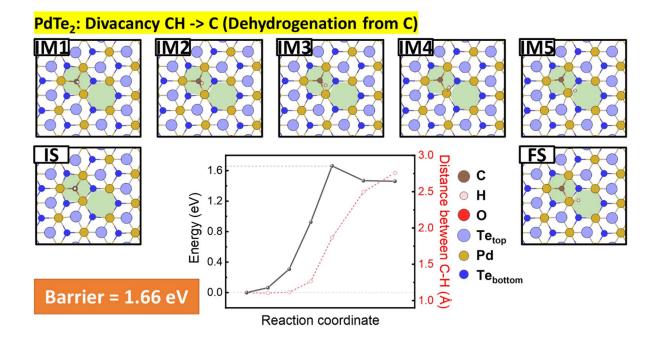
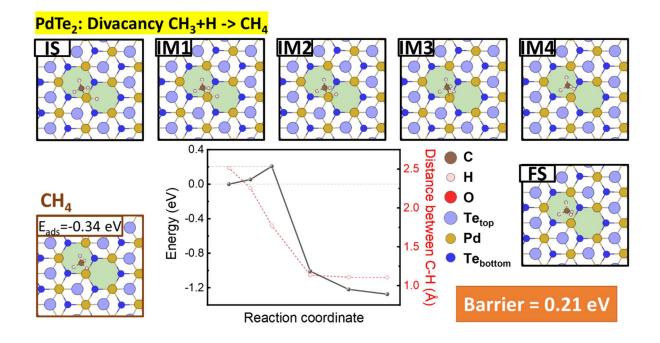
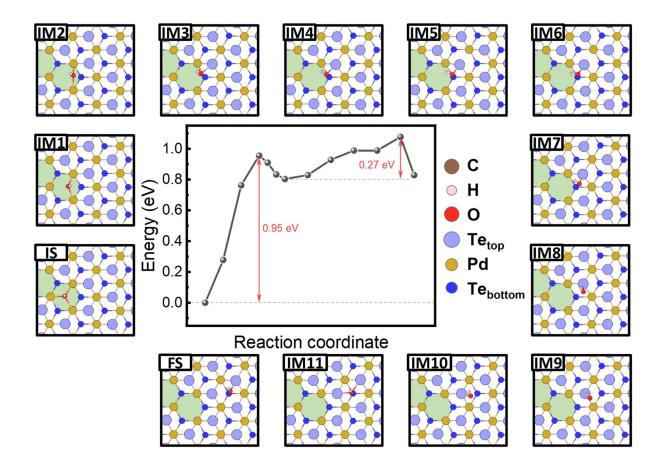
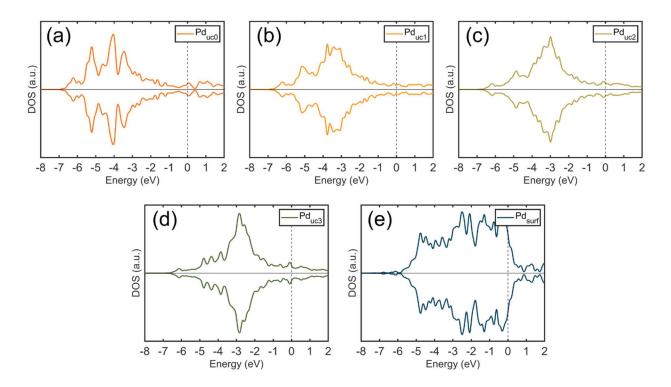


Figure S16. The energy profile of dehydrogenation of CH_2^* to CH^* on the Te_{top} -divacancy site (shadowed with green). The energy barrier is 1.44 eV but the inverse process ($CH_1^* + H^* \rightarrow CH_2^*$) has a barrier 0.13 eV and CH_3^* has a lower total energy. Details of initial state (IS), CINEB images (IM) and final state (FS) are presented. The red dashed line indicates the variation of the C-H distance.


Figure S17. The energy profile of dehydrogenation of CH* to C* on the Te_{top}-divacancy site (shadowed with green). The energy barrier is 1.66 eV but the inverse process (C* + H* \rightarrow CH₁*) has a barrier 0.20 eV and CH* has a lower total energy. Details of initial state (IS), CINEB images (IM) and final state (FS) are presented. The red dashed line indicates the variation of the C-H distance.

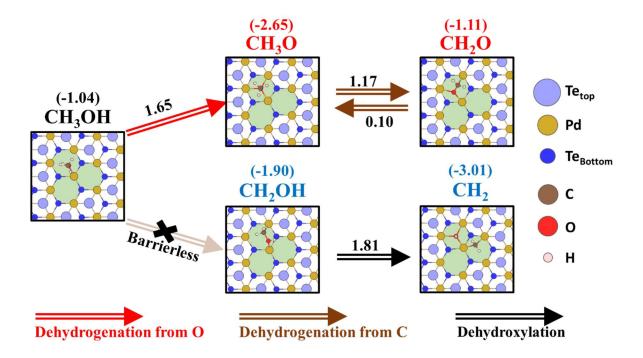

Figure S18. The energy profile of hydrogenation of CH₃* to CH₄* on the Te_{top}-divacancy site (shadowed with green). The energy barrier is 0.21 eV and CH₄* has a lower total energy. Details of initial state (IS), CINEB images (IM) and final state (FS) are presented. The red dashed line indicates the variation of the C-H distance.

Figure S19. The energy profile of hydroxyl (OH*) diffusion from the divacancy defect site to the PdTe₂ basal plane. The energy barriers are indicated (red) in the figure. Details of initial state (IS), CINEB images (IM), and final state (FS) are presented.

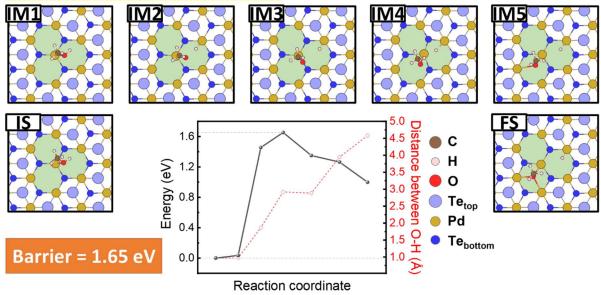


Figure S20. Comparison of projected density of states (PDOS) of (a)-(d) Pd_{uc0-3} -V at $PdTe_2$ surface and (e) Pd at Pd(111) surface. Pd_{uc0} -V stands for the Pd in structurally perfect PdTe₂, Pd_{uc1-3} -V stands for Pd with 1-3 missing Te-Pd bonds (coordination number 5-3) at PdTe₂ surface. The result in (e) was obtained from a Pd(111) surface model — a (1×1) supercell with 7 Pd layers.

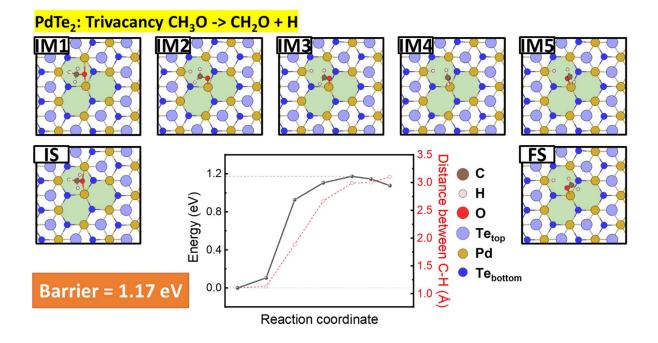


Figure S21. Dehydrogenation of CH₃OH* to CH₂O* and CH₂OH*, and dehydroxylation of CH₂OH* to CH₂* in the Te_{top}-trivacancy model. The adsorbed methanol first dehydrogenates to methoxy (CH₃O) and then to formaldehyde (CH₂O), with energy barriers of 1.65 and 1.17 eV, respectively, but cannot dehydrogenate to CH₂OH* because the inverse process, the inverse process (CH₂OH* + H* \rightarrow CH₃OH*) has no barrier. The dehydroxylation of CH₂OH* to CH₂* on the other hand has a barrier about 1.81 eV. The detailed information on the energy barrier calculations is provided in Figures S20-S23. Also, the adsorption energies of related species are calculated and indicated in the parentheses, with the adsorption configurations shown in the panels.

PdTe₂: Trivacancy CH₃OH -> CH₃O + H

Figure S22. The energy profile of dehydrogenation of CH₃OH* to CH₃O* on the Te_{top}-trivacancy site (shadowed with green). The energy barrier is near 1.65 eV. Details of initial state (IS), CINEB images (IM) and final state (FS) are presented. The red dashed line indicates the variation of the O-H distance.

Figure S23. The energy profile of dehydrogenation of CH₃O* to CH₂O* on the Te_{top}-trivacancy site (shadowed with green). The energy barrier is near 1.17 eV. Details of initial state (IS), CINEB images (IM) and final state (FS) are presented. The red dashed line indicates the variation of the C-H distance.

PdTe₂: Trivacancy CH₃OH -> CH₂OH + H

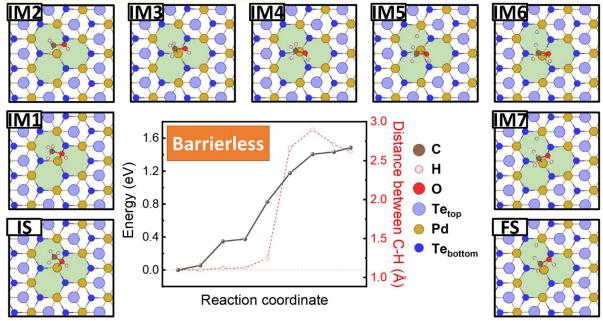
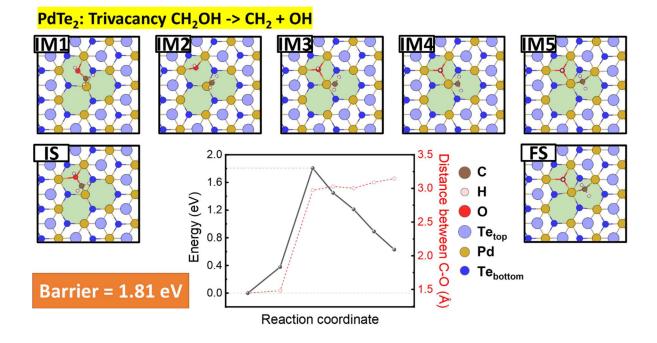
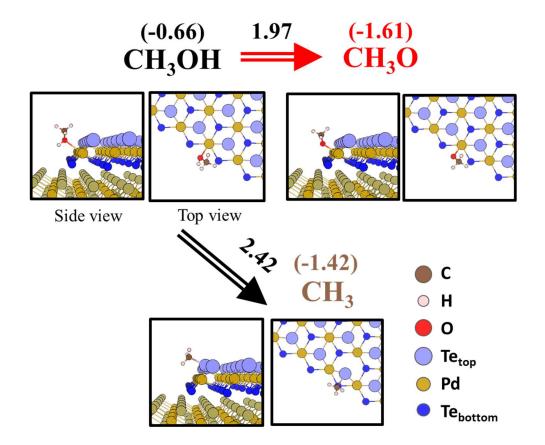




Figure S24. The energy profile of dehydrogenation of CH₃OH* to CH₂OH* on the Te_{top}-trivacancy site (shadowed with green). The energy barrier is near 1.55 eV but the inverse process (CH₂OH* + H* \rightarrow CH₃OH*) has no barrier and CH₃OH* has a lower total energy. Therefore, the process will not occur. Details of initial state (IS), CINEB images (IM) and final state (FS) are presented. The red dashed line indicates the variation of the C-H distance.

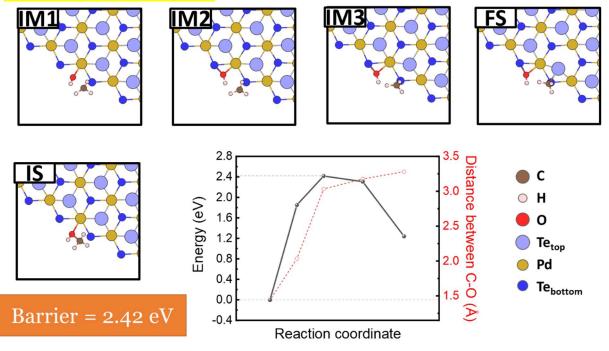
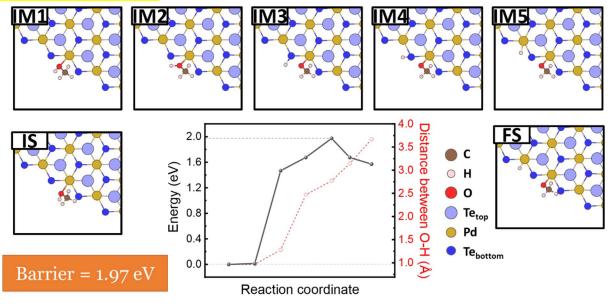


Figure S25. The energy profile of dehydroxylation of CH₂OH* to CH₂* and OH* on the Te_{top}trivacancy site (shadowed with green). The energy barrier is 1.81 eV, comparable to that (1.87 eV) on the Te_{top}-divacancy site (Figure S10). Details of initial state (IS), CINEB images (IM) and final state (FS) are presented. The red dashed line indicates the variation of the C-O distance.


Figure S26. Dehydrogenation and dehydroxylation of methanol (CH₃OH) on the edge sites of a PdTe₂ island. The adsorbed methanol dehydrogenates to methoxy (CH₃O) by overcoming an energy barrier of 1.97 eV. Alternatively, the methanol decomposes via C-O bond scission to yield CH₃ and OH, with an energy barrier of 2.42 eV. The detailed information on the energy barrier calculations is provided in Figures S25 - S26. Also, the adsorption energies of related species are calculated and indicated in the parentheses, with the adsorption configurations shown in the panels. In the light of a much smaller barrier for desorption (0.66 eV), the methanol would prefer desorption to decomposition. Details about this edge-site model can be found in Ref. 1.

Edge CH3OH -> CH3+OH

Figure 27. The energy profile of C-O bond scission of CH₃OH on the edge sites of a PdTe₂ island. The energy barrier is 2.42 eV. Details of initial state (IS), CINEB images (IM) and final state (FS) are presented. The red dashed line indicates the variation of the C-O distance.

Edge CH3OH -> CH3O

Figure 28. The energy profile of dehydrogenation of methanol (CH₃OH) to methoxy (CH₃O) on the edge sites of a PdTe₂ island. The energy barrier is 1.97 eV. Details of initial state (IS), CINEB images (IM) and final state (FS) are presented. The red dashed line indicates the variation of the O-H distance.

Supplementary References

1. J. Li, T. Joseph, M. Ghorbani-Asl, S. Kolekar, A.V. Krasheninnikov, M. Batzill, Advanced Functional Materials **32**, 2110428 (2022).