Supporting Information Pressure induced superconductivity in ternary yttrium borohydride system

Wen-Hua Yang,^{*}^a Hui-Juan Sun,^a Xia Wang^a, Yue-Hang Dong,^a Wei Zhang,^b Wen-Cai Lu,^a K. M. Ho^c and C. Z. Wang^{*c}

^aCollege of Physics and Centre for Theoretical and Computational Physics, college of computer

science and technology, Qingdao University, Qingdao, Shandong 266071, P. R. China

^bKey Laboratory of Material Simulation Methods and Software of Ministry of Education, College

of Physics, Jilin University, Changchun 130012, P. R. China

^cAmes National Laboratory-U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, U.S.A

Contents

S3 Table S1. Detailed structural information and ΔH_c and ΔH_s of the predicted Y-B-H compounds at selected pressures
Table S1. Detailed structural information and ΔH_c and ΔH_s of the predicted Y-B-Hcompounds at selected pressures.S3 Table S2. Detailed structural information of the predicted Y-B-H compounds atselected pressures.S5 Supplementary Figures .S7 Fig. S1. Structures of the metastable phases (YBH ₃ , YBH ₄ , YBH ₆ , YBH ₇ , YBH ₈ andYBH ₉) at 50 GPa and 100 GPa.S7 Fig. S2. Structures of the metastable phases (YBH ₁₁ , YBH ₁₂ , YB ₂ H ₂ , YB ₂ H ₄ andVD H) at 50 GPa and 100 GPa.S7
compounds at selected pressures S3 Table S2. Detailed structural information of the predicted Y-B-H compounds at selected pressures S5 Supplementary Figures S7 Fig. S1. Structures of the metastable phases (YBH ₃ , YBH ₄ , YBH ₆ , YBH ₇ , YBH ₈ and YBH ₉) at 50 GPa and 100 GPa S7 Fig. S2. Structures of the metastable phases (YBH ₁₁ , YBH ₁₂ , YB ₂ H ₂ , YB ₂ H ₄ and YB H ₁) at 50 GPa and 100 GPa S7
Table S2. Detailed structural information of the predicted Y-B-H compounds at selected pressures. S5 Supplementary Figures. S7 Fig. S1. Structures of the metastable phases (YBH ₃ , YBH ₄ , YBH ₆ , YBH ₇ , YBH ₈ and YBH ₉) at 50 GPa and 100 GPa. S7 Fig. S2. Structures of the metastable phases (YBH ₁₁ , YBH ₁₂ , YB ₂ H ₂ , YB ₂ H ₄ and YB H ₁) at 50 GPa and 100 GPa. S7
selected pressures
Supplementary Figures
Fig. S1 . Structures of the metastable phases (YBH ₃ , YBH ₄ , YBH ₆ , YBH ₇ , YBH ₈ and YBH ₉) at 50 GPa and 100 GPa
YBH ₉) at 50 GPa and 100 GPa
Fig. S2 . Structures of the metastable phases (YBH ₁₁ , YBH ₁₂ , YB ₂ H ₂ , YB ₂ H ₄ and VB II) at 50 CPa and 100 CPa
VD II) at 50 CDa and 100 CDa
(100 GPa and 100 GPa) at 50 GPa and 100 GPa
Fig. S3. (a) Calculated relative formation enthalpy per atom of YBH_8 at the different
pressures. (b) Structure of Fm -3 m YBH ₈ at 50 GPa
Fig. S4. Electronic band structures of P_1 YBH ₈ at 50 GPa and Pm YBH ₈ at 100 GPa.
Fig. S5. Electronic band structures of some metastable phases of ternary Y-B-H
compounds at 50 GPa S8
Fig. S6. Electronic band structures of some stable phases of ternary Y-B-H
compounds under specified pressure
Fig.S7. 2D-ELF of P_1 -YB ₂ H ₁₂ on the (1-10) plane
Fig. S8 (a) Calculated relative formation enthalpy per atom of YB_2H_{12} at the different

pressures. (b) and (c) The phonon dispersion curves for $P1-YB_2H_{12}$ and $Cm-YB_2H_{12}$ at

100 GPa	S9
Fig. S9. Calculated phonon band structures and phonon density of states of Y	′-В- Н
compounds S	10
Fig. S10. Phonon spectrum of F -43 m YBH ₅ at 10, 20 and 30 GPa	S10
Figure. S11. Phonon spectrum of P3m1 YBH ₅ at 10, 20 and 30 GPa	510
Figure. S12. Phonon spectrum of C2 YB ₂ H ₆ at 0, 10 and 30 GPa	S11
Figure. S13. Phonon spectrum of P_1 YB ₂ H ₁₂ at 0, 10 and 30 GPa	S11
Figure. S14. The Eliashberg phonon spectral function, $\alpha^2 F(\omega)$, and the p	oartial
electron-phonon intergral, $\lambda(\omega)$, for the <i>F</i> -43 <i>m</i> YBH ₅ , <i>P</i> 3 <i>m</i> 1 YBH ₅ and <i>C</i> 2 YB ₂	$_{2}H_{6}$ at
150 GPa and 100 GPa	511
Fig. S15. The contribution of Y to λ for F-43m YBH ₅ , P3m1YBH ₅ and C2 YB ₂	$_{2}H_{6}$ at
50, 100 GPa and 150 GPa	S12

 $* Corresponding \ author. \ Email: yangwh@qdu.edu.cn; \ wangcz@ameslab.gov.$

Table S1. Detailed structural information and ΔH_c and ΔH_s of the predicted Y-B-H compounds at selected pressures. ΔH_c (in meV/atom), the distance of the given stoichiometry from the convex hull in the triangular phase diagrams. ΔH_s (in meV/atom), the distance of the given structure from the lowest enthalpy structure of the same stoichiometry.

Stoichio	Space	Pressur	ΔH_{c}	ΔH_s	Stoichio	Space	Pressur	ΔH_{c}	ΔH_s
metry	group	e (GPa)) (meV/atom) metry gro		group	e (GPa)	(meV/atom)		
YBH	R3m	50	13	0	YBH	P6/mmm	50	42	29
	R3m	100	63	63		P6/mmm	100	0	0
	R3m	150	142	142		P6/mmm	150	0	0
YBH_2	Cmcm	50	0	0	YBH ₃	Ama2	50	74	0
	Cmcm	100	0	0		Ama2	100	43	0
	Cmcm	150	0	0		Ama2	150	20	0
YBH_4	Р3	50	60	0	YBH_4	Amm2	50	56	116
	Р3	100	115	70		Amm2	100	45	0
	Р3	150	109	101		Amm2	150	8	0
YBH_5	P3m1	50	57	0	YBH_5	F-43m	50	71	14
	P3m1	100	36	0		F-43m	100	42	6
	P3m1	150	14	0		F-43m	150	29	15
YBH_6	Pmna	50	24	0	YBH_7	P1	50	17	0
	Pmna	100	20	0		P1	100	68	0
	Pmna	150	34	0		P1	150	56	0
YBH_8	P1	50	18	0	YBH_7	P-3m1	50	285	268
	P1	100	54	0		P-3m1	100	225	157
	P1	150	75	28		P-3m1	150	248	192
YBH_8	Fm-3m	50	511	493	YBH_8	Pm	50	59	41
	Fm-3m	100	418	364		Pm	100	56	2
	Fm-3m	150	294	247		Pm	150	47	0
YBH ₉	Pm	50	94	0	YBH ₉	Cm	50	180	86
	Pm	100	86	0		Cm	100	105	19
	Pm	150	101	17		Cm	150	84	0
YBH_{10}	P1	50	0	0	YBH_{12}	P1	50	37	0
	P1	100	0	0		P1	100	71	0
	P1	150	0	0		P1	150	72	0
YBH_{11}	P1a	50	74	0	YBH_{11}	P1b	50	100	26
	P1a	100	88	2		P1b	100	86	0
	P1a	150	92	32		P1b	150	60	0
$\mathrm{YB}_{2}\mathrm{H}_{2}$	P6mm	50	178	0	$YB_{2}H_{4}$	C2m	50	134	0
	P6mm	100	156	0		C2m	100	113	0
	P6mm	150	153	0		C2m P-	150	100	0
$\mathrm{YB}_{2}\mathrm{H}_{6}$	C2	50	6	0	$YB_{2}H_{10} \\$	3m1	50	0	0
	C2	100	0	0		P-3m1	100	21	0
	C2	150	0	0		P-3m1	150	39	0

YB_2H_8	C2m	50	40	0	$\mathrm{YB}_{2}\mathrm{H}_{8}$	P2	50	69	29
	C2m	100	94	73		P2	100	21	0
	C2m	150	143	104		P2	150	39	0
YB_2H_{12}	P1	50	26	0	YB_2H_{12}	Cm	50	189	163
	P1	100	179	131		Cm	100	47	0
	P1	150	491	431		Cm	150	60	0

Phases	Pressure	Lattice parameters	Atomic coordinates			
	(GPa)	(Å)	(fractional)			
R3m YBH	50GPa	a=b=3.179	B(3a) 0.667 0.333 0.079			
		c=19.327	B(3a) 1.333 0.667 0.080			
		α=β=90.000	Y(3a) 1.000 0.000 -0.014			
		γ=120.000	Y(3a) 1.000 1.000 0.171			
			H(3a) 1.000 1.000 0.277			
			H(3a) 1.333 1.667 0.239			
P6/mmm-YBH	100 GPa	a=b=3.003	H(2d) -1.667 -0.333 -0.500			
		c=6.126	B(2c) -0.667 -0.333 0.000			
		$\alpha = \beta = 90.000$	Y(2e) -2.000 0.000 -0.718			
		γ=120				
Cmcm-YBH ₂	50 GPa	a=3.457	H(4d) 1.000 -0.257 0.250			
		b=11.275	H(4d) 0.500 -0.139 0.250			
		c=3.139	B(4d) 1.000 -0.530 0.250			
		$\alpha = \beta = \gamma = 90.000$	Y(4c) 1.000 -0.131 -0.250			
<i>P</i> 3 <i>m</i> 1-YBH ₅	50	a= b=3.573	H(3d) -1.038 -0.519 0.228			
		c=3.530	H(1c) -0.333 0.333 -0.262			
		$\alpha = \beta = 90.000$	H(1b) -0.667 0.667 -0.215			
		γ=120.000	B(1b) -0.667 -0.333 0.132			
			Y(1a) 0.000 0.000 -0.398			
F-43m-YBH ₅	50GPa	a=b=c=5.361	H(16e) 0.130 0.630 -0.130			
		$\alpha = \beta = \gamma = 90.000$	H(4d) 0.250 1.250 -0.250			
			B(4b) 0.000 0.500 0.000			
			Y(4a) 0.500 1.500 0.000			
P_1 -YBH ₁₀	50 GPa	a=3.541	H(1a) 0.545 -0.470 0.591			
		b=3.578	H(1a) 0.207 0.207 0.636			
		c=5.043	H(1a) 0.732 0.223 0.323			
		α=101.573	H(1a) 0.173 0.324 0.358			
		β=92.734	H(1a) 0.332 0.467 0.986			
		γ=60.402	H(1a) 0.316 0.025 0.991			
			H(1a) 0.872 -0.003 0.237			
			H(1a) 0.475 -0.238 0.298			
			H(1a) 0.128 0.501 0.282			
			H(1a) 0.872 -0.518 0.988			
			B(1a) 0.499 -0.316 0.061			
			Y(1a) 0.870 -0.106 0.701			
P-3 m 1-YB ₂ H ₁₀	50 GPa	a=b=3.649	H(16c) -0.133 0.133 -0.133			
		c=5.338	H(6i) -0.968 -1.484 0.726			
		α=β=90.000	H(2d) -1.333 -0.667 0.011			
		γ=120.000	H(2c) -1.000 -1.000 0.073			
			B(2d) -1.333 -1.6676 0.796			

Table S2. Detailed structural information of the predicted Y-B-H compounds at selected pressures.

			Y(1b)	-1.000 -1.000 0.500		0.500
C2-VB-H	50 GPa	2=8 371	H(4c)	0 168	0.156	-0.175
$C2^{-1}D_{2}\Pi_{6}$	50 01 a	h = 3.440	H(4c)	0.100	1 285	0.1/3
		0-3.449	$\Pi(4c)$	0.048	0.202	0.145
		c=3.373	D(4c)	0.207	0.292	0.300
		$\alpha = \gamma = 90.000$	B(4c)	0.109	0.124	0.083
		β=111.099	Y(2b)	0.500	1.108	0.500
P_1 -YB ₂ H ₁₂	50 GPa	a=4.782	H(1a)	0.152	-0.15	0.243
		b=3.538	H(1a)	0.246	0.728	0.306
		c=4.756	H(1a)	0.412	0.863	0.611
		α=73.320	H(1a)	0.975	0.475	0.731
		β=99.695	H(1a)	0.569	0.474	0.137
		γ=73.077	H(1a)	0.390	0.093	0.504
			H(1a)	0.624	0.448	0.533
			H(1a)	0.263	0.895	0.928
			H(1a)	0.370	0.438	0.783
			H(1a)	0.770	0.897	0.429
			H(1a)	0.238	0.307	0.153
			H(1a)	0.991	0.304	0.399
			B(1a)	0.750	0.273	0.379
			B(1a)	0.215	0.269	0.912
			Y(1a)	0.794	0.907	0.957

Fig. S1. Structures of the metastable phases of ternary Y-B-H compounds at high pressure. The blue, green and pink spheres represent the Y, B and H atoms, respectively.

Fig. S2. Structures of the metastable phases of ternary Y-B-H compounds at high pressure. The blue, green and pink spheres represent the Y, B and H atoms, respectively.

Fig. S3. (a) Calculated relative formation enthalpy per atom of YBH_8 at the different pressures. (b) Structure of *Fm*-3*m* YBH₈ at 50 GPa. The blue, green and pink spheres represent the Y, B and H atoms, respectively.

Fig. S4. Electronic band structures of P1 YBH8 at 50 GPa and Pm YBH8 at 100 GPa.

Fig. S5. Electronic band structures of some metastable phases of ternary Y-B-H compounds under specified pressure.

Fig. S6. Electronic band structures of some stable phases of ternary Y-B-H compounds at 50 GPa.

Fig.S7. 2D-ELF of P_1 -YB₂H₁₂ on the (1-10) plane.

Fig. S8 (a) Calculated relative formation enthalpy per atom of YB_2H_{12} at the different pressures. (b) and (c) The phonon dispersion curves for P1-YB₂H₁₂ and Cm-YB₂H₁₂ at 100 GPa.

Fig. S9. Calculated phonon band structures and phonon density of states of Y-B-H compounds. (a) and (b) for C2 YB₂H₆ at 100 GPa and 150 GPa, (c) and (d) for P3m1YBH₅ at 100 GPa and 150 GPa, (e) and (f) for *F*-43*m* YBH₅ at 100 GPa and 150 GPa.

Fig. S10 Phonon spectrum of F-43m YBH₅ at 10, 20 and 30 GPa.

Fig. S11. Phonon spectrum of P3m1 YBH₅ at 10, 20 and 30 GPa.

Fig. S12. Phonon spectrum of C2 YB₂H₆ at 0, 10 and 30 GPa.

Fig. S13. Phonon spectrum of P_1 YB₂H₁₂ at 0, 10 and 30 GPa.

Fig. S14. The Eliashberg phonon spectral function, $\alpha^2 F(\omega)$, and the partial electron-phonon intergral, $\lambda(\omega)$, for the Y-B-H system at 150 GPa and 100 GPa. (a) and (b) for *F*-43*m* YBH₅, (c) and (d) *P*3*m*1 YBH₅, (e) and (f) *C*2 YB₂H₆.

Fig. S15. The contribution of Y to λ for F-43m YBH₅, P3m1YBH₅ and C2 YB₂H₆ at 50, 100 GPa and 150 GPa.