The B/N modified GDY as a rare bases 2D sensor: A first-principles

study

Ruiying Zhang,^a Xia Zeng,^a Lin Yu,^a Lingyu Meng,^a Wenjin Miao,^a Lingxia Jin^{*, a}

^aShaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001

Fig. S1 Optimized configurations and cohesion energy of (a) B atoms (b) N atoms at positions C1, C2 and C3 with *Corresponding authors. Tel: +86-916-2641660; e-mail:jinlx@snut.edu.cn (L.X. Jin) doping concentrations of 1.4%, 2.8%, 4.2%, and 5.6%, respectively.

Fig. S2 (a) Optimized geometries, distances and the adsorption energy for complexes of rare bases (5mC, 5hmC, 5fC, 5caC) with B-GDY nanosheet. The complexes are shown from both top and side perspectives. Band structure of the complexes of rare bases (b) 5mC, (c) 5hmC, (d) 5fC, (e) 5caC with B-GDY.

Fig. S3 PDOS plot of the of rare bases (a) 5mC, (b) 5hmC, (c) 5fC, (d) 5caC

Fig. S4 The DOS plot, CDD (isosurface value is $0.0002 \text{ e } \text{Å}^{-1}$) and PDOS plot of (a) 5mC-B-GDY, (b) 5hmC-B-GDY, (c) 5caC-B-GDY and (d) 5fC-B-GDY. The yellow and blue are the charge accumulation and depletion, respectively.

Fig. S5 (a) Optimized geometries, distances and the adsorption energy for complexes of rare bases (5mC, 5hmC, 5fC, 5caC) with N-GDY nanosheet. The complexes are shown from both top and side perspectives. Band structure of the complexes of rare bases (b) 5mC, (c) 5hmC, (d) 5fC, (e) 5caC with N-GDY.

Fig. S6 The DOS plot, CDD (isosurface value is 0.0002 e Å⁻¹) and PDOS plot of (a) 5mC-N-GDY, (b) 5hmC-N-GDY, (c) 5caC-N-GDY and (d) 5fC-N-GDY. The yellow and blue are the charge accumulation and depletion, respectively.

Table S1 Adsorption energy (Eads/eV) and Translocation time (τ/s) of other molecules adsorbed on GDY and R-GDY (R = B/N) surfaces

Fig. S1 Optimized configurations and cohesion energy of (a) B atoms (b) N atoms at positions C1, C2 and C3 with doping concentrations of 1.4%, 2.8%, 4.2%, and 5.6%, respectively.

Fig. S2 (a) Optimized geometries, distances and the adsorption energy for complexes of rare bases (5mC, 5hmC, 5fC, 5caC) with B-GDY nanosheet. The complexes are shown from both top and side perspectives. Band structure of the complexes of rare bases (b) 5mC, (c) 5hmC, (d) 5fC, (e) 5caC with B-GDY.

Fig. S3 PDOS plot of the of rare bases (a) 5mC, (b) 5hmC, (c) 5fC, (d) 5caC

Fig. S4 The DOS plot, CDD (isosurface value is 0.0002 e Å⁻¹) and PDOS plot of (a) 5mC-B-GDY, (b) 5hmC-B-GDY, (c) 5caC-B-GDY and (d) 5fC-B-GDY. The yellow and blue are the charge accumulation and depletion, respectively.

Fig. S5 (a) Optimized geometries, distances and the adsorption energy for complexes of rare bases (5mC, 5hmC, 5fC, 5caC) with N-GDY nanosheet. The complexes are shown from both top and side perspectives. Band structure of the complexes of rare bases (b) 5mC, (c) 5hmC, (d) 5fC, (e) 5caC with N-GDY.

Fig. S6 The DOS plot, CDD (isosurface value is 0.0002 e Å⁻¹) and PDOS plot of (a) 5mC-N-GDY, (b) 5hmC-N-GDY, (c) 5caC-N-GDY and (d) 5fC-N-GDY. The yellow and blue are the charge accumulation and depletion, respectively.

System		Eads	τ
GDY	O ₂	0.428	-
	H ₂ O	-0.327	3.12×10 ⁻¹¹
	NO	-0.097	4.26×10 ⁻¹⁵
	NH ₃	-0.022	2.34×10 ⁻¹⁶
B-GDY	O ₂	-0.098	4.36×10 ⁻¹⁵
	H ₂ O	-0.320	2.32×10 ⁻¹¹
	NO	-0.458	4.95×10-9
	NH ₃	-0.591	8.49×10 ⁻⁷
N-GDY	O ₂	0.313	-
	H ₂ O	-0.358	1.04×10 ⁻¹⁰
	NO	-0.125	1.26×10 ⁻¹⁴
	NH ₃	-0.038	4.35×10 ⁻¹⁶

Table S1 Adsorption energy (Eads/eV) and Translocation time (τ /s) of other molecules adsorbed on GDY and

R-GDY (R = B/N) surfaces