The Origin of the Anomalous Expansion of the First Peak in the Radial Distribution

Function During the Rapid Solidification of Tantalum Metal

Yuanqi Jiang*a, Dadong Wen^b, Qiang Xu^c, Jian Lv^c, Rui Zhao^d, Ping Peng^e

^a College of Physics & Electronic Information, Key Laboratory of Atomic and Molecular Physics, Nanchang Normal University, Nanchang 330032, China

^b School of Computational Science and Electronics, Hunan Institute of Engineering, Xiangtan 411104, China

^c Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin

University, Changchun 130012, China

^d School of Mechanical and Electrical Engineering, Xinyu University, Xinyu, 338004, China

^e School of Material Science & Engineering, Hunan University, Changsha 410082, China

*Corresponding author. E-mail: <u>yuanqi325@163.com</u> (Yuanqi Jiang)

Figure S1. Systemic potential energy $(a\sim b)$, volume $(c\sim d)$ and pressure (e) of Ta₁₁₆₆₄ as a function of the temperature at five different cooling rates, respectively. (b) and (d) is a partial enlarged view of (a) and (c), respectively. (f) is schematic diagram of atomic solidification in three-dimensional system.

Figure S2. Radial distribution function (RDF) curves of simulated Ta_{11664} system at 300 K under five different cooling rates, respectively. (b) is a partial enlarged view of (a).