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1 Part 1 A brief description of the DAOSD approach

2 DAOSD (double asynchronous orthogonal sample design scheme) is 

3 used to reveal subtle spectral variation caused by intermolecular 

4 interaction. The description of the DAOSD approach in detail can be found 

5 in our previous paper S1-1. Here we provide a brief description of the 

6 DAOSD approach.

7 We use the following model system to show how the DAOSD 

8 approach works. The model system is: two compounds (denoted as P and 

9 Q) are dissolved in the same solutions. Under intermolecular interactions 

10 between P and Q, part of P undergoes a subtle structural variation and 

11 converts into U. Similarly, part of Q converts into V. The interaction could 

12 be described by an equilibrium reaction shown in Eq. S1-1, where K is the 

13 equilibrium constant.

P Q U V
K

   (S1-1)

14 In a spectrum of a sample solution, the solvent has no spectral 

15 contribution in the spectral region investigated. P has an absorption peak 

16 at XP, and Q has an absorption peak at XQ. U has an absorption peak at XU, 

17 and V has an absorption peak at XV. The spectral functions of characteristic 

18 peaks of P, Q, U, and V are described by Gaussian functions shown in Eq. 

19 S1-2.

(S1-2)

20 where j stands for the four chemical species P, Q, U, V; x is wavelength; 
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1 Wj, Xj, and εj are the bandwidth, peak position, and intensity of the 

2 characteristic peak of the jth chemical species; gj(x) is the peak-shape 

3 function of the jth chemical species.

4 Since the structural variation caused by the intermolecular interaction 

5 is quite weak, the characteristic peak of U is quite close to that of P. In a 

6 similar manner, the characteristic peak of V is quite close to that of Q. In 

7 other words, the characteristic peaks of P and U are severely overlapped. 

8 Moreover, the characteristic peaks of Q and V are severely overlapped. On 

9 the other hand, only a very small fraction of P and Q are converted into U 

10 and V since the intermolecular interaction between P and Q is quite weak, 

11 Thus, the equilibrium concentrations of P and Q are overwhelmingly larger 

12 than those of U and V. Consequently, the characteristic peaks of U and V 

13 are buried by the peaks of P and Q. In other words, it is almost impossible 

14 to observe any spectral feature of U and V from the original 1D spectra of 

15 a sample solution containing P and Q. 

16 To characterize the intermolecular interaction between P and Q, a 2D 

17 asynchronous spectrum is generated using the DAOSD approach. In the 

18 DAOSD approach, two groups of sample solutions are prepared. Each 

19 group contains four sample solutions. In the first group of sample solutions, 

20 the initial concentrations of P are constants, while the initial concentrations 

21 of Q are selected arbitrarily. In the second group of sample solutions, the 

22 initial concentrations of Q are constants, while the initial concentrations of 
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1 P are selected arbitrarily. The initial concentrations of P and Q are listed in 

2 Table S1-1.

3

4 Table S1-1 Initial concentrations of P and Q in the model system, which 

5 meet the requirement of the DAOSD approach

Index of 

the solutions

Initial concentrations

of P

Initial concentrations

of Q

Group 1

1 10 0

2 10 4

3 10 6

4 10 10

Group 2

1 0 10

2 4 10

3 6 10

4 10 10

6 Then, the 1D spectra of the two groups of sample solutions are 

7 simulated, and we use the two groups of spectra to construct a pair of 2D 

8 asynchronous spectra via Eq. S1-3.

 =ATNA (S1-3)

9 where N is the Hilbert-Noda transformation matrix, and superscript T 
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1 stands for transpose. 

2 The 2D asynchronous spectrum generated via the first group of 1D 

3 spectra, where the initial concentrations of P are invariant is denoted as P. 

4 The 2D asynchronous spectrum generated via the second group of 1D 

5 spectra, where the initial concentrations of Q are invariant is denoted as 

6 Q.

7 Results from both the mathematical analysis and computer simulation 

8 have proved that:

9 1) If no intermolecular interaction occurs between P and Q (this can be 

10 achieved by setting the value of K in Eq. S1-1 as zero), no cross-peak is 

11 produced in either P or Q.

12 2) If intermolecular interaction indeed occurs between P and Q (this can be 

13 accomplished by setting K in Eq. S1-1 as a non-zero value. Herein, the 

14 value of K is set as 0.01), cross-peaks may be produced in P and Q.
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1

2 Scheme S1-1 Typical ΨP and ΨQ.

3 Scheme S1-1 shows typical ΨP and ΨQ. In ΨP, three groups of cross-peaks 

4 appear around (XP, XP), (XP, XQ), and (XQ, XP). In ΨQ, three groups of 

5 cross-peaks appear around (XQ, XQ), (XP, XQ), and (XQ, XP). 

6 According to the mathematical analysis shown in our previous paper 

7 S1-1, the cross-peak group around (XQ, XQ) in ΨP reflects the changes of the 

8 characteristic peak of Q caused by intermolecular interaction. Furthermore, 

9 the spectral function of the cross-peak group can be expressed as Eq. S1-

10 4a. In a similar manner, the cross-peak group around (XP, XP) in ΨQ reflects 

11 the changes of the characteristic peak of P caused by intermolecular 

12 interaction. Furthermore, the spectral function of the cross-peak group can 

13 be expressed as Eq. S1-4b. 

(S1-4a)



8

(S1-4b)

1  where ,  are respectively, the initial concentrations of P and the 

2 equilibrium concentrations of U in the second group of solutions shown in 

3 Table S1-1; ,  are respectively.

4 Eq. S1-4a demonstrates that the pattern of cross-peaks around (XQ, 

5 XQ) in ΨP reflects the difference between gQ(x) and gV(x). Since gQ(x) and 

6 gV(x) are relevant to XQ, XV, WQ, and WV, the pattern of cross-peaks around 

7 (XQ, XQ) in ΨP reflects the changes in peak position and peak width of Q 

8 caused by intermolecular interaction. 

9 In a similar manner, Eq. S1-4b demonstrates that the pattern of cross-

10 peaks around (XP, XP) in ΨQ reflects the difference between gP(x) and gU(x). 

11 Since gP(x) and gU(x) are relevant to XP, XU, WP, and WU. the pattern of 

12 cross-peaks around (XQ, XQ) in ΨP reflects the changes in peak-position 

13 and peak-width of Q caused by intermolecular interaction.

14 We use the cross-peaks around (XP, XP) in ΨQ as an example to show 

15 the relationship between the patterns of cross-peaks and the variations in 

16 peak-position and peak-width. In this case, XU and WU are set as variables 

17 and we define X= XU - XP, W= WU - WP. As shown in Scheme S1-2, 

18 there is a one-to-one correspondence between the pattern of cross-peaks 

19 and the combination of X, W.

20 From a qualitative point of view, the variation of the peak-position 

21 and peak-width of U with respect to those of P can be classified into nine 
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1 situations (Table S1-2). The peak parameters of the absorption peak of P 

2 are provided in Table S1-3. There is a one-to-one correspondence between 

3 the patterns of cross-peaks around (XP, XP) and the aforementioned nine 

4 situations (Scheme S1-2). 

5 Table S1-2 The nine classes of the combinations of ΔX and ΔW. The 

6 peak parameters for u in the nine classes can be found in Table S1-3.

Situation Peak-position Peak-width

1 ΔX<0 ΔW<0

2 ΔX=0 ΔW<0

3 ΔX>0 ΔW<0

4 ΔX>0 ΔW=0

5 ΔX=0 ΔW=0

6 ΔX<0 ΔW=0

7 ΔX>0 ΔW>0

8 ΔX=0 ΔW>0

9 ΔX<0 ΔW>0

7

8

9
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1 Table S1-3 Peak parameters of P and U in the model system

Situation Peak position Peak width Absorptivity

1 99 19 1.0

2 100 19 1.0

3 101 19 1.0

4 101 20 1.0

5 100 20 1.0

6 99 20 1.0

7 101 21 1.0

8 100 21 1.0

U

9 99 21 1.0

P 100 20 1.0

2
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1

2 Scheme S1-2. The one-to-one correspondence between the pattern of 

3 cross-peaks around (XP, XP) in ΨQ and the combination of ΔX, ΔW.

4

5 From the characteristic pattern of the cross-peak, we can deduce 

6 whether the characteristic peak of P undergoes a red shift, or blue shift or 

7 remains unchanged under the influence of intermolecular interaction. 

8 Moreover, we can also judge whether the peak-width of the peak of P 

9 increases, decreases, or remains invariant under the intermolecular 

10 interaction. Similar results can also be obtained from the cross-peaks 
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1 around (XQ, XQ) in ΨP.

2 On the other hand, Eq. S1-4a demonstrates that the difference between 

3 ƐQ and ƐV can only be reflected by the changes in the intensities of the 

4 cross-peak (XQ, XQ) in ΨP. Similarly, Eq. S1-4b demonstrates that the 

5 difference between ƐP and ƐU can only be reflected by the changes in the 

6 intensities of the cross-peak (XP, XP) in ΨQ. In a 2D asynchronous 

7 spectrum, the intensities of cross-peaks are affected by multiple factors. 

8 Thus, neither the cross-peaks around (XP, XP) in ΨQ, nor those around (XP, 

9 XP) in ΨQ are suitable to reflect the intensity changes of the characteristic 

10 peaks caused by intermolecular interaction.

11 Then, we come to the group of cross-peaks around (XP, XQ) and those 

12 around (XP, XQ) in ΨP. Since the two groups of cross-peaks are 

13 antisymmetric with respect to the diagonal, we just discuss the cross-peaks 

14 around (XP, XQ) in ΨP. According to the mathematical analysis in our 

15 previous paper S1-1, the cross-peaks reflect changes in the characteristic 

16 peak of P at XP only. Moreover, the spectral function of the cross-peaks 

17 can be expressed as Eq. S1-5.

(S1-5)

18 From Eq. S1-5, the cross-peaks in this region are composed of two 

19 parts: the first part ( ) reflects the variations of 

20 bandwidth and peak position of the characteristic peak of P; The nine basic 
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1 patterns of cross-peaks from the first part ( ) are 

2 illustrated in Scheme S1-3.

3

4 Scheme S1-3 The nine basic patterns of cross-peak around (XP, XQ) 

5 derived from  versus the combinations of ΔX, 

6 ΔW.

7 The second part ( ) reveals the variation of 

8 intensity of the characteristic peak of P. Herein, we define ΔƐ=ƐU-ƐP. The 

9 basic pattern of  is illustrated in Scheme S1-4. 
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1

2 Scheme S1-4 The three basic patterns of cross-peaks derived from 

3  versus ΔƐ.

4 The cross-peaks around (XQ, XP) in ΨQ can be used to reveal the subtle 

5 changes of the characteristic peak of Q under the intermolecular interaction 

6 via a similar fashion.

7 We show how to reveal the variation of the characteristic peaks caused 

8 by intermolecular interaction via the patterns of cross-peaks from the two 

9 2D asynchronous spectra generated using the DAOSD approach. 
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1 The peak parameters for the characteristic peaks of P and Q are listed 

2 in Table S1-4. 

3 Table S1-4 Peak parameters of P and Q in the model system

j
Xj

(nm)

Wj

(nm)
Ɛj

P 100 20 1.0

Q 300 20 1.0

4 Since the peaks of U and V overlap with those of P and Q severely. It 

5 is impossible to obtain the U, V from the original 1D spectra of the P, Q 

6 mixture.

7 When the DAOSD approach is adopted, ΨP and ΨQ are obtained and 

8 shown in Figure S1-1A and Figure S1-1B.

9

ΨP ΨQ

A B

10 Figure S1-1 A ΨP; B ΨP.

11
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1 In comparison between the cross-peaks around (300, 300) in ΨP and 

2 the basic patterns of cross-peak shown in Scheme S1-2, the peak position 

3 of the characteristic peak of Q remains unchanged, but the peak width 

4 decreases under the intermolecular interaction (ΔXQ = 0, ΔWQ < 0). Under 

5 this situation, the part of cross-peaks around (300, 100) in ΨQ, which is 

6 relevant to the changes of peak position and peak width is shown in Figure 

7 S1-2A. The difference between the cross-peak around (300,100) in ΨQ and 

8 Figure S1-2A is a positive cross-peak at (300,100) (Figure S1-2B). This 

9 result indicates that the intensity of the characteristic peak of Q increases 

10 under the intermolecular interaction (ΔƐQ > 0). 

11

A      B

12 Figure S1-2 A The part of cross-peaks around (300, 100) in ΨQ, which is 

13 relevant to the changes of peak position and peak width; B The difference 

14 between the cross-peak around (300,100) in ΨQ and Figure S1-2A

15 Comparison between the cross-peaks around (100, 100) in ΨQ and the 

16 basic patterns of cross-peak shown in Scheme S1-3, both the peak position 

17 and the peak width increase under the intermolecular interaction (ΔXP > 0, 

18 ΔWP > 0).
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1 Under this situation, the part of cross-peaks around (100, 300) in ΨP, 

2 which is relevant to the changes of peak position and peak width is shown 

3 in Figure S1-3A. The difference between the cross-peak around (100,300) 

4 in ΨP and Figure S1-3A is a negative cross-peak at (100,300) (Figure S1-

5 3B). This result indicates that the intensity of the characteristic peak of P 

6 increases under the intermolecular interaction (ΔƐP< 0). 

7

                A B

8 Figure S1-3 A The part of cross-peaks around (100, 300) in ΨP, which is 

9 relevant to the changes of peak position and peak width; B The difference 

10 between the cross-peak around (100, 300) in ΨP and Figure S1-3A. The 

11 preset peak parameters of U and V are listed in Table S1-5.

12

13 Table S1-5 The preset peak parameters of U and V in the model system

j
Xj

(nm)

Wj

(nm)
Ɛj

U 101 21 0.95

V 300 19 1.05

14
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1 We confirm subtle changes in peak position, peak width, and intensity 

2 can be correctly obtained via the characteristic patterns of cross-peaks of 

3 the 2D asynchronous spectra generated via the DAOSD approach.

4 Then, we consider a chemical system containing P, Q. If P has a 

5 characteristic peak at XP, but Q has no spectral contribution in the spectral 

6 region investigated. Subtle changes in peak position and peak width can be 

7 revealed by the characteristic pattern of cross-peaks around (XP, XP) in the 

8 2D asynchronous spectrum. The variation in the intensity of the peak can 

9 be deduced by the ASAP approach described in another paper of our 

10 previous work S1-2.

11 References

S1-1 J. Chen, Q. Bi, S.X. Liu, X. P. Li, Y. H. Liu, Y. J. Zhai, Y. Zhao, 

L.M. Yang, Y.Z. Xu, I. Noda, J.G. Wu, J. Phys. Chem. A., 2012, 

116, 10904–10916.

S1-2 X.P. Li, A.Q. He, K. Huang, H.Z. Liu, Y. Zhao, Y.J. Wei, Y.Z. 

Xu, I. Noda, J.G. Wu, Rsc. Adv., 2015, 5, 87739-87749.

12

13
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1 Part 2 Description of the model system 1

2 In this model system, we try to characterize the intermolecular 

3 interaction between two solutes (P and Q) dissolved in the same solutions. 

4

5 Under the intermolecular interaction between P and Q, part of P and 

6 part of Q form a supramolecular aggregate (PQ). The interconversion can 

7 be described by a reaction shown in Eq. S2-1.

𝑃+ 𝑄
𝐾
↔𝑃𝑄 (S2-1)

8 where K is the equilibrium constant, and the value of K is set as 0.01 L/mol. 

9

10 In a spectrum of a sample solution containing P and Q, neither solvent 

11 nor Q has any contribution in the spectral region investigated. P has a 

12 characteristic peak, and PQ has a characteristic peak.

13 The characteristic peak of P can be described by a Gaussian function 

14 (Eq. S2-2).

𝑓𝑃(𝑥) = 𝜀𝑃𝑒

−(𝑙𝑛2)[(𝑥−𝑋𝑃)2𝑊2
𝑃

]
= 𝜀𝑃𝑔𝑃(𝑥)

(S2-3)

15 where ɛP, XP, and WP, respectively are the molar absorptive, peak position, 

16 and half-width at the half-height of the characteristic peak of P. 

17 The characteristic peak of PQ can also be described by a Gaussian 

18 function (Eq. S2-3).
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𝑓𝑃𝑄(𝑥) = 𝜀𝑃𝑄𝑒

−(𝑙𝑛2)[(𝑥−𝑋𝑃𝑄)2𝑊 2
𝑃𝑄

]
= 𝜀𝑃𝑄𝑔𝑃𝑄(𝑥)

(S2-3)

1 where ɛPQ, XPQ, and WPQ, respectively are the molar absorptivity, peak 

2 position, and half-width at the half-height of the characteristic peak of PQ. 

3

4 The values of ƐP, XP, WP, ƐPQ, XPQ, and WPQ are listed in Table S2-1.

5 Table S2-1 Peak parameters of P and PQ in the first model system.

Peak-position Bandwidth Absorptivity

P 305.7 35 1.0

PQ 304.1 35 1.0

6

7 To characterize the intermolecular interaction, five 1D spectra of the 

8 simulated solutions containing different amount of P and Q are simulated. 

9 The initial concentration of P and Q in the five simulated solutions are 

10 listed in Table S2-2. The simulated 1D spectrum are used to construct a 

11 2D asynchronous spectrum.

12

13 Table S2-2 The initial concentrations of P and Q in the five 1D spectra 

14 used to construct the 2D asynchronous spectrum

CP CQ

(mol/L) (mol/L)
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1 0 0.1

2 0.35 0.1

3 0.37 0.1

4 0.39 0.1

5 0.38 0.1

1  

2

3 Figure S2-1. The possible range of b in the model system 1.
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Figure S2-2 Ranges of 2A, 2B, 1A and 1B.

Figure S2-3. The borders of the two rectangular regions (1 and 2) in 

the model system 1.
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1
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1

Figure S2-4. ΩA and ΩB of the 2D asynchronous spectrum of the model 

system 1 (the 2D asynchronous spectrum is covered by heavy noise). 

The border of ΩA and ΩB are straight lines whose function are:

ΩA: y = -x + 609.8; y =-x + 678.8; y = x +90; y = x -90.

ΩB: y = -x + 609.8; y = -x + 540.8; y = x +90; y = x -90.

The random range selection rules:

In the cross-peaks investigated, we supposed mirror symmetry is 

present, and the equation of the mirror is: y = -x + b, where the method 

to determine the value of b has been described in the manuscript. For 

each i, where i{1, 2, …, 15}, iA and iB are mirror symmetric to 

each other with respect of the mirror (y = -x + b). The shape of iA and 
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iB are rectangles. The borders of iA and iB are defined as below:

iA: 

y = -x +b0;

y = -x+ ib1;

y = x + ib2; 

y = x + ib3

iB: 

y = -x +b;

y = -x+ 2b-ib1;

y = x + ib2; 

y = x + ib3

The value of ib1, ib2, and ib3 are generated randomly. 

Since iA and iB must be within the cross-peaks group investigated, 

the values of ib1, ib2, and ib3 are generated within the following regions.

ib1 ∈ (640, 680); 

ib2 ∈ (-90, -6); 

ib3 ∈ (90, 6)

Table S2-3 The values of b0 ib1, ib2, and ib3 for the 15 2D sub spectral 
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regions selected in a random manner

i b0 ib1 ib2 ib3 

1 582.8 636.8 -90 90

2 579.8 639.8 -84 84

3 576.8 642.8 -78 78

4 573.8 645.8 -72 72

5 570.8 648.8 -66 66

6 567.8 651.8 -60 60

7 564.8 654.8 -54 54

8 561.8 657.8 -48 48

9 558.8 660.8 -42 42

10 555.8 663.8 -36 36

11 552.8 666.8 -30 30

12 549.8 669.8 -24 24

13 546.8 672.8 -18 18

14 543.8 675.8 -12 12

15 540.8 678.8 -6 6

1 // Pseudo-algorithm: testing the symmetry of 15 sets of data

2 // input data

3 data_groups = [group1, group2, ..., group15] 

4 p_values = []

5 // Perform a K-S test on each set of data
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1 for each group in data_groups:

2     p_value = kolmogorov_smirnov_test(group, mirrored_group)

3     p_values.append(p_value)

4 // Check that all p-values are ≥ 0.05

5 all_p_above_threshold = True

6 for p in p_values:

7     if p < 0.05:

8         all_p_above_threshold = False

9         break

10 // Selection of subsequent steps based on results

11 if all_p_above_threshold:

12     // Performing Bayesian analyses

13     symmetry_probability = bayesian_analysis(data_groups)

14     output "The probability that symmetry exists is " + 

15 symmetry_probability

16 else:

17     output "No symmetry within the cross peaks"
18

19
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1 Part 3 The mathematical proof of the theorem

2 Proof: fP(x) and fPQ(x) can be expressed as Eq. S3-1a and Eq. S3-1b

fP(x)=ƐPgP(x) S3-1a

fPQ(x)=ƐPQgPQ(x) S3-1b

3 where ƐP and ƐPQ are the absorptivity of the characteristic peaks of P and 

4 PQ, respectively; gP(x) and gPQ(x) are the peak shape functions of the 

5 characteristic peaks of P and PQ.

6 Since the shapes' spectral function of P and that of PQ are the same, 

7 we have:

gPQ(x)= gP(x-2Δ) S3-2

8 According to Eq. S1-4b in part 1 of Supporting Information, we 

9 have

Ψ(x, y) = α[gP(x)gPQ(y)- gP(y)gPQ(x)] S3-3

10 where α=ƐPƐQ( )TN( ).

11 Then, a coordinate translation transformation is performed on the 2D 

12 asynchronous spectrum, and the new origin is (δ, δ). The new coordinates 

13 are tx and ty. 

14 Thus, we have

tx = x -δ S3-4a

ty = y -δ S3-4b

15 After the coordinate translation transformation, we have the following 

16 changes: x→tx; y→ty; gP(x) → tgP(tx); gPQ(x) → tgPQ(tx); Ψ(x, y) →tΨ(tx, 
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1 ty).

2 Under the new coordinate system, the values of α remain unchanged. 

3 As a result, tΨ(tx, ty) can be expressed as 

tΨ(tx, ty) =α[tgP(tx)tgPQ(ty)- tgP(ty)tgPQ(tx)] S3-5

4 Under the new coordinates, the peak positions of P and PQ become -

5 Δ and Δ, respectively. Thus, tgP(tx) is symmetric with respect to tx = -Δ; 

6 and tgPQ(tx) is symmetric with respect to tx = Δ. That is 

tgP(-Δ- tx)= tgP(-Δ+ tx) S3-6a

tgPQ(Δ- tx)= tgPQ(Δ+ tx) S3-6b

7 Additionally, the line (y = -x - 2δ) in the old coordinate system has 

8 been changed to ty = -tx in the new coordinate system. 

9 Since the shape of tgP(tx) and tgPQ(tx) are the same, for any given txa, 

10 we have (Figure S3-1)

tgP(txa) = tgPQ(txa -2Δ) S3-7

11

12 Figure S3-1 The relationship between tgP(txa) and tgPQ(txa-2)
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1 For any given txa, we have d0. The relationship between txa and d0 can 

2 be expressed as Eq. S3-8 (Figure S3-2).

txa =Δ+ d0 S3-8

3

4 Figure S3-2 The relationship between txa and Δ+ d0

5 Thus, we have

tgPQ(txa -2Δ) = tgPQ(-Δ+d0) S3-9

6 We notice that tgPQ(tx) is symmetric with respect to tx = -Δ. As shown 

7 in Figure S3-3, we have 

tgPQ(-Δ+d0) = tgPQ(-Δ-d0) S3-10

8 According to Eq. S3-8, we have 

- - d0= -( + d0) = - txa S3-11

9 Thus, Eq. S3-10 can be expressed as 

tgPQ(-Δ - d0) = tgPQ(-txa) S3-12

10 After combining Eq. S3-7 to Eq. S3-12, we have
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tgP(txa) = tgPQ(-txa) S3-13

1

2 Figure S3-3 The relationship between tgPQ(- + d0) and tgPQ(- - d0)

3

4 Since the shape of tgP(tx) and tgPQ(tx) are the same, for any given txb, 

5 Eq. S3-14 is true (Figure S3-4)

tgPQ(txb) = tgP(txb + 2) S3-14

6

7 Figure S3-4 The relationship between tgPQ(txb) and tgP(txb+2)
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1 As shown in Figure S3-5, we have 

txb = - - d1 S3-15

2

3 Figure S3-5 The relationship between txb and - - d1

4 Thus, tgP(txb+2) can be modified as Eq. S3-16.

tgP(txb + 2) = tgP( - d1) S3-16

5 Since tgP(tx) is symmetric with respect to tx =  (Figure S3-6), we 

6 have

tgP( - d1) = tgP( + d1) S3-17

7

8 Figure S3-6 The relationship between tgP( - d1) and tgP( + d1)
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1 According to Eq. S3-15, we have 

   + d1 = -txb S3-18

2 After combining Eq. S3-14 to Eq. S3-18, we have 

tgPQ(txb) = tgP(-txb) S3-19

3 When Eq. S3-13 and Eq. S3-19 are incorporated with Eq. S3-5, we 

4 have

tΨ(tx, ty) =α[tgP(tx)tgPQ(ty)- tgP(ty)tgPQ(tx)]

=α[tgPQ(-tx) tgP(-ty)- tgPQ(-ty) tgP(-tx)]

=α[ tgP(-ty) tgPQ(-tx)- tgP(-tx) tgPQ(-ty)]

= tΨ(-ty, -tx)

S3-20

5 From Eq. S3-20, we learn that tΨ(tx, ty) is symmetric with respect to 

6 the line ty = -tx in the new coordinate system. In the original coordinate, 

7 Ψ(x, y) should be symmetric with respect to the line y = -x -2δ.

8 The end of the proof. 

9

10
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1 Part 4 A description of K-S text

2 In this paper, the Kolmogorov-Smirnov two-sample test (denoted as 

3 K-S test hereafter) is used to verify whether the two sets of data come from 

4 the same distribution. This part provides a brief description of the 

5 Kolmogorov-Smirnov test, and a detailed description of the Kolmogorov-

6 Smirnov test can be found in the literature S4-1.

7 In the K-S test, the null hypothesis H0 and the alternative hypothesis 

8 H1 are defined as follows:

9 1) H0 corresponds to the case where there is no significant difference 

10 between the two sets of data.

11 2) H1 corresponds to the case where there is a significant difference 

12 between the two sets of data.

13 The criterion value α to reject the null hypothesis was set at 0.05. 

14 Herein, we use the following two sets of data (X, Y) as an example to 

15 show how to use the K-S test to check whether the two sets of data come 

16 from the same distribution. 

17 X = [2.91, -0.93, 1.17, 1.51, 0.5, 2.15, -0.94, -0.65, -0.8, -0.18, 0.23, -1.79, 

18 0.98, -0.22, 0.17, -1.61, -0.65, -0.76, -0.04, -0.21, -1.54, 1.15, -0.5, 1.07, -

19 0.96, 0.45, -1.38, -0.12, -0.57, -1.8, -0.89, -0.2, 0.97, 0.21, -0.61, 0.4, 0.2, 

20 2, -0.31, -2.42, 0.81, 0.77, 1.75, -1.71, -1.26, 1.54, -0.9, 0.27, 0.57, 0.23];

21 Y = [0.81, -0.29, -0.46, 0.35, -0.86, -0.98, -1, 1.99, -1.23, 0.8, -0.26, 1.13, 

22 0.47, 0, -1.2, 0.35, -2.02, 0.46, -0.17, -1.13, 0.18, 0.53, -0.02, 0.81, 1.22, -
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1 0.73, 1.59, -1.38, 0.94, 0.17, -0.33, 0.3, -0.68, -0.59, -1.53, 0.81, -1.01, -

2 0.73, 0.05, -1.98, -2.2, 0.58, 1.26, 0.09, -0.47, -0.8, -0.12, 0.48, -0.59, -2.5, 

3 -0.74].

4 In this case, the sizes of both X and Y, which are respectively, denoted 

5 as mX and mY, are 51. 

6 The analysis is carried out via the following procedure:

7 1) Both X and Y are rearranged in ascending order. The sorted X and Y 

8 are denoted as X1 and Y1. 

9 2) Empirical distribution functions for X and Y (denoted as FX(t), FY(t), 

10 respectively), were obtained via Eq. S4-1A and Eq. S4-1B.

(S4-1A)

(S4-1B)

11 3) The value of DXY is calculated via Eq. S4-2. In this case, the value of 

12 DXY turns out to be 0.118.

DXY = max [FX(t) - FY(t)] (S4-2)

13 4)  Under the following conditions: 1) mX > 50 or mY > 50; 2) The 

14 criterion value  is set as 0.05, the corresponding c, is calculated via Eq. 

15 S4-3. The value of c is 0.269.
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cα = 1.36
mX +mY

mXmY
= 0.269 (S4-3)

1 5) The value of Asymp. Sig., which means asymptotic significance 

2 (denoted as P), can be calculated via Eq. S4-4.
2XY

2
D2 ( )
c(1 36)P 2e 



 . (S4-4)

3 If P≥0.05, we accept the null hypothesis (H0); 

4 If P<0.05, we reject the null hypothesis (H0) and accept the alternative 

5 hypothesis (H1). 

6 For the data set X, Y, we have P=0.981>0.05, hence, X and Y come 

7 from the same distribution.

8 A brief process of the K-S test is shown in Scheme S4-1.
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1

2 Scheme S4-1 Process of the K-S test.

3 References

S4-1 J.W. Pratt, J.D. Gibbons, Kolmogorov-Smirnov Two-Sample 

Tests. Concepts of Nonparametric Theory, 1981, 318–344.

4

5
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1 Part 5 The results of the K-S tests in the model system 1

2

3 Table S5-1. The P values of the 15 K-S tests in the model system 1.

number Pi value

1 0.9915

2 0.9462

3 0.9421

4 0.5126

5 0.9682

6 0.9999

7 0.9509

8 0.9474

9 0.4024

10 0.9984

11 0.9996

12 0.0993

13 0.1598

14 0.9999

15 0.8373

4  

5



39

1 Part 6 Description of the model system 2

2 In this model system, we try to characterize the intermolecular 

3 interaction between two solutes (U and V) dissolved in the same solutions. 

4

5 Under the intermolecular interaction between U and V, part of U and 

6 part of V form a supramolecular aggregate (UV). The interconversion can 

7 be described by a reaction shown in Eq. S6-1.

S6-1

8 where K is the equilibrium constant, and the value of K is set as 0.01 L/mol. 

9

10 In a spectrum of a sample solution containing U and V, neither solvent 

11 nor V has any contribution in the spectral region investigated. U has a 

12 characteristic peak, and UV has a characteristic peak.

13 The characteristic peak of U can be described by a Gaussian function 

14 (Eq. S6-2). 

𝑓𝑈(𝑥) = 𝜀𝑈𝑒

−(𝑙𝑛2)[(𝑥−𝑋𝑈)2𝑊2
𝑈

]
= 𝜀𝑈𝑔𝑈(𝑥)

S6-2

15 where ɛU, XU, and WU, respectively are the molar absorptive, peak position, 

16 and half-width at the half-height of the characteristic peak of U.

17 The characteristic peak of UV can also be described by a Gaussian 

18 function (Eq. S6-3).
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𝑓𝑈𝑉(𝑥) = 𝜀𝑈𝑉𝑒

−(𝑙𝑛2)[(𝑥−𝑋𝑈𝑉)2𝑊 2
𝑈𝑉

]
= 𝜀𝑈𝑉𝑔𝑈𝑉(𝑥)

(S6-3)

1 where ɛUV, XUV, and WUV, respectively are the molar absorptivity, peak 

2 position, and half-width at the half-height of the characteristic peak of UV. 

3

4 The values of ƐU, XU, WU, ƐUV, XUV, and WUV are listed in Table S6-1.

5 Table S6-1 Peak parameters of U and UV in the model system 2

Peak-position Bandwidth Absorbance

U 305.7 35 1.0

UV 304.1 36 1.0

6 To characterize the intermolecular interaction, five 1D spectra of the 

7 simulated solutions containing different amount of U and V are simulated. 

8 The initial concentration of U and V in the five simulated solutions are 

9 listed in Table S6-2. The simulated 1D spectrum are used to construct a 

10 2D asynchronous spectrum. 

11 Table S6-2 The initial concentrations of U and V

CU CV

(mol/L) (mol/L)

1 0 0.1

2 0.35 0.1

3 0.37 0.1
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4 0.39 0.1

5 0.38 0.1

1

2
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1 Part 7 Detailed description on the analysis on the model system 2

2 As demonstrated previously, we assume the line y = -x + b is the 

3 mirror, where b∈[539.8, 679.8] (Figure S7-1). Then, we define two 

4 rectangular spectral regions (the two rectangular spectral regions are 

5 respectively denoted as Ω1 and Ω2). Ω1 and Ω2 are mirror images of each 

6 other with respect to the line y = -x + b. The borders for Ω1 are four lines 

7 that are defined by: y = x; y = -x + b; y = x + α; and y = -x + (b + β1). The 

8 borders for Ω2 are four lines that are defined by: y = x; y = -x + b; y = x + 

9 α; and y = -x + (b + β2). The borders of the two rectangular regions are 

10 highlighted by dashed lines in Figure S7-2. In the present work, the values 

11 of α, β1 and β2 is set as 50, -50, and 50, respectively. To enhance the ability 

12 of the method to resist the interference of noise, both Ω1 and Ω2 is above 

13 the diagonal of the 2D asynchronous spectrum. The volumes of cross peaks 

14 in the two rectangular spectral regions (Ω1 and Ω2) are V1 and V2. In the 

15 corresponding ΔV ~ b curve (Figure S7-3), the abscissa of the lowest point 

16 of the ΔV ~ b curve is 587.
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1

2 Figure S7-1. The b range in the model system 2.

3

4 Figure S7-2. The borders of the two rectangular regions (1 and 2) in the 

5 2D asynchronous spectrum of the model system 2.
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1

2

3 Figure S7-3. The corresponding ΔV ~ b curve of the model system 2.

4

5 Analysis of the model system 2 via the Kolmogorov-Smirnov two-

6 sample test

7 15 pairs of small 2D spectral regions (iΩA and iΩB, where i∈{1, 

8 2,…,15}) are selected in a random manner. The borders for iΩA are four 

9 lines that are defined by: y = -x+ ib1, y = -x +b0; y = x + ib2, and y = x + ib3. 

10 The borders for iΩB are four lines that are defined by: y = -x + (2b0 - ib1), y 

11 = -x + b0, y = x + ib2, and y = x + ib3. The values of ib1, ib2, and ib3 are 

12 generated within the following regions: ib1 ∈ (615, 660); ib2 ∈ (-90, -6); ib3 
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1 ∈ (90, 6).

2 Table S7-1. The values of b0, 
ib1, ib2, and ib3

i b0 ib1 ib2 ib3 

1 560 614 -90 90

2 557 617 -84 84

3 554 620 -78 78

4 551 623 -72 72

5 548 626 -66 66

6 545 629 -60 60

7 542 632 -54 54

8 539 635 -48 48

9 536 638 -42 42

10 533 641 -36 36

11 530 644 -30 30

12 527 647 -24 24

13 524 650 -18 18

14 521 653 -12 12

15 518 656 -6 6

3

4
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1 Table S7-2. The values of the P values in the 15 K-S tests of the model 

2 system 2 (The negative results are marked in red).

number P value

1 0.6402

2 0.0000

3 0.0000

4 0.0000

5 0.8113

6 0.0000

7 0.0958

8 0.0000

9 0.9782

10 0.2565

11 0.7522

12 0.0000

13 0.9966

14 0.0051

15 0.6181

3

4 To prove that the cross peaks do not belong to the cross-peaks of 

5 type 3, the following analysis is performed. 

6 We check whether the cross peaks shown in Figure 3B have a mirror 
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1 symmetry with x = XU = 305.7 nm, the K-S test is carried out. 

2 The data of the first data set are selected randomly from the array of 

3 discrete data points within a rectangular region A 

4 ((255.7:305.7)(200:400), the region is marked by a red rectangle in 

5 Figure S7-4. The size of the first data set is 1001. The data are {(xA
1, 

6 yA
1), (xA

2, yA
2), …, (xA

1001, yA
1001)}. The data of the second data set are 

7 selected from the array of the discrete data points within another 

8 rectangular region B ((305.7:355.7)(200:400), the region is marked by a 

9 blue rectangle in Figure S7-4). The size of the second data set is also 1001. 

10

11

12 Figure S7-4 Two rectangular 2D spectral regions (region A and region B) 

13 in the 2D asynchronous spectrum, in which data-points are used in the K-
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1 S test.
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1 To check whether mirror symmetry occurs or not, it is wise that the 

2 data points in the first data set and those in the second data set are mirror 

3 images of one another with respect to the mirror (x = XU = 305.7 nm). 

4 However, XU is not exactly located at any discrete data point of the 1D 

5 spectrum. Moreover, XU is not exactly located at any middle point between 

6 two adjacent discrete data points, either. Hence, the mirror images of the 

7 data points of the first data set cannot be within the array of discrete data 

8 points of the 2D asynchronous spectrum. Herein, the following rule is 

9 adopted in the selection of the data point of the second data set: For the ith 

10 data point of the first data set, whose coordinates are (xA
i, yA

i), the 

11 coordinates of the corresponding point in the second data set is (xB
i, yA

i). 

12 In this case, xB
i is the abscissa of a discrete data point in the 1D spectrum, 

13 which is the closest to the value of 2XU - xA
i (the mirror image of xA

i with 

14 respect to x = XU = 305.7 nm.

15 Subsequently, the two data sets are subjected to the K-S test. The 

16 calculation result shows that the value of P is 0.000. Therefore, we can 

17 reject H0 and get a conclusion that there is no mirror symmetry with respect 

18 to x = XU = 305.7 nm. Thus, the cross-peaks do not belong to the cross-

19 peak of type 3. 

20

21

22
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1 Part 8 Description of the model system 3

2 In this model system, we try to characterize the intermolecular 

3 interaction between two solutes (S and R) dissolved in the same solutions. 

4 Under the intermolecular interaction between S and R, part of S and 

5 part of R form a supramolecular aggregate (SR). The interconversion can 

6 be described by a reaction shown in Eq. S8-1.

𝑆+ 𝑅
𝐾
↔𝑆𝑅 S8-1

7 where K is the equilibrium constant, and the value is set as 0.01 L/mol. 

8 In a spectrum of a sample solution containing S and R, neither solvent 

9 nor R has any contribution in the spectral region investigated. S has a 

10 characteristic peak, and SR has a characteristic peak.

11 The characteristic peak of S can be described by a Gaussian function 

12 (Eq. S8-2). 

𝑓𝑆(𝑥) = 𝜀𝑆𝑒

−(𝑙𝑛2)[(𝑥−𝑋𝑆)2𝑊2𝑆
]
= 𝜀𝑆𝑔𝑆(𝑥)

S8-2

13 where ɛS, XS, and WS, respectively are the molar absorptive, peak position, 

14 and half-width at the half-height of the characteristic peak of S.

15 The characteristic peak of SR can also be described by a Gaussian 

16 function (Eq. S8-3).

𝑓𝑆𝑅(𝑥) = 𝜀𝑆𝑅𝑒

−(𝑙𝑛2)[(𝑥−𝑋𝑆𝑅)2𝑊 2
𝑆𝑅

]
= 𝜀𝑆𝑅𝑔𝑆𝑅(𝑥)

(S8-3)

17 where ɛSR, XSR, and WSR, respectively are the molar absorptivity, peak 
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1 position, and half-width at the half-height of the characteristic peak of SR. 

2

3 The values of ƐS, XS, WS, ƐSR, XSR, and WSR are listed in Table S8-1.

4 Table S8-1 Peak parameters of S and SR in the model system 3

Peak-position Bandwidth Absorbance

S 305.7 35 1.0

SR 304.1 35.3 1.0

5 To characterize the intermolecular interaction, five 1D spectra of the 

6 simulated solutions containing different amount of S and R are generated. 

7 The initial concentration of S and R in the five simulated solutions are 

8 listed in Table S8-2. The simulated 1D spectrum are used to construct a 

9 2D asynchronous spectrum. 

10 Table S8-2 The initial concentrations of S and R

CS CR

(mol/L) (mol/L)

1 0 0.1

2 0.35 0.1

3 0.37 0.1

4 0.39 0.1

5 0.38 0.1

11

12
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1 Part 9. Detailed description on the analysis on the model system 3. 

2 As demonstrated previously, we assume the line y = -x + b is the 

3 mirror, where b∈[539.8, 679.8] (Figure S9-1). Then, we define two 

4 rectangular spectral regions (the two rectangular spectral regions are 

5 respectively denoted as Ω1 and Ω2). Ω1 and Ω2 are mirror images of each 

6 other with respect to the line y = -x + b. The borders for Ω1 are four lines 

7 that are defined by: y = x; y = -x + b；y = x + α, and y = -x + (b + β1). The 

8 borders for Ω2 are four lines that are defined by: y = x; y = -x + b；y = x + 

9 α, and y = -x + (b + β2). The borders of the two rectangular regions are 

10 highlighted by dashed lines in (Figure S9-2. In the present work, the values 

11 of α, β1 and β2 is set as 50, -50, and 50, respectively. To enhance the ability 

12 of the method to resist the interference of noise, both Ω1 and Ω2 is above 

13 the diagonal of the 2D asynchronous spectrum. The volumes of cross peaks 

14 in the two rectangular spectral regions (Ω1 and Ω2) are V1 and V2. In the 

15 corresponding ΔV ~ b curve (Figure S9-3), the abscissa of the lowest point 

16 of the ΔV ~ b curve is 600.8.
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1

2 Figure S9-1. The possible range of b in the 2D asynchronous spectrum of 

3 the model system 3.

4

5 Figure S9-2. The borders of the two rectangular regions (1 and 2) in the 

6 2D asynchronous spectrum of the model system 3.
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1

2

3 Figure S9-3. The corresponding ΔV ~ b curve of the model system 3.

4 Then, 15 pairs of small 2D spectral regions (iΩA and iΩB, where i∈{1, 

5 2,…,15}) are selected in a random manner. The borders for iΩA are four 

6 lines that are defined by: y = -x+ ib1; y = -x +b, y = x + ib2, and y = x + ib3. 

7 The borders for iΩB are four lines that are defined by: y = -x+b, y = -x+ 2b-

8 ib1, y = x + ib2, and y = x + ib3.

9 Then, the K-S test is performed to check whether the values of Ψ(x, 

10 y) in every pair of iΩA and iΩB have the same distributions or not. The 

11 results of the K-S test shown in Table S9-2 indicate that seven negative 

12 results of the K-S test are produced. Thus, we reject the hypothesis that the 
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1 cross peaks do not have any mirror symmetry, and the cross peaks should 

2 belong to cross peaks of type 4. This result is in a good agreement with the 

3 preset peak parameters in Table S8-1.

4 Table S9-1. The volume of b0, ib1, ib2 and ib3

i b0 ib1 ib2 ib3 

1 573.8 627.8 -90 90

2 570.8 630.8 -84 84

3 567.8 633.8 -78 78

4 564.8 636.8 -72 72

5 561.8 639.8 -66 66

6 558.8 642.8 -60 60

7 555.8 645.8 -54 54

8 552.8 648.8 -48 48

9 549.8 651.8 -42 42

10 546.8 654.8 -36 36

11 543.8 657.8 -30 30

12 540.8 660.8 -24 24

13 537.8 663.8 -18 18

14 534.8 666.8 -12 12

15 531.8 669.8 -6 6

5

6
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1 Table S9-2. The P values of the 15 K-S tests in model system 3 (The 

2 negative results are marked in red).

number Pi value

1 0.1264

2 0.4344

3 0.1216

4 0.0218

5 0.0050

6 0.5071

7 0.0622

8 0.1444

9 0.0057

10 0.0180

11 0.0809

12 0.7937

13 0.9931

14 0.0165

15 0.0182

3

4
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1 Part 10 The detail description on the analysis of Benzene and Iodine 

2 system

3 Reagents

4 Chloroform (high-performance liquid chromatography (HPLC) 

5 grade), iodine, and benzene (AR grade) were purchased from Beijing Tong 

6 Guang Fine Chemicals Company.

7 Instrumentation

8 FTIR spectra of the samples were collected on a Thermo Fisher 6700 

9 FTIR spectrometer. A BaF2 cell with a specified path length (0.1 mm) was 

10 used in the experiment.

11

12 Table S10-1. The Initial Concentrations of Benzene and Iodine of the 

13 four Solutions

index Benzene (mol/L) Iodine (×10-3mol/L)

1 0.225 0

2 0.451 1.42

3 0.563 2.54

4 0.789 4.07

14

15 Procedure to Generate 2D Asynchronous Spectra.

16 In the real-world example, four chloroform solutions containing 

17 different amounts of benzene and iodine were prepared. The initial 
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1 concentrations of benzene and iodine are listed in Table S10-1. FTIR 

2 spectra of the four solutions were recorded at a resolution of 4 cm−1, and 

3 16 scans were co-added. Both 1D spectra obtained from the simulation on 

4 the model system and the experiment from the real-world example were 

5 used to generate 2D asynchronous spectra. The 2D asynchronous spectra 

6 were constructed based on the algorithm of Noda via scripts written in this 

7 lab using MATLAB software (MathWorks, Inc.). To enhance the 

8 intensities of cross-peaks, each 2D asynchronous spectrum was 

9 constructed without subtracting a reference spectrum.

10

11 Figure S10-1. The four 1D spectra of Benzene and Iodine system

12
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1 Adopted the KS-B method in the analysis of the cross peaks of the real-

2 world system. 

3 As demonstrated previously, we assume the line y = -x + b is the 

4 mirror, where b∈[3626, 3650] (Figure S10-2). Then, we define two 

5 rectangular spectral regions (the two rectangular spectral regions are 

6 respectively denoted as Ω1 and Ω2). Ω1 and Ω2 are mirror images of each 

7 other with respect to the line y = -x + b. The borders for Ω1 are four lines 

8 that are defined by: y = x; y = -x + b; y = x + α, and y = -x + (b + β1). The 

9 borders for Ω2 are four lines that are defined by: y = x; y = -x + b; y = x + 

10 α, and y = -x + (b + β2). The borders of the two rectangular regions are 

11 highlighted by dashed lines in Figure S10-3. In the present work, the 

12 values of α, β1 and β2 is set as 19, -19, and 19, respectively. To enhance the 

13 ability of the method to resist the interference of noise, both Ω1 and Ω2 is 

14 above the diagonal of the 2D asynchronous spectrum. The volumes of cross 

15 peaks in the two rectangular spectral regions (Ω1 and Ω2) are V1 and V2. In 

16 the corresponding ΔV ~ b curve (Figure S10-4), the abscissa of the lowest 

17 point of the ΔV ~ b curve is 3638. 
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1

2 Figure S10-2. The possible range of b in the 2D asynchronous spectrum 

3 of the benzene/I2 ystem

4 .

5 Figure S10-3. The borders of the two rectangular regions (1 and 2) in 

6 the benzene/I2 system.
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1

2

3 Figure S10-4. The corresponding ΔV ~ b curve of the noisy real-world 

4 system.

5 Then, 15 pairs of small 2D spectral regions (iΩA and iΩB, where i∈{1, 

6 2,…,15}) are selected in a random manner. The borders for iΩA are four 

7 lines that are defined by: y = -x+ ib1, y = -x +b0; y = x + ib2, and y = x + ib3. 

8 The borders for iΩB are four lines that are defined by: y = -x + (2b0 - ib1), y 

9 = -x + b0, y = x + ib2, and y = x + ib3. The values of ib1, ib2, ib3 and b0 are 

10 listed in Table S10-2. For each i, iΩA and iΩB are mirror images to each 

11 other with respect to the line y = -x+3638. 

12 Then, the K-S test is performed to check whether the values of Ψ(x, 

13 y) in every pair of iΩA and iΩB have the same distributions or not. The 

14 results of the K-S test shown in Table S10-3. All the K-S tests produce 

15 positive results. Subsequently, Pi(S1) are calculated via Eq. 5 ~ Eq. 8. In 

16 the calculation, we hold a cautious attitude towards the assertion of a mirror 
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1 symmetry occur in the cross peaks group under the investigation. Thus, 

2 P1(S1) is set as a small value, i. e., P1(S1) = 1.0×10-9.

3 The resultant Pi(S1) ~ i curve depicted in Figure 3B turns out to be in 

4 a sigmoid shape. As i increases from 1 to 5, the value of Pi(S1) increases 

5 slightly. Then, a sharp increment in the values of Pi(S1) is observed when i 

6 changes from 6 to 9. Afterward, the value of Pi(S1) approaches 1.0 

7 asymptotically as i is larger than 9. Since the ultimate Pi(S1) is near 1.0, 

8 demonstrating that the cross peaks possess mirror symmetry with respect 

9 to the line y = -x+3628.

10
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1

2 Table S10-2. The values of b0, ib1, ib2 and ib3

i b0
ib1

ib2
ib3

1 3636 3640 1804 1834

2 3634 3642 1805 1835

3 3632 3644 1806 1836

4 3630 3646 1807 1837

5 3628 3648 1808 1838

6 3626 3650 1809 1839

7 3624 3652 1810 1840

8 3622 3654 1811 1841

9 3620 3656 1812 1842

10 3618 3658 1813 1843

11 3616 3660 1814 1844

12 3614 3662 1815 1845

13 3612 3664 1816 1846

14 3610 3666 1817 1847

15 3608 3668 1818 1848

3

4
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1 Table S10-3. The value of P in the Benzene/I2 system.

number P value

1 0.4903

2 0.7237

3 0.9965

4 0.9027

5 0.9438

6 0.0656

7 0.9865

8 0.1625

9 0.9999

10 0.6585

11 0.9983

12 0.9999

13 0.2975

14 0.9921

15 0.1315

2

3  

4

5


