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1. Method for determination of profile metrics 

The metrics W and Cmin associated with fractionation could be determined by 

straightforward visual inspection of the profiles. However, the decay constants λ1 and λ2, along 

with the net injection flux F18 of 18O, required more sophisticated methods because λ2 was usually 

much larger than the depth to which SIMS measurements extended.   

Determination of the decay constants exploited the fact that decay of the 18O concentration 

beyond the peak obeyed a bi-exponential functional form having two widely separated decay 

constants, with λ1 << λ2. A practical consequence was that λ1 dominated the change in 18O 

concentration near the peak, and λ2 dominated at depths several times λ1 from the peak.  In other 

words, the profile decayed according to λ1 down to an approximate plateau, followed by a much 

slower decay according to λ2. The plateau was typically 3-10% higher than the 18O natural 

abundance concentration CO of 1.276 × 1020 cm-3, with larger values occurring at higher 

temperatures. In each profile, the concentration characterizing this plateau was normalized with 

respect to CO to yield a dimensionless scaling factor Z, which typically varied from 1.03 to 1.1. 

Thus, a functional form derived previously1 for 18O injection from a surface was adapted to 

phenomenologically describe the λ1 region according to:  
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𝐶𝐶(𝑥𝑥) = 𝐶𝐶𝑂𝑂 �
𝐶𝐶𝑂𝑂𝑂𝑂−𝐶𝐶𝑂𝑂

𝐶𝐶𝑜𝑜
𝑒𝑒−

𝑥𝑥
𝜆𝜆1+𝑏𝑏1 + 𝑍𝑍�    (S1), 

where C denotes the concentration of 18O at depth x from the surface, COT is the total concentration 

of O atoms in the lattice (6.38 × 1022 cm-3), and b1 is a phenomenological amplitude factor. In the 

λ2 region, C continued to decay to the natural abundance baseline (Z≡1) according to a similar 

adaptation: 

𝐶𝐶(𝑥𝑥) = 𝐶𝐶𝑂𝑂 �
𝐶𝐶𝑂𝑂𝑂𝑂−𝐶𝐶𝑂𝑂

𝐶𝐶𝑂𝑂
𝑒𝑒−

𝑥𝑥
𝜆𝜆2+𝑏𝑏2 + 1�    (S2), 

where b2 is a second phenomenological amplitude factor. 

 Eq. (S1) was fitted to the λ1 region of the profile using a nonlinear least squares algorithm 

to determine λ1, b2 and Z.  The range of depths contributing to the fit lay between x=α, which is 

near the peak (determined as described below), and the lesser of either α+4λ1 or the maximum 

depth to which the SIMS profile extended. For a profile that extended very deep, the fitting process 

was iterated to ensure self-consistency between the value of λ1 and the depth α+4λ1 used as a 

boundary of the fitting region.  When referenced to CO, C declines at α+4λ1 to only about 2% of 

its maximum near the peak. Thus, the value of λ1 exhibits little sensitivity to the exact choice of 

the deeper boundary. Rarely were more than two iterations needed to achieve self-consistency.  

When SIMS measurements did not reach all the way to x = α+4λ1, they usually extended to at 

least α+2.5λ1, which proved adequate for nonlinear fitting to extract λ1, b1 and Z.   

The shallow boundary α of the λ1 region was determined as follows. The contour of the 
18O concentration immediately after the peak grades smoothly into the λ1 region. To delineate a 

specific boundary in reproducible way, a curvature parameter κ was computed. The parameter 

quantifies how sharply a function y bends,2–4 and is conventionally defined as 

𝜅𝜅 = �𝑦𝑦′′�

(1+𝑦𝑦′2)
3
2
     (S3), 

where y′ and y″ respectively denote the first and second derivatives of y.  Normally κ is constructed 

to lie in the range 0 < κ < 10.  As κ is dimensionless, reaching this range implies that y and x should 

nondimensionalized to have comparable magnitudes. Concentrations C were normalized by the 

natural abundance level of 18O  

𝑦𝑦 = 𝐶𝐶
𝐶𝐶𝑂𝑂

     (S4), 

and depths x were normalized by the spacing ∆x between SIMS concentration measurements 
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𝑋𝑋 = 𝑥𝑥
∆𝑥𝑥

     (S5). 

These derivatives were calculated using seven-point central difference formulae according to: 

𝑦𝑦′ =  𝑦𝑦𝑖𝑖+3−𝑦𝑦𝑖𝑖−3
6∆𝑋𝑋

      (S6) 

𝑦𝑦′′ =  𝑦𝑦𝑖𝑖+3−2𝑦𝑦𝑖𝑖+𝑦𝑦𝑖𝑖−3
9∆𝑋𝑋2

    (S7)  

where i corresponds to a particular data point with nearest neighbors i±1 and third nearest 

neighbors i±3. With these definitions, we found empirically that requiring κ < 0.02 reliably 

identified a value of α suitable for setting the shallow end of the λ1 region.   

 As mentioned earlier, SIMS measurements usually terminated at depths much shallower 

than λ2. However, with α, λ1, b1, and Z known, λ2 and b2 could be determined mathematically by 

requiring continuity at the boundary between the λ1 and λ2 regions of both the profile itself and its 

first derivative.  We consistently set this boundary at a depth equal to α+4λ1, where the spillover 

contribution attributable to residual λ1 decay is at most about 8% of the contribution attributable 

to λ2 decay.  Requiring continuity of the profile itself at α+4λ1 means setting Eq. (S1) equal to Eq. 

(S2) at x = α+4λ1 to yield   

  𝑙𝑙𝑙𝑙 �𝑒𝑒
−𝛼𝛼−4𝜆𝜆1

𝜆𝜆1
+𝑏𝑏1 + 𝐶𝐶𝑂𝑂(𝑍𝑍−1)

(𝐶𝐶𝑂𝑂𝑂𝑂−𝐶𝐶𝑂𝑂)� = −𝛼𝛼−4𝜆𝜆1
𝜆𝜆2

+ 𝑏𝑏2   (S8). 

Requiring continuity of the first derivative yields  

1
𝜆𝜆1
𝑒𝑒−

𝑥𝑥
𝜆𝜆1
+𝑏𝑏1 = 1

𝜆𝜆2
𝑒𝑒−

𝑥𝑥
𝜆𝜆2
+𝑏𝑏2      (S9). 

Simultaneous solution of Eqs. (S8) and (S9) yields 

𝜆𝜆2 =  𝜆𝜆1 �1 + 𝐶𝐶𝑂𝑂(𝑍𝑍−1)
(𝐶𝐶𝑂𝑂𝑂𝑂−𝐶𝐶𝑂𝑂) 𝑒𝑒

 𝛼𝛼𝜆𝜆1
+4−𝑏𝑏1�    (S10). 

Substitution of this value of λ2 back into either Eq. (S8) or (S9) yields b2.  

 The net flux F18 was computed as  

     F18 = N18/t      (S11), 

where N18 denotes the number of injected 18O atoms. N18 was computed as the integral of (C-CO) 

throughout the entire solid. This integral was performed piecewise. The number NVP of injected 
18O atoms appearing in the valley-peak region between x = 0 and α was obtained by numerical 

trapezoidal-rule integration of (C-CO). For x > α, contributions to the integral from the λ1 and λ2 

regions of the profile were computed analytically using Eq. (S1) and (S2) for C together with the 
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parameters λ1, λ2, Z, b1 and b2 determined as described above.  The number of atoms in the λ1 

region, Nλ1, is 

𝑁𝑁λ1 = ∫ �𝐶𝐶𝑂𝑂 �
𝐶𝐶𝑂𝑂𝑂𝑂−𝐶𝐶𝑂𝑂

𝐶𝐶𝑂𝑂
�𝑒𝑒−

𝑥𝑥
𝜆𝜆1
+𝑏𝑏1� + 𝑍𝑍� − 𝐶𝐶𝑂𝑂�  𝑑𝑑𝑑𝑑𝛼𝛼+4𝜆𝜆1

𝛼𝛼   (S12),  

while the corresponding number Nλ2 in the λ2 region is  

 

𝑁𝑁λ2 = ∫ �𝐶𝐶𝑂𝑂 �
𝐶𝐶𝑂𝑂𝑂𝑂−𝐶𝐶𝑂𝑂

𝐶𝐶𝑂𝑂
�𝑒𝑒−

𝑥𝑥
𝜆𝜆2
+𝑏𝑏2� + 1� − 𝐶𝐶𝑂𝑂�  𝑑𝑑𝑑𝑑 ∞

𝛼𝛼+4λ1
  (S13).  

Performing the analytical integration and adding all the piecewise components together yields: 

𝑁𝑁18 =  𝑁𝑁𝑉𝑉𝑉𝑉 + 𝑁𝑁λ1 + 𝑁𝑁λ2 = 𝑁𝑁𝑉𝑉𝑉𝑉 + �(𝐶𝐶𝑂𝑂𝑂𝑂 − 𝐶𝐶𝑂𝑂) ��𝜆𝜆1𝑒𝑒
−𝛼𝛼
𝜆𝜆1
+𝑏𝑏1(1 − 𝑒𝑒−4)� + �𝜆𝜆2𝑒𝑒

−𝛼𝛼−4𝜆𝜆1
𝜆𝜆2

+𝑏𝑏2��� +

                                                   4𝜆𝜆1𝐶𝐶𝑂𝑂(𝑍𝑍 − 1)       (S14). 

 
 
2. Statistical Analysis Example Calculation 

The t-test calculations can be illustrated by comparing the flux (F18) for Cases I and II, whose 

fluxes are closest together. The values of sΔ (pooled variance), the t-statistic t, and the degrees of 

freedom (df) are: 

𝑠𝑠∆ =  �𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼
2

𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼
+ 𝜎𝜎𝐼𝐼𝐼𝐼

2

𝑛𝑛𝐼𝐼𝐼𝐼
=  3.15 × 1010 𝑐𝑐𝑐𝑐−2𝑠𝑠−1       (S15) 

𝑡𝑡 =  𝐹𝐹𝐼𝐼𝐼𝐼𝐼𝐼
�����−𝐹𝐹𝐼𝐼𝐼𝐼�����

𝑠𝑠∆
= 1.35          (S16) 

𝑑𝑑𝑑𝑑 =  
�
𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼
2

𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼
+
𝜎𝜎𝐼𝐼𝐼𝐼
2

𝑛𝑛𝐼𝐼𝐼𝐼
�
2

�𝑠𝑠𝐼𝐼𝐼𝐼𝐼𝐼
2 /𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼�

2

𝑛𝑛𝐼𝐼𝐼𝐼𝐼𝐼−1
+
�𝑠𝑠𝐼𝐼𝐼𝐼
2 /𝑛𝑛𝐼𝐼𝐼𝐼�

2

𝑛𝑛𝐼𝐼𝐼𝐼−1

= 20.5        (S17) 

Use of statistical software or a t-table yields p = 0.19. Mann-Whitney U-tests tests were performed 

using the MATLAB function ranksum.   
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3. Adsorption Models 

Definitions: 

x = fraction of O originating from H2O (includes both isotopes) 

(1–x) = fraction of O originating from O2 (includes both isotopes) 

F18 (F16) = time-averaged net injection flux of 18O (16O) 

FW = time-averaged net injection flux of O if only water supplies O (linear proportion model) 

kinj = 1st order rate constant for O injection 

θOH,18 (θOH,16) = surface coverage of OH labeled with 18O (16O) 

θOH = total surface coverage of adsorbed OH 

kAW = adsorption rate constant for dissociative adsorption of water on TiO2 

kAO2 = adsorption rate constant for dissociative adsorption of O2 on TiO2 

Y18,W (Y16,W) = isotopic mole fraction of 18O (16O) in the water 

Y18,O2 (Y16,O2) = isotopic mole fraction of 18O (16O) in the O2 

CW,18 (CW,16) = concentration (mol/l) of water labeled with 18O (16O) in the liquid phase 

CW = total concentration (mol/l) of water (all isotopes) in the liquid phase 

CO2,18 (CO2,16) = concentration of dissolved 18O2 (16O2) in the liquid phase (mol/l) 

XO2 = chemical mole fraction of O2 (all isotopes) in the gas phase 

CO2 = total concentration (mol/l) of dissolved O2 (all isotopes) in the liquid phase 

CO2,atm = concentration of dissolved O2 (all isotopes) at atmospheric pressure (mol/l) 

Rads = generic adsorption rate from the liquid phase to create OH on the surface 

Rdes = generic desorption rate into the liquid phase to remove OH from the surface 

 

3.1 Linear Proportion Model 

This model assumes that H2O and O2 contribute O and isotopic labels in linear proportion to their 

respective concentrations. A fraction x of O originates from H2O, and a fraction (1–x) originates 

from O2. A mass balance on 18O then yields: 

𝐹𝐹18 = 𝑌𝑌18,𝑊𝑊𝑥𝑥𝐹𝐹𝑊𝑊 + 𝑌𝑌18,𝑂𝑂2𝑋𝑋𝑂𝑂2(1 − 𝑥𝑥)𝐹𝐹𝑊𝑊      (S18). 

Equation (S18) assumes constant flux, neglecting the modest increase in surface annihilation 

(decrease in flux) that occurs with increasing time, and assumes the validity of Henry’s law, where 
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the O2 solubility is proportional to its partial pressure.  Equation (S18) also implicitly assumes that 
18O injection and diffusion into TiO2 occurs by two independent pathways (H2O, O2) with no 

chemical interactions.  Linear regression on the four equations (F18,I - F18,IV) and two unknowns (x, 

FW) yields FW = 2.5×1012 cm-2s-1 and x = 0.78, with a total residual variance of 1.9×1022 cm-4s-2.   

 

3.2 Dual Pathway Model 

This model assumes that both H2O and O2 react through the same OHads intermediate species atop 

rutile TiO2(110).  Langmuir kinetics, constant flux, and the validity of Henry’s law are all assumed.  

A mass balance on the rates of species exchange between the solid surface and fluid yields θOH. 

The calculation begins with the following rates: 

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎 = (𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊 + 𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2)(1 − 𝜃𝜃𝑂𝑂𝑂𝑂)      (S19) 

𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 = (𝑘𝑘𝑑𝑑𝑑𝑑 + 𝑘𝑘𝑑𝑑𝑑𝑑2)𝜃𝜃𝑂𝑂𝑂𝑂        (S20). 

With the assumption of steady state, the mass balance is Rads = Rdes, or: 

(𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊 + 𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2)(1 − 𝜃𝜃𝑂𝑂𝑂𝑂) = (𝑘𝑘𝑑𝑑𝑑𝑑 + 𝑘𝑘𝑑𝑑𝑑𝑑2)𝜃𝜃𝑂𝑂𝑂𝑂     (S21). 

Rearrangement yields θOH: 

𝜃𝜃𝑂𝑂𝑂𝑂 = � (𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2)
(𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2+𝑘𝑘𝑑𝑑𝑑𝑑+𝑘𝑘𝑑𝑑𝑑𝑑2)�       (S22). 

Separation into two isotopic components and θOH,18 and θOH,16 begins with the substitutions CW = 

CW,16 + CW,18 and CO2 = CO2,16 + CO2,18: 

𝜃𝜃𝑂𝑂𝑂𝑂 = �𝑘𝑘𝐴𝐴𝐴𝐴�𝐶𝐶𝑊𝑊,16+𝐶𝐶𝑊𝑊,18�+𝑘𝑘𝐴𝐴𝐴𝐴2�𝐶𝐶𝑂𝑂2,16+𝐶𝐶𝑂𝑂2,18�
(𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2+𝑘𝑘𝑑𝑑𝑑𝑑+𝑘𝑘𝑑𝑑𝑑𝑑2) �      (S23) 

         = � �𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊,18+𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2,18�
(𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2+𝑘𝑘𝑑𝑑𝑑𝑑+𝑘𝑘𝑑𝑑𝑑𝑑2)� + � �𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊,16+𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2,16�

(𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2+𝑘𝑘𝑑𝑑𝑑𝑑+𝑘𝑘𝑑𝑑𝑑𝑑2)�  (S24). 

Substitution of the mole fractions CW,18 = Y18,WCW, CW,16 = Y16,WCW, CO2,18 = Y18,O2CW, and CO2,16 

= Y16,O2CW yields: 

𝜃𝜃𝑂𝑂𝑂𝑂 = ��𝑌𝑌18,𝑊𝑊𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑌𝑌18,𝑂𝑂2𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2�
(𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2+𝑘𝑘𝑑𝑑𝑑𝑑+𝑘𝑘𝑑𝑑𝑑𝑑2)� + ��𝑌𝑌16,𝑊𝑊𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑌𝑌16,𝑂𝑂2𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2�

(𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2+𝑘𝑘𝑑𝑑𝑑𝑑+𝑘𝑘𝑑𝑑𝑑𝑑2)�  (S25). 

The first set of terms in brackets corresponds to θOH,18 and the second set to θOH.16, so: 
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𝜃𝜃𝑂𝑂𝑂𝑂,18 = ��𝑌𝑌18,𝑊𝑊𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑌𝑌18,𝑂𝑂2𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2�
(𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2+𝑘𝑘𝑑𝑑𝑑𝑑+𝑘𝑘𝑑𝑑𝑑𝑑2)�      (S26a) 

𝜃𝜃𝑂𝑂𝑂𝑂,16 = ��𝑌𝑌16,𝑊𝑊𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑌𝑌16,𝑂𝑂2𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2�
(𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2+𝑘𝑘𝑑𝑑𝑑𝑑+𝑘𝑘𝑑𝑑𝑑𝑑2)�      (S26b). 

Note that θOH,18 + θOH,16 = θOH. Under water, one can assume θOH ≈ 1. Under such conditions, Eq. 

(S23) suggests kdW + kdO2 << kAWCW + kAO2CO2, which implies that: 

𝜃𝜃𝑂𝑂𝑂𝑂,18 = ��𝑌𝑌18,𝑊𝑊𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑌𝑌18,𝑂𝑂2𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2�
(𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2) �      (S27). 

Use of CO2 = XO2CO2,atm yields: 

𝜃𝜃𝑂𝑂𝑂𝑂,18 = ��𝑌𝑌18,𝑊𝑊𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑌𝑌18,𝑂𝑂2𝑋𝑋𝑂𝑂2𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2,𝑎𝑎𝑎𝑎𝑎𝑎�
�𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑋𝑋𝑂𝑂2𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2,𝑎𝑎𝑎𝑎𝑎𝑎�

�     (S28). 

The rate of 18O injection is therefore: 

𝐹𝐹18 = 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃𝑂𝑂𝑂𝑂,18 = 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 �
�𝑌𝑌18,𝑊𝑊𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑌𝑌18,𝑂𝑂2𝑋𝑋𝑂𝑂2𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2,𝑎𝑎𝑎𝑎𝑎𝑎�

�𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑋𝑋𝑂𝑂2𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2,𝑎𝑎𝑎𝑎𝑎𝑎�
�   (S29). 

A fraction x originates from the H2O phase, and the remaining fraction (1–x) from the gas phase:  

𝑥𝑥 = 𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊
𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2,𝑎𝑎𝑎𝑎𝑎𝑎

        (S30a) 

1 − 𝑥𝑥 = 𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2,𝑎𝑎𝑎𝑎𝑎𝑎
𝑘𝑘𝐴𝐴𝐴𝐴𝐶𝐶𝑊𝑊+𝑘𝑘𝐴𝐴𝐴𝐴2𝐶𝐶𝑂𝑂2,𝑎𝑎𝑎𝑎𝑎𝑎

        (S30b). 

Substitution of Eqs. (S30a) into Eq (S28) and rearranging yields: 

𝜃𝜃𝑂𝑂𝑂𝑂,18 = 𝑌𝑌18,𝑊𝑊𝑥𝑥+𝑋𝑋𝑂𝑂2𝑌𝑌18,𝑂𝑂2(1−𝑥𝑥)
𝑥𝑥+𝑋𝑋𝑂𝑂2(1−𝑥𝑥)        (S31a). 

A similar set of steps for θOH,16 yields: 

𝜃𝜃𝑂𝑂𝑂𝑂,16 = 𝑌𝑌16,𝑊𝑊𝑥𝑥+𝑋𝑋𝑂𝑂2𝑌𝑌16,𝑂𝑂2(1−𝑥𝑥)
𝑥𝑥+𝑋𝑋𝑂𝑂2(1−𝑥𝑥)        (S31b), 

although it is also true that θOH,16 = 1 – θOH,18 with the assumption of θOH ≈ 1 employed above.  

The injected fluxes are therefore: 

𝐹𝐹18 = 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃𝑂𝑂𝑂𝑂,18 = 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 �
𝑌𝑌18,𝑊𝑊𝑥𝑥+𝑋𝑋𝑂𝑂2𝑌𝑌18,𝑂𝑂2(1−𝑥𝑥)

𝑥𝑥+𝑋𝑋𝑂𝑂2(1−𝑥𝑥) �     (S32a) 

𝐹𝐹16 = 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖𝜃𝜃𝑂𝑂𝑂𝑂,16 = 𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 �
𝑌𝑌16,𝑊𝑊𝑥𝑥+𝑋𝑋𝑂𝑂2𝑌𝑌16,𝑂𝑂2(1−𝑥𝑥)

𝑥𝑥+𝑋𝑋𝑂𝑂2(1−𝑥𝑥) �     (S32b). 
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In the asymptotic limit of x → 1, Eq. (S18) from the linear proportion model represents a limiting 

case of Eq. (S32a) from the dual pathway model, with FW = kinj. Formally, the condition of x = 0 

and XO2 = 1 leads to the same equivalence but makes no physical sense because experimentally, 

H2O is always present to contribute some of the injected O.  

 

Nonlinear regression for four cases (F18,I - F18,IV) yields x = 0.76 and kinj = 2.2×1012 cm-2s-1.  From 

the best-fit value for kinj, we can estimate θOH,18 and θOH,16 in one of two ways. One method divides 

individual values of F18 and F18 by the fitted value of kinj to obtain corresponding “fitted” values 

of θOH,18 and θOH,16 according to the first equalities in Eqs. (S32a) and (S32b).  The other method 

uses the chosen isotopic mole fractions in gas and liquid, the gas mole fraction of O2, and the best-

fit value of x to obtain theoretical “ideal” values of θOH,18 and θOH,16 according to Eqs. (S31a) and 

(S31b).  Table S1 shows the corresponding values for the present experiments.  

 

Table S1.  Surface coverages of 18O and 16O 

 Case I Case II Case III Case IV 
θOH,18 (fitted) 0.073 0.055 0.14 0.23 
θOH,18 (ideal) 0.10 0.076 0.094 0.23 
θOH,16 (fitted) 0.93 0.94 0.86 0.77 
θOH,16 (ideal) 0.90 0.92 0.91 0.77 
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Figure S1. Change in solution pH measured at the start and end of the diffusion experiment as a 
function of the flux (F18) of injected 18O. The pH of the solution does not correlate with F18.  
Whenever more than one profile was measured for a given specimen resulting in multiple values 
for F18, the same pH change is plotted for all the values of F18.  This resulted in obvious 
discretization that is apparent for some values of ∆pH.   
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Figure S2. Profile metrics vs applied potential bias Vappl including (a) F18, (b) λ2, (c) W, (d) Cmin 
and (e) λ1 at 70°C. Lines represent linear least squares fits. For all data here, the water (10 at % 
18O) contained no electrolyte. The plots have nonzero slopes. Table S2 below reports the results 
of F-tests to determine whether the nonzero slopes represent statistical departures from zero (the 
null hypothesis). For all but W, the likelihood of the null hypothesis (p-value) is 0.15-0.25, which 
is generally considered too large for the slopes to be accounted statistically significant. For W, the 
p-value of 0.08 is noticeably smaller. Although F-tests are rather robust to deviations from 
normality,5,6 we do not claim statistical significance, especially because the liquid and solid TiO2 
are both insulating and provide no mechanism for Vappl to exert an effect.   
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Table S2. Slopes of profile metrics vs Vappl: F-tests for null hypothesis* 

Metric Slope Degrees of 
Freedom F p 

F18 -0.36±0.26 72 1.83 0.18 

W -0.47±0.25 66 3.24 0.08 

Cmin 0.08±0.07 66 1.33 0.25 

λ1 -0.39±0.27 72 2.01 0.16 

λ2 -0.30±0.23 72 1.77 0.19 
 
*Statistical tests were performed on metrics after transformation to a natural logarithmic scale.   
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Figure S3: Histograms of the five different profile metrics at 70°C with applied bias. Some of the 
histograms are roughly normal (Gaussian) but others are clearly not.  This figure (and S4) employs 
logarithmic plotting of all metrics because statistical analysis after logarithmic transformation is a 
well-established method7,8 for improving the skewness of a data set by attenuating departures from 
the mean at the upper end of the range and amplifying them at the lower end. Logarithmic 
transformation is akin to working with solution pH rather than hydronium ion concentration. 
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Figure S4: Histograms of the profile metrics for water without applied bias. Data were originally 
taken in the range 30-80°C as described previously,9 and transformed to a single temperature of 
70°C according to Arrhenius linear regression as described in Ref. [9]. For water without applied 
bias, profiles exhibited no counterpart to the λ2 region elicited by applied bias. Some of the 
histograms are roughly normal (Gaussian), but others are clearly not.   
 
Either with or without applied bias, non-normal distributions arise partly because the assumption 
of complete independence does not hold for all data. For water without applied bias, Ref. [9] 
reported that metrics measured at different points on a given specimen clustered together more 
closely than for different specimens. Similar clustering occurred here with applied bias, with the 
distributions at 70 °C affected by heavily sampled specimens at +0.2V and ±0.4V. In both cases, 
the diameter of the region sampled by SIMS was about 1 mm. For W and Cmin, additional 
systematic bias arises because a few profiles exhibited fractionation that did not reach below 
natural abundance. These profiles are not included because no fractionation metrics can be 
determined using the definitions employed here. 
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Figure S5. Atomic geometry of (a,b) pristine TiO2(110) terrace and (c,d) adsorbed bridging 
hydroxyl. (a,c) show top views and (b,d) show side views. Shading colors respectively represent 
blue for Ti, red for O, and white for H. 
 
Table S3. Adsorption energy and Bader charge of adsorbed O on TiO2(110): Ti-rich conditions 
 

TiO2(110) 
surface 

conditions 

Adsorption 
configuration 

Adsorption 
energy (eV) Bader charge (e-) Charge 

state  EF=0 eV  EF=3.1 eV  adsorbed O 
atom 

neighboring 
O atom 

Pristine 

Dumbbell 6.23 6.23 -0.43 -0.69 0 

Split 6.38 0.32 -1.11 -0.94 -2 

On-top 8.06 5.03 -0.61 -1.09 -1 

Bridging 
hydroxylated 

Dumbbell 5.91 5.91 -0.54 -0.71 0 

Split 5.13 -0.93 -1.12 -1.03 -2 

On-top 3.22 0.20 -0.87 -1.13 -1 



 15 

4. References 
1 P. Gorai, A. G. Hollister and E. G. Seebauer, Measurement of defect-mediated oxygen self-

diffusion in metal oxides, ECS Journal of Solid State Science and Technology, 2012, 1, 
Q21–Q24. 

2 F. Mokhtarian and A. K. Mackworth, A theory of multiscale, curvature-based shape 
representation for planar curves, IEEE Trans Pattern Anal Mach Intell, 1992, 14, 789–805. 

3 R. Goldman, Curvature formulas for implicit curves and surfaces, Comput Aided Geom Des, 
2005, 22, 632–658. 

4 D. A. Walker, E. K. Leitsch, R. J. Nap, I. Szleifer and B. A. Grzybowski, Geometric 
curvature controls the chemical patchiness and self-assembly of nanoparticles, Nat 
Nanotechnol, 2013, 8, 676–681. 

5 M. J. Blanca, R. Alarcón, J. Arnau, R. Bono and R. Bendayan, Datos no normales: ¿es el 
ANOVA una opción válida?, Psicothema, 2017, 29, 552–557. 

6 M. M. Ali and S. C. Sharma, Robustness to nonnormality of regression F-tests, J Econom, 
1996, 71, 175–205. 

7 J. M. Bland, D. G. Altman and F. J. Rohlf, In defence of logarithmic transformations, Stat 
Med, 2013, 32, 3766–3768. 

8 D. Curran-Everett, Explorations in statistics: the log transformation, Adv Physiol Educ, 
2018, 42, 343–347. 

9 H. Jeong and E. G. Seebauer, Effects of Ultraviolet Illumination on Oxygen Interstitial 
Injection from TiO2 under Liquid Water, The Journal of Physical Chemistry C, 2022, 126, 
20800–20806. 

  


