Supporting information on:

Tautomer identification troubles: The molecular structure of itaconic and citraconic anhydride revealed by rotational spectroscopy

Alexander Kanzow^a, Beppo Hartwig^a, Philipp Buschmann^b, Kevin G. Lengsfeld^b, Cara M. Höhne^b, Joshua S. Hoke^{‡a}, Finn Knüppe^{‡a}, Finn Köster^{‡a}, Jakob K. van Spronsen^{‡a}, Jens-Uwe Grabow^b, Don McNaughton^c and Daniel A. Obenchain^{*a}

a Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany. E-mail: daniel.obenchain@uni-goettingen.de

b Institut für Physikalische Chemie and Elektrochemie, Gottfried Wilhelm Leibniz Universität, Callinstraße 3A, 30167 Hannover, Germany.

c School of Chemistry, Monash University, Wellington Road, 3800 Clayton, Australia.

‡ These authors contributed equally to this work.

Contents

1	Molecular structures	1
2	Rotational constants and predictions	2
3	Structure determination3.1 $r_{\rm S}$ and $r_{0 \rightarrow e}^{\rm SE}$ results3.2 $r_m^{(1)}$ and $r_m^{(2)}$ results	5 5 8
4	Computational details and example inputs	12
Lit	terature	14

In addition to the material provided here, the raw microwave spectra^[1], all computational outputs^[2] as well as the outputs of the experimental and structure fits^[3] are provided on the GRO.data repository platform. All datasets can be centrally accessed at https://data.goettingen-research-online.de/dataverse/ESI_Citraocnic_Itaconic_Microwave.

1 Molecular structures

Fig. S1: Projections to the *a*,*b*-plane of the parent species of citraconic (left) and itaconic anhydride (right). The structures have been computed at the B3LYP level of theory.

Fig. S2: Comparison of the semi-experimental equilibrium (r^{SE}_{0→e}) bond distances of maleic anhydride^[4], citraconic anhydride (CA), succinic anhydride^[5] and itaconic anhydride (IA). The vibrational corrections have been obtained at the MP2/aVTZ and B3LYP/VTZ level of theory for maleic anhydride and succinic anhydride, respectively. The values shown for CA and IA have been obtained with DSD-PBEP86-D3(BJ)/aVTZ and correspond to those shown in Fig. 9 of the main text. Similar values to those of DSD-PBEP86-D3(BJ)/aVTZ have been obtained with MP2/aVTZ and B3LYP-D3(BJ)/aVTZ (see Tabs. S5 and S7) warranting this comparison. All distances are given in Å.

2 Rotational constants and predictions

Tab. S1: Comparison of the experimental results of citraconic anhydride with the theoretical predictions. All predicted values are equilibrium ones. κ refers to Ray's asymmetry parameter, N to the number of lines and σ to the root mean square error of the fit. Values in brackets were kept fixed during the fit. Note that despite having a 0 dipole moment along the *c*-axis, *c*-type transitions can still be observed for the E state.

	Experiment	B3LYP	PBE0	CAM-B3LYP	$LC-\omega PBE$
A / MHz	3914.01207(26)	3919.2338	3955.5895	3949.6876	3962.2062
B / MHz	1886.045890(82)	1891.6604	1906.0507	1906.7828	1911.3780
C / MHz	1282.788828(67)	1285.8446	1296.4159	1296.1035	1299.6006
D_J / kHz	0.0543(12)	0.05466	0.05497	0.05468	0.05456
D_{JK} / kHz	0.0989(29)	0.1002	0.09325	0.095	0.08884
D_K / kHz	1.488(12)	1.447	1.509	1.478	1.514
d_1 / kHz	-0.01952(21)	-0.01959	-0.01965	-0.01957	-0.01956
d_2 / kHz	-0.00362(12)	-0.003429	-0.003280	-0.003352	-0.003248
F / GHz	[164.07]	-	-	-	-
$V_3 \ / \ { m cm}^{-1}$	326.5153(61)	319.69	294.97	320.96	301.49
$V_3 \ / \ \mathrm{kJ} \ \mathrm{mol}^{-1}$	3.905990(74)	3.8243	3.5287	3.8395	3.6066
ρ / °	1.307	-	-	-	-
β / °	12.06	-	-	-	-
$D_{\pi 2J}$ / MHz	0.00989(87)	-	-	-	-
$D_{\pi 2K}$ / MHz	-0.1155(29)	-	-	-	-
δ / °	23.909(92)	-	-	-	-
$ \mu_a $ / Debye	strong	2.66	2.66	2.67	2.62
$ \mu_b $ / Debye	very strong	4.03	3.97	4.05	3.98
$ \mu_c $ / Debye	none	0	0	0	0
κ	-0.54146	-0.53990	-0.54149	-0.53973	-0.54047
N	97	-	-	-	-
σ / kHz	1.56	-	-	-	-
	Experiment	M06-2X	B2PLYP	DSD-PBEP86	MP2
A / MHz	3914.01207(26)	3964.9667	3921.3473	3927.6311	3928.0099
B / MHz	1886.045890(82)	1901.4677	1887.8959	1888.2051	1883.6640
$C\ /\ {\rm MHz}$	1282.788828(67)	1295.3045	1284.3363	1285.2118	1283.1189
D_J / kHz	0.0543(12)	0.05456	0.05505	0.05492	0.05534
D_{JK} / kHz	0.0989(29)	0.09217	0.09766	0.09249	0.09185
D_K / kHz	1.488(12)	1.537	1.475	1.504	1.527
d_1 / kHz	-0.01952(21)	-0.01943	-0.01966	-0.01960	-0.01971
d_2 / kHz	-0.00362(12)	-0.003297	-0.003407	-0.003333	-0.003347
F / GHz	[164.07]	-	-	-	-
V_3 / cm ⁻¹	326.5153(61)	328.49	326.01	326.58	330.57
V_3 / kJ mol ⁻¹	3.905990(74)	3.9296	3.8999	3.9067	3.9545
$\rho/$ °	1.307	-	-	-	_
$\beta'/$ °	12.06	-	-	-	_
$D_{\pi 2J}$ / MHz	0.00989(87)	-	-	-	-
$D_{\pi 2K}$ / MHz	-0.1155(29)	-	-	-	_
δ / \circ	23.909(92)	-	-	-	-
$ \mu_a $ / Debye	strong	2.66	2.61	2.58	2.52

$ \mu_b $ / Debye $ \mu_c $ / Debye	very strong none	$\begin{array}{c} 4.03 \\ 0 \end{array}$	$\begin{array}{c} 4.03 \\ 0 \end{array}$	$\begin{array}{c} 3.99 \\ 0 \end{array}$	$\begin{array}{c} 3.98 \\ 0 \end{array}$
$\frac{\kappa}{\kappa}$	-0.54146	-0.54589	-0.54224	-0.54361	-0.54588
N	97	-	-	-	-
σ / kHz	1.56	-	-	-	-

Tab. S2: Rotational constants of the mono-substituted ¹³C and ¹⁸O isotopologues of citraconic anhydride. Centrifugal
distortion parameters of all species were fixed to the values of the parent species (see Tab. S1).

Species	A / MHz	B / MHz	C / MHz	N	σ / kHz
$^{13}C_{1}$	3913.16590(48)	1872.50539(32)	1276.42000(13)	16	2.10
${}^{13}C_{3}$	3896.48786(35)	1883.22139(24)	1279.59622(11)	12	1.54
$^{13}\mathrm{C}_4$	3899.07976(23)	1881.27935(16)	1278.981152(62)	16	1.02
$^{13}C_5$	3866.57885(69)	1885.01459(27)	1277.18275(11)	14	1.71
$^{13}C_{9}$	3864.18590(60)	1852.79083(24)	1262.040627(95)	14	1.56
$^{18}O_{2}$	3850.6761(12)	1878.9113(11)	1272.64931(45)	8	3.90
$^{18}\mathrm{O}_7$	3911.09480(70)	1797.40388(65)	1240.86318(30)	8	2.52
$^{18}O_{8}$	3766.3001(20)	1855.4608(19)	1252.63282(74)	8	6.48

Tab. S3: Comparison of the experimental results of itaconic anhydride with the theoretical predictions. All predicted values are equilibrium ones. κ refers to Ray's asymmetry parameter, N to the number of lines and σ to the root mean square error of the fit.

	Experiment	B3LYP	PBE0	CAM-B3LYP	$LC-\omega PBE$
$\begin{array}{c} A \ / \ \mathrm{MHz} \\ B \ / \ \mathrm{MHz} \\ C \ / \ \mathrm{MHz} \end{array}$	$\begin{array}{c} 3901.06797(19)\\ 1921.85699(17)\\ 1298.78883(12) \end{array}$	3883.406 1914.358 1293.251	3920.296 1930.353 1304.666	3917.678 1931.359 1304.79	3933.013 1938.465 1309.809
$\begin{array}{c} D_J \ / \ \mathrm{kHz} \\ D_{JK} \ / \ \mathrm{kHz} \\ D_K \ / \ \mathrm{kHz} \\ d_1 \ / \ \mathrm{kHz} \\ d_2 \ / \ \mathrm{kHz} \end{array}$	$\begin{array}{c} 0.0573(21)\\ 0.1212(55)\\ 1.040(11)\\ -0.0208(12)\\ -0.00393(44) \end{array}$	$\begin{array}{c} 0.05303\\ 0.1128\\ 0.9998\\ -0.01964\\ -0.004093\end{array}$	$\begin{array}{c} 0.05283\\ 0.1061\\ 1.049\\ -0.01958\\ -0.003997\end{array}$	$\begin{array}{c} 0.05258\\ 0.1081\\ 1.022\\ -0.01946\\ -0.004014\end{array}$	$\begin{array}{c} 0.05217\\ 0.1029\\ 1.047\\ -0.01937\\ -0.003940\end{array}$
$\begin{array}{c c} \mu_a \ / \ \text{Debye} \\ \mu_b \ / \ \text{Debye} \\ \mu_c \ / \ \text{Debye} \end{array}$	strong none	$1.97 \\ 4.58 \\ 0$	$ \begin{array}{r} 1.93 \\ 4.52 \\ 0 \end{array} $	$1.98 \\ 4.63 \\ 0$	$1.93 \\ 4.55 \\ 0$
κ N σ / kHz	-0.52114 46 1.39	-0.522 49 - -	-0.52378 - - -	-0.52264 - -	-0.523 01 - -
A / MHz B / MHz C / MHz	3901.067 97(19) 1921.856 99(17) 1298.788 83(12)	3950.755 1938.109 1310.784	3914.538 1921.377 1299.115	3917.282 1923.36 1300.393	3915.847 1918.649 1298.066
$\begin{array}{c} D_J \ / \ \mathrm{kHz} \\ D_{JK} \ / \ \mathrm{kHz} \\ D_K \ / \ \mathrm{kHz} \\ d_1 \ / \ \mathrm{kHz} \end{array}$	$\begin{array}{c} 0.0573(21)\\ 0.1212(55)\\ 1.040(11)\\ -0.0208(12) \end{array}$	$\begin{array}{c} 0.05225\\ 0.1036\\ 1.055\\ -0.01931 \end{array}$	$\begin{array}{c} 0.05332\\ 0.1113\\ 1.015\\ -0.01966\end{array}$	$\begin{array}{c} 0.05304 \\ 0.107 \\ 1.03 \\ -0.01955 \end{array}$	0.05349 0.1069 1.069 -0.01965

d_2 / kHz	-0.00393(44)	-0.003938	-0.004042	-0.003961	-0.003927
$ \mu_a $ / Debye	strong	1.96	1.94	1.91	1.84
$ \mu_b $ / Debye $ \mu_c $ / Debye	none	$\begin{array}{c} 4.0\\ 0 \end{array}$	$\begin{array}{c} 4.55\\ 0\end{array}$	$\begin{array}{c} 4.5 \\ 0 \end{array}$	$\begin{array}{c} 4.44\\ 0\end{array}$
κ	-0.52114	-0.52475	-0.52416	-0.52389	-0.52587
N	46	-	-	-	-
σ / kHz	1.39	-	-	-	-

 Tab. S4: Rotational constants of the mono-substituted ¹³C isotopologues of itaconic anhydride. Centrifugal distortion parameters of all species were fixed to the values of the parent species (see Tab. S3).

Species	A / MHz	B / MHz	$C\ /\ {\rm MHz}$	N	σ / kHz
$^{13}C_{1}$	3900.9192(60)	1907.9750(23)	1292.41574(53)	8	1.29
$^{13}C_3$	3886.0263(60)	1917.7549(24)	1295.24676(53)	8	0.58
$^{13}\mathrm{C}_4$	3883.843(12)	1916.3125(49)	1294.3479(17)	8	0.46
$^{13}C_5$	3849.1270(62)	1919.9509(28)	1292.12899(62)	7	0.92
$^{13}C_{10}$	3846.6294(57)	1891.1040(23)	1278.70901(50)	8	1.15

3 Structure determination

3.1 r_{S} and $\mathit{r}_{0 \rightarrow \mathrm{e}}^{SE}$ results

Tab. S5: Overview of bond distances (d) and angles (\angle) obtained with Kraitchman's substitution method (r_S) and semi-experimental equilibrium structure ($r_{0\rightarrow e}^{SE}$) fits where only the underlying computational method is specified of citraconic anhydride (CA). Values in brackets were derived and not fit, which is typical of fitting ring structures. σ refers to the uncertainty of the respective structure fit.

	$r_{ m S}$	B3LYP	PBE0	CAM-B3LYP	$LC-\omega PBE$
$d(C_1-O_7) / Å$	1.196(19)	1.1908(25)	1.1913(21)	1.1905(28)	1.1898(15)
$d(C_1 - O_2) / Å$	1.390(10)	1.393(12)	1.3929(99)	1.388(14)	1.3866(70)
$d(C_3-O_2) / Å$	1.3755(32)	1.3787(57)	1.3799(48)	1.3800(65)	1.3786(34)
$d(C_3-O_8) / Å$	1.2022(51)	1.1870(36)	1.1888(31)	1.1895(41)	1.1896(22)
$d(C_3-C_4)$ / Å	1.48422(29)	1.4983(60)	1.4975(51)	1.4950(69)	1.4950(36)
$d(C_4-C_9) / Å$	1.49199(8)	1.4805(40)	1.4835(34)	1.4819(45)	1.4819(24)
$d(C_4-C_5) / Å$	1.32747(51)	1.3379(71)	1.3344(60)	1.3370(81)	1.3376(42)
$d(C_1-C_5)$ / Å	1.4920(11)	[1.470(11)]	[1.4698(89)]	[1.479(12)]	[1.4835(63)]
$\angle (O_7 - C_1 - O_2) / ^{\circ}$	122.42(70)	121.7(1.2)	121.7(1.0)	122.2(1.4)	122.54(74)
$\angle (O_7-C_1-C_5) / $ °	129.86(75)	[130.4(1.1)]	[130.34(90)]	[129.9(1.2)]	[129.60(63)]
$\angle(C_5-C_1-O_2) / $ °	107.72(17)	[107.92(26)]	[107.92(22)]	[107.98(29)]	[107.86(15)]
$\angle(C_1-O_2-C_3) / $ °	107.82(25)	108.15(32)	108.07(28)	108.19(37)	108.29(20)
$\angle(O_2-C_3-O_8) / $ °	122.45(19)	123.08(43)	122.96(36)	122.94(49)	123.05(26)
$\angle (O_2-C_3-C_4) / $ °	108.96(20)	108.35(34)	108.29(29)	108.39(39)	108.52(21)
$\angle(O_8-C_3-C_4) / $ °	128.59(21)	[128.57(44)]	[128.74(37)]	[128.67(50)]	[128.43(26)]
$\angle(C_3-C_4-C_9) / $ °	121.49(17)	121.25(49)	121.09(42)	121.16(56)	121.41(30)
$\angle(C_3-C_4-C_5) / $ °	107.39(18)	106.63(36)	106.74(30)	106.94(41)	106.85(21)
$\angle(C_9-C_4-C_5)$ / °	131.12(20)	[132.12(43)]	[132.17(37)]	[131.89(50)]	[131.75(26)]
$\angle(C_4-C_5-C_1) / $ °	108.11(60)	[108.95(91)]	[108.98(77)]	[108.5(1.0)]	[108.48(54)]
σ / MHz	-	0.174	0.146	0.200	0.106
σ / MHz	$ r_{ m S}$	0.174 M06-2X	0.146 B2PLYP	0.200 DSD-PBEP86	0.106 MP2
σ / MHz 	$r_{\rm S}$	0.174 M06-2X 1.1916(35)	0.146 B2PLYP 1.1910(22)	0.200 DSD-PBEP86 1.1905(60)	0.106 MP2 1.1907(7)
σ / MHz $d(C_1-O_7)$ / Å $d(C_1-O_2)$ / Å	$ \frac{r_{\rm S}}{1.196(19)} \\ 1.390(10) $	0.174 M06-2X 1.1916(35) 1.401(16)	0.146 B2PLYP 1.1910(22) 1.384(10)	0.200 DSD-PBEP86 1.1905(60) 1.3897(30)	0.106 MP2 1.1907(7) 1.3939(31)
σ / MHz $d(C_1-O_7) / \text{\AA}$ $d(C_1-O_2) / \text{\AA}$ $d(C_3-O_2) / \text{\AA}$	$ \frac{r_{\rm S}}{1.196(19)} \\ 1.390(10) \\ 1.3755(32) $	0.174 M06-2X 1.1916(35) 1.401(16) 1.3793(78)	0.146 B2PLYP 1.1910(22) 1.384(10) 1.3765(50)	0.200 DSD-PBEP86 1.1905(60) 1.3897(30) 1.3775(14)	0.106 MP2 1.1907(7) 1.3939(31) 1.3776(15)
$ \frac{\sigma / \text{MHz}}{d(\text{C}_1-\text{O}_7) / \text{\AA}} \\ \frac{d(\text{C}_1-\text{O}_2) / \text{\AA}}{d(\text{C}_3-\text{O}_2) / \text{\AA}} \\ \frac{d(\text{C}_3-\text{O}_8) / \text{\AA}}{d(\text{C}_3-\text{O}_8) / \text{\AA}} $	$\begin{array}{c} - \\ \hline r_{\rm S} \\ \hline 1.196(19) \\ 1.390(10) \\ 1.3755(32) \\ 1.2022(51) \end{array}$	$\begin{array}{r} 0.174\\ \hline \text{M06-2X}\\ \hline 1.1916(35)\\ 1.401(16)\\ 1.3793(78)\\ 1.1883(50)\\ \end{array}$	0.146 B2PLYP 1.1910(22) 1.384(10) 1.3765(50) 1.1907(32)	0.200 DSD-PBEP86 1.1905(60) 1.3897(30) 1.3775(14) 1.1916(9)	0.106 MP2 1.1907(7) 1.3939(31) 1.3776(15) 1.1892(10)
$ \frac{\sigma / \text{MHz}}{d(\text{C}_1-\text{O}_7) / \text{\AA}} \\ \frac{d(\text{C}_1-\text{O}_2) / \text{\AA}}{d(\text{C}_3-\text{O}_2) / \text{\AA}} \\ \frac{d(\text{C}_3-\text{O}_2) / \text{\AA}}{d(\text{C}_3-\text{O}_8) / \text{\AA}} \\ \frac{d(\text{C}_3-\text{C}_4) / \text{\AA}}{d(\text{C}_3-\text{C}_4) / \text{\AA}} $	$\begin{array}{r} - \\ \hline r_{\rm S} \\ \hline 1.196(19) \\ 1.390(10) \\ 1.3755(32) \\ 1.2022(51) \\ 1.48422(29) \end{array}$	0.174 M06-2X 1.1916(35) 1.401(16) 1.3793(78) 1.1883(50) 1.5007(82)	$\begin{array}{r} 0.146\\ \hline \\ B2PLYP\\ \hline 1.1910(22)\\ 1.384(10)\\ 1.3765(50)\\ 1.1907(32)\\ 1.4955(53)\\ \end{array}$	0.200 DSD-PBEP86 1.1905(60) 1.3897(30) 1.3775(14) 1.1916(9) 1.4951(15)	0.106 MP2 1.1907(7) 1.3939(31) 1.3776(15) 1.1892(10) 1.4949(16)
$ \frac{\sigma / \text{MHz}}{d(\text{C}_1-\text{O}_7) / \text{\AA}} \\ \frac{d(\text{C}_1-\text{O}_2) / \text{\AA}}{d(\text{C}_3-\text{O}_2) / \text{\AA}} \\ \frac{d(\text{C}_3-\text{O}_8) / \text{\AA}}{d(\text{C}_3-\text{O}_8) / \text{\AA}} \\ \frac{d(\text{C}_3-\text{C}_4) / \text{\AA}}{d(\text{C}_4-\text{C}_9) / \text{\AA}} $	$\begin{array}{r} - \\ \hline r_{\rm S} \\ \hline 1.196(19) \\ 1.390(10) \\ 1.3755(32) \\ 1.2022(51) \\ 1.48422(29) \\ 1.49199(8) \end{array}$	$\begin{array}{r} 0.174\\ \hline \text{M06-2X}\\ \hline 1.1916(35)\\ 1.401(16)\\ 1.3793(78)\\ 1.1883(50)\\ 1.5007(82)\\ 1.4836(55)\\ \end{array}$	$\begin{array}{r} 0.146\\ \hline \text{B2PLYP}\\ \hline 1.1910(22)\\ 1.384(10)\\ 1.3765(50)\\ 1.1907(32)\\ 1.4955(53)\\ 1.4825(35)\\ \end{array}$	0.200 DSD-PBEP86 1.1905(60) 1.3897(30) 1.3775(14) 1.1916(9) 1.4951(15) 1.4845(10)	$\begin{array}{r} 0.106\\ \hline \text{MP2}\\ \hline 1.1907(7)\\ 1.3939(31)\\ 1.3776(15)\\ 1.1892(10)\\ 1.4949(16)\\ 1.4821(11)\\ \end{array}$
$\frac{\sigma / \text{ MHz}}{d(\text{C}_1\text{-}\text{O}_7) / \text{\AA}}$ $\frac{d(\text{C}_1\text{-}\text{O}_2) / \text{\AA}}{d(\text{C}_3\text{-}\text{O}_2) / \text{\AA}}$ $\frac{d(\text{C}_3\text{-}\text{O}_8) / \text{\AA}}{d(\text{C}_3\text{-}\text{C}_4) / \text{\AA}}$ $\frac{d(\text{C}_3\text{-}\text{C}_4) / \text{\AA}}{d(\text{C}_4\text{-}\text{C}_9) / \text{\AA}}$	$\begin{array}{r} - \\ \hline r_{\rm S} \\ \hline 1.196(19) \\ 1.390(10) \\ 1.3755(32) \\ 1.2022(51) \\ 1.48422(29) \\ 1.49199(8) \\ 1.32747(51) \end{array}$	$\begin{array}{r} 0.174\\ \hline \text{M06-2X}\\ \hline 1.1916(35)\\ 1.401(16)\\ 1.3793(78)\\ 1.1883(50)\\ 1.5007(82)\\ 1.4836(55)\\ 1.3306(98)\\ \end{array}$	$\begin{array}{r} 0.146\\ \hline \text{B2PLYP}\\ \hline 1.1910(22)\\ 1.384(10)\\ 1.3765(50)\\ 1.1907(32)\\ 1.4955(53)\\ 1.4825(35)\\ 1.3343(62)\\ \end{array}$	$\begin{array}{r} 0.200\\ \hline \text{DSD-PBEP86}\\ \hline 1.1905(60)\\ 1.3897(30)\\ 1.3775(14)\\ 1.1916(9)\\ 1.4951(15)\\ 1.4845(10)\\ 1.3310(18)\\ \end{array}$	$\begin{array}{r} 0.106\\ \hline \text{MP2}\\ \hline 1.1907(7)\\ 1.3939(31)\\ 1.3776(15)\\ 1.1892(10)\\ 1.4949(16)\\ 1.4821(11)\\ 1.3358(19)\\ \end{array}$
$\sigma / \text{ MHz}$ $d(C_1-O_7) / \text{\AA}$ $d(C_1-O_2) / \text{\AA}$ $d(C_3-O_2) / \text{\AA}$ $d(C_3-O_8) / \text{\AA}$ $d(C_3-C_4) / \text{\AA}$ $d(C_4-C_9) / \text{\AA}$ $d(C_4-C_5) / \text{\AA}$	$\begin{array}{r} - \\ \hline r_{\rm S} \\ \hline 1.196(19) \\ 1.390(10) \\ 1.3755(32) \\ 1.2022(51) \\ 1.48422(29) \\ 1.49199(8) \\ 1.32747(51) \\ 1.4920(11) \end{array}$	$\begin{array}{c c} 0.174 \\ \hline M06-2X \\ \hline 1.1916(35) \\ 1.401(16) \\ 1.3793(78) \\ 1.1883(50) \\ 1.5007(82) \\ 1.4836(55) \\ 1.3306(98) \\ \hline 1.467(14) \end{array}$	$\begin{array}{c c} 0.146 \\ \hline & B2PLYP \\ \hline 1.1910(22) \\ 1.384(10) \\ 1.3765(50) \\ 1.1907(32) \\ 1.4955(53) \\ 1.4955(53) \\ 1.4825(35) \\ 1.3343(62) \\ \hline & \left[& 1.4839(92) \end{array} \right]$	0.200 DSD-PBEP86 1.1905(60) 1.3897(30) 1.3775(14) 1.1916(9) 1.4951(15) 1.4845(10) 1.3310(18) [1.4802(26)]	0.106 MP2 1.1907(7) 1.3939(31) 1.3776(15) 1.1892(10) 1.4949(16) 1.4821(11) 1.3358(19) [1.4756(27)]
$\sigma / \text{ MHz}$ $d(C_1-O_7) / \text{\AA}$ $d(C_1-O_2) / \text{\AA}$ $d(C_3-O_2) / \text{\AA}$ $d(C_3-O_8) / \text{\AA}$ $d(C_3-C_4) / \text{\AA}$ $d(C_4-C_9) / \text{\AA}$ $d(C_4-C_5) / \text{\AA}$ $d(C_1-C_5) / \text{\AA}$ $d(C_1-C_5) / \text{\AA}$	$- \\ r_{\rm S} \\ \hline 1.196(19) \\ 1.390(10) \\ 1.3755(32) \\ 1.2022(51) \\ 1.48422(29) \\ 1.49199(8) \\ 1.32747(51) \\ 1.4920(11) \\ 122.42(70) \\ \hline \\$	$\begin{array}{c c} 0.174 \\ \hline M06-2X \\ \hline 1.1916(35) \\ 1.401(16) \\ 1.3793(78) \\ 1.1883(50) \\ 1.5007(82) \\ 1.4836(55) \\ 1.3306(98) \\ \hline 1.467(14) \\ 120.9(1.7) \end{array}$	$\begin{array}{c c} 0.146 \\ \hline & B2PLYP \\ \hline 1.1910(22) \\ 1.384(10) \\ 1.3765(50) \\ 1.3765(50) \\ 1.1907(32) \\ 1.4955(53) \\ 1.4825(35) \\ 1.3343(62) \\ \hline & 1.4839(92) \end{array} \right]$	0.200 DSD-PBEP86 1.1905(60) 1.3897(30) 1.3775(14) 1.1916(9) 1.4951(15) 1.4845(10) 1.3310(18) [1.4802(26)] 121.84(31)	0.106 MP2 1.1907(7) 1.3939(31) 1.3776(15) 1.1892(10) 1.4949(16) 1.4949(16) 1.4821(11) 1.3358(19) [1.4756(27)] 121.27(32)
$\sigma / \text{ MHz}$ $d(C_1-O_7) / \text{\AA}$ $d(C_1-O_2) / \text{\AA}$ $d(C_3-O_2) / \text{\AA}$ $d(C_3-O_8) / \text{\AA}$ $d(C_3-C_4) / \text{\AA}$ $d(C_4-C_9) / \text{\AA}$ $d(C_4-C_5) / \text{\AA}$ $d(C_1-C_5) / \text{\AA}$ $\frac{1}{2(O_7-C_1-O_2) / \text{°}}$	$\begin{array}{r} -\\ \hline r_{\rm S} \\ \hline 1.196(19) \\ 1.390(10) \\ 1.3755(32) \\ 1.2022(51) \\ 1.48422(29) \\ 1.49199(8) \\ 1.32747(51) \\ 1.4920(11) \\ \hline 122.42(70) \\ 129.86(75) \\ \end{array}$	$\begin{array}{c c} 0.174 \\ \hline M06-2X \\ \hline 1.1916(35) \\ 1.401(16) \\ 1.3793(78) \\ 1.1883(50) \\ 1.5007(82) \\ 1.4836(55) \\ 1.3306(98) \\ \hline 1.467(14) \\ 1 \\ 120.9(1.7) \\ \hline 131.3(1.5) \\ \end{array}$	$\begin{array}{c c} 0.146 \\ \hline & B2PLYP \\ \hline 1.1910(22) \\ 1.384(10) \\ 1.3765(50) \\ 1.3765(50) \\ 1.1907(32) \\ 1.4955(53) \\ 1.4955(53) \\ 1.4825(35) \\ 1.3343(62) \\ \hline & 1.4839(92) \\ \hline & 122.5(1.1) \\ \hline & 122.5(1.1) \\ \hline & 129.60(93) \\ \hline & \end{bmatrix}$	0.200 DSD-PBEP86 1.1905(60) 1.3897(30) 1.3775(14) 1.1916(9) 1.4951(15) 1.4951(15) 1.4845(10) 1.3310(18) [1.4802(26)] 121.84(31) [130.28(27)]	0.106 MP2 1.1907(7) 1.3939(31) 1.3776(15) 1.1892(10) 1.4949(16) 1.4949(16) 1.4821(11) 1.3358(19) [1.4756(27)] 121.27(32) [130.83(28)]
$ \frac{\sigma / \text{MHz}}{d(\text{C}_1\text{-}\text{O}_7) / \text{\AA}} \\ \frac{d(\text{C}_1\text{-}\text{O}_2) / \text{\AA}}{d(\text{C}_3\text{-}\text{O}_2) / \text{\AA}} \\ \frac{d(\text{C}_3\text{-}\text{O}_2) / \text{\AA}}{d(\text{C}_3\text{-}\text{C}_4) / \text{\AA}} \\ \frac{d(\text{C}_3\text{-}\text{C}_4) / \text{\AA}}{d(\text{C}_4\text{-}\text{C}_9) / \text{\AA}} \\ \frac{d(\text{C}_4\text{-}\text{C}_9) / \text{\AA}}{d(\text{C}_4\text{-}\text{C}_5) / \text{\AA}} \\ \frac{d(\text{C}_1\text{-}\text{C}_5) / \text{\AA}}{d(\text{C}_1\text{-}\text{C}_5) / \text{\%}} \\ \frac{\angle(\text{O}_7\text{-}\text{C}_1\text{-}\text{O}_2) / \text{°}}{\angle(\text{O}_7\text{-}\text{C}_1\text{-}\text{O}_2) / \text{°}} $	$\begin{array}{r} - \\ \hline r_{\rm S} \\ \hline 1.196(19) \\ 1.390(10) \\ 1.3755(32) \\ 1.2022(51) \\ 1.48422(29) \\ 1.49199(8) \\ 1.32747(51) \\ 1.4920(11) \\ \hline 122.42(70) \\ 129.86(75) \\ 107.72(17) \\ \end{array}$	$\begin{array}{c c} 0.174 \\ \hline M06-2X \\ \hline 1.1916(35) \\ 1.401(16) \\ 1.3793(78) \\ 1.1883(50) \\ 1.5007(82) \\ 1.4836(55) \\ 1.3306(98) \\ \hline 1.467(14) \\ 120.9(1.7) \\ \hline 131.3(1.5) \\ \hline 107.85(35) \\ \end{array}$	$\begin{array}{c c} 0.146 \\ \hline & B2PLYP \\ \hline 1.1910(22) \\ 1.384(10) \\ 1.3765(50) \\ 1.1907(32) \\ 1.4955(53) \\ 1.4955(53) \\ 1.4825(35) \\ 1.3343(62) \\ \hline & 1.4839(92) \\ \hline & 122.5(1.1) \\ \hline & 122.5(1.1) \\ \hline & 129.60(93) \\ \hline & 107.94(22) \\ \hline & \end{bmatrix}$	0.200 DSD-PBEP86 1.1905(60) 1.3897(30) 1.3775(14) 1.3775(14) 1.1916(9) 1.4951(15) 1.4845(10) 1.3310(18) [1.4802(26)] 121.84(31) [130.28(27)] [107.88(7)]	$\begin{array}{c c} 0.106 \\ \hline \text{MP2} \\ \hline 1.1907(7) \\ 1.3939(31) \\ 1.3776(15) \\ 1.1892(10) \\ 1.4949(16) \\ 1.4949(16) \\ 1.4821(11) \\ 1.3358(19) \\ \hline 1.4756(27) \\ \hline 121.27(32) \\ \hline 121.27(32) \\ \hline 130.83(28) \\ \hline 107.91(7) \\ \hline \end{array}$
$ \begin{array}{c c} \sigma \ / \ \mathrm{MHz} \\ \hline \\ \hline \\ \hline \\ \hline \\ d(\mathrm{C_1-\mathrm{O_2}}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_3-\mathrm{O_2}}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_3-\mathrm{O_8}}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_3-\mathrm{O_8}}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_4-\mathrm{C_9}}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_4-\mathrm{C_9}}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_4-\mathrm{C_9}}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_4-\mathrm{C_5}}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_1-\mathrm{C_5}}) \ / \ \mathring{\mathrm{A}} \\ \hline \\ \angle (\mathrm{O_7-\mathrm{C_1-\mathrm{O_2}}}) \ / \ \degree \\ \angle (\mathrm{C_5-\mathrm{C_1-\mathrm{O_2}}}) \ / \ \degree \\ \\ \angle (\mathrm{C_1-\mathrm{O_2-\mathrm{C_3}}}) \ / \ \degree \\ \end{array} $	$\begin{array}{r} -\\ \hline r_{\rm S} \\ \hline 1.196(19) \\ 1.390(10) \\ 1.3755(32) \\ 1.2022(51) \\ 1.48422(29) \\ 1.49199(8) \\ 1.32747(51) \\ 1.4920(11) \\ \hline 122.42(70) \\ 129.86(75) \\ 107.72(17) \\ 107.82(25) \\ \end{array}$	$\begin{array}{c c} 0.174 \\ \hline M06-2X \\ \hline 1.1916(35) \\ 1.401(16) \\ 1.3793(78) \\ 1.1883(50) \\ 1.5007(82) \\ 1.4836(55) \\ 1.3306(98) \\ \hline 1.467(14) \\ \hline 120.9(1.7) \\ \hline 131.3(1.5) \\ \hline 107.85(35) \\ 107.87(44) \\ \end{array}$	$\begin{array}{c c} 0.146 \\ \hline & B2PLYP \\ \hline 1.1910(22) \\ 1.384(10) \\ 1.3765(50) \\ 1.1907(32) \\ 1.4955(53) \\ 1.4825(35) \\ 1.3343(62) \\ \hline & 1.4839(92) \\ \hline & 122.5(1.1) \\ \hline & 129.60(93) \\ \hline & 107.94(22) \\ 108.29(29) \\ \end{array}$	0.200 DSD-PBEP86 1.1905(60) 1.3897(30) 1.3775(14) 1.1916(9) 1.4951(15) 1.4845(10) 1.3310(18) [121.84(31) [130.28(27)] [107.88(7)] 108.12(8)	0.106 MP2 1.1907(7) 1.3939(31) 1.3776(15) 1.1892(10) 1.4949(16) 1.4821(11) 1.3358(19) [1.4756(27)] 121.27(32) [130.83(28)] [107.91(7)] 108.11(9)
$ \begin{array}{c c} \sigma \ / \ \mathrm{MHz} \\ \hline \\ \hline \\ \hline \\ \hline \\ d(\mathrm{C_1-O_2}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_3-O_2}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_3-O_8}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_3-C_4}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_3-C_4}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_4-C_9}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_4-C_5}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_4-C_5}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_1-C_5}) \ / \ \mathring{\mathrm{A}} \\ \hline \\ \hline \\ \angle (\mathrm{O_7-C_1-O_2}) \ / \ \degree \\ \\ \angle (\mathrm{O_7-C_1-O_2}) \ / \ \degree \\ \\ \angle (\mathrm{C_5-C_1-O_2}) \ / \ \degree \\ \\ \angle (\mathrm{C_1-O_2-C_3}) \ / \ \degree \\ \hline \\ \\ \hline \\ \\ \angle (\mathrm{O_2-C_3-O_8}) \ / \ \degree \\ \end{array} $	$\begin{array}{r} - \\ \hline r_{\rm S} \\ \hline 1.196(19) \\ 1.390(10) \\ 1.3755(32) \\ 1.2022(51) \\ 1.48422(29) \\ 1.49199(8) \\ 1.32747(51) \\ 1.4920(11) \\ \hline 122.42(70) \\ 129.86(75) \\ 107.72(17) \\ 107.82(25) \\ 122.45(19) \\ \end{array}$	$\begin{array}{c c} 0.174 \\ \hline M06-2X \\ \hline 1.1916(35) \\ 1.401(16) \\ 1.3793(78) \\ 1.1883(50) \\ 1.5007(82) \\ 1.4836(55) \\ 1.3306(98) \\ \hline 1.467(14) \\ 120.9(1.7) \\ \hline 120.9(1.7) \\ \hline 131.3(1.5) \\ 107.85(35) \\ 107.87(44) \\ 122.97(58) \\ \hline \end{array}$	$\begin{array}{c c} 0.146 \\ \hline & B2PLYP \\ \hline 1.1910(22) \\ 1.384(10) \\ 1.3765(50) \\ 1.1907(32) \\ 1.4955(53) \\ 1.4955(53) \\ 1.4825(35) \\ 1.3343(62) \\ \hline 1.4839(92) \\ \hline 122.5(1.1) \\ \hline 122.5(1.1) \\ \hline 129.60(93) \\ \hline 107.94(22) \\ 108.29(29) \\ 123.24(38) \\ \hline \end{array}$	0.200 DSD-PBEP86 1.1905(60) 1.3897(30) 1.3775(14) 1.1916(9) 1.4951(15) 1.4951(15) 1.4845(10) 1.3310(18) [1.4802(26)] 121.84(31) [130.28(27)] [107.88(7)] 108.12(8) 123.13(11)	$\begin{array}{c c} 0.106 \\ \hline MP2 \\ \hline 1.1907(7) \\ 1.3939(31) \\ 1.3776(15) \\ 1.1892(10) \\ 1.4949(16) \\ 1.4949(16) \\ 1.4821(11) \\ 1.3358(19) \\ \hline 1.4756(27) \\ \hline 121.27(32) \\ \hline 121.27(32) \\ \hline 130.83(28) \\ \hline 107.91(7) \\ 108.11(9) \\ 123.44(11) \\ \end{array}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{r} - \\ \hline r_{\rm S} \\ \hline 1.196(19) \\ 1.390(10) \\ 1.3755(32) \\ 1.2022(51) \\ 1.48422(29) \\ 1.49199(8) \\ 1.32747(51) \\ 1.4920(11) \\ \hline 122.42(70) \\ 129.86(75) \\ 107.72(17) \\ 107.82(25) \\ 122.45(19) \\ 108.96(20) \\ \end{array}$	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} 0.146 \\ \hline & B2PLYP \\ \hline 1.1910(22) \\ 1.384(10) \\ 1.3765(50) \\ 1.1907(32) \\ 1.4955(53) \\ 1.4955(53) \\ 1.4825(35) \\ 1.3343(62) \\ \hline & 1.4839(92) \\ \hline & 122.5(1.1) \\ \hline & 122.5(1.1) \\ \hline & 129.60(93) \\ \hline & 107.94(22) \\ \hline & 108.29(29) \\ 123.24(38) \\ 108.48(30) \\ \hline \end{array}$	0.200 DSD-PBEP86 1.1905(60) 1.3897(30) 1.3775(14) 1.3775(14) 1.4951(15) 1.4951(15) 1.4845(10) 1.3310(18) [1.4802(26)] 121.84(31) [130.28(27)] [107.88(7)] 108.12(8) 123.13(11) 108.40(9)	$\begin{array}{c c} 0.106 \\ \hline \text{MP2} \\ \hline 1.1907(7) \\ 1.3939(31) \\ 1.3776(15) \\ 1.1892(10) \\ 1.4949(16) \\ 1.4821(11) \\ 1.3358(19) \\ [1.4756(27)] \\ 121.27(32) \\ [130.83(28)] \\ [107.91(7)] \\ 108.11(9) \\ 123.44(11) \\ 108.39(9) \\ \end{array}$
$ \begin{array}{c c} \sigma \ / \ \mathrm{MHz} \\ \hline \\ $	$\begin{array}{r} -\\ \hline r_{\rm S} \\ \hline 1.196(19) \\ 1.390(10) \\ 1.3755(32) \\ 1.2022(51) \\ 1.48422(29) \\ 1.49199(8) \\ 1.32747(51) \\ 1.4920(11) \\ \hline 122.42(70) \\ 129.86(75) \\ 107.72(17) \\ 107.82(25) \\ 122.45(19) \\ 108.96(20) \\ 128.59(21) \\ \end{array}$	$\begin{array}{c c} 0.174 \\ \hline M06-2X \\ \hline 1.1916(35) \\ 1.401(16) \\ 1.3793(78) \\ 1.1883(50) \\ 1.5007(82) \\ 1.4836(55) \\ 1.3306(98) \\ \hline 1.467(14) \\ 120.9(1.7) \\ \hline 131.3(1.5) \\ 107.85(35) \\ 107.87(44) \\ 122.97(58) \\ 108.26(47) \\ \hline 128.77(60) \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.200 DSD-PBEP86 1.1905(60) 1.3897(30) 1.3775(14) 1.1916(9) 1.4951(15) 1.4845(10) 1.3310(18) [121.84(31) [130.28(27)] [107.88(7)] 108.12(8) 123.13(11) 108.40(9) [128.47(11)]	$\begin{array}{c c} 0.106 \\ \hline \text{MP2} \\ \hline 1.1907(7) \\ 1.3939(31) \\ 1.3776(15) \\ 1.1892(10) \\ 1.4949(16) \\ 1.4821(11) \\ 1.3358(19) \\ \hline 1.4756(27) \\ \hline 121.27(32) \\ \hline 121.27(32) \\ \hline 130.83(28) \\ \hline 107.91(7) \\ 108.11(9) \\ 123.44(11) \\ 108.39(9) \\ \hline 128.16(12) \\ \hline \end{array}$
$ \begin{array}{c c} \sigma \ / \ \mathrm{MHz} \\ \hline \\ \hline \\ \hline \\ \hline \\ d(\mathrm{C_1}\text{-}\mathrm{O_2}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_3}\text{-}\mathrm{O_2}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_3}\text{-}\mathrm{O_2}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_3}\text{-}\mathrm{O_4}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_3}\text{-}\mathrm{C_4}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_4}\text{-}\mathrm{C_5}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_4}\text{-}\mathrm{C_5}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_4}\text{-}\mathrm{C_5}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_1}\text{-}\mathrm{C_5}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_1}\text{-}\mathrm{C_5}) \ / \ \mathring{\mathrm{A}} \\ d(\mathrm{C_1}\text{-}\mathrm{C_5}) \ / \ \mathring{\mathrm{A}} \\ \hline \\ \hline \\ \angle (\mathrm{O_7}\text{-}\mathrm{C_1}\text{-}\mathrm{O_2}) \ / \ \degree \\ \\ \angle (\mathrm{O_7}\text{-}\mathrm{C_1}\text{-}\mathrm{O_2}) \ / \ \degree \\ \\ \angle (\mathrm{O_7}\text{-}\mathrm{C_1}\text{-}\mathrm{O_2}) \ / \ \degree \\ \\ \hline \\ \angle (\mathrm{O_7}\text{-}\mathrm{C_1}\text{-}\mathrm{O_2}) \ / \ \degree \\ \\ \\ \angle (\mathrm{O_7}\text{-}\mathrm{C_1}\text{-}\mathrm{O_2}) \ / \ \degree \\ \\ \\ \angle (\mathrm{O_7}\text{-}\mathrm{C_1}\text{-}\mathrm{O_2}) \ / \ \degree \\ \\ \\ \hline \\ \\ \angle (\mathrm{O_8}\text{-}\mathrm{C_3}\text{-}\mathrm{C_4}) \ / \ \degree \\ \\ \\ \\ \\ \\ \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{r} -\\ \hline r_{\rm S} \\ \hline 1.196(19) \\ 1.390(10) \\ 1.3755(32) \\ 1.2022(51) \\ 1.48422(29) \\ 1.49199(8) \\ 1.32747(51) \\ 1.4920(11) \\ \hline 122.42(70) \\ 129.86(75) \\ 107.72(17) \\ 107.82(25) \\ 122.45(19) \\ 108.96(20) \\ 128.59(21) \\ 121.49(17) \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.200 DSD-PBEP86 1.1905(60) 1.3897(30) 1.3775(14) 1.1916(9) 1.4951(15) 1.4951(15) 1.4845(10) 1.3310(18) [1.4802(26)] 121.84(31) [130.28(27)] [107.88(7)] 108.12(8) 123.13(11) 108.40(9) [128.47(11)] 121.12(13)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c} \sigma \ / \ \mathrm{MHz} \\ \hline \\ $	$\begin{array}{r} - \\ \hline r_{\rm S} \\ \hline 1.196(19) \\ 1.390(10) \\ 1.3755(32) \\ 1.2022(51) \\ 1.48422(29) \\ 1.49199(8) \\ 1.32747(51) \\ 1.4920(11) \\ \hline 122.42(70) \\ 129.86(75) \\ 107.72(17) \\ 107.82(25) \\ 102.45(19) \\ 108.96(20) \\ 128.59(21) \\ 121.49(17) \\ 107.39(18) \\ \end{array}$	$\begin{array}{c c} 0.174 \\ \hline M06-2X \\ \hline 1.1916(35) \\ 1.401(16) \\ 1.3793(78) \\ 1.1883(50) \\ 1.5007(82) \\ 1.4836(55) \\ 1.3306(98) \\ \hline 1.467(14) \\ \hline 120.9(1.7) \\ \hline 131.3(1.5) \\ \hline 107.85(35) \\ \hline 107.87(44) \\ 122.97(58) \\ 108.26(47) \\ \hline 128.77(60) \\ \hline 120.70(67) \\ \hline 106.81(49) \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.200 DSD-PBEP86 1.1905(60) 1.3897(30) 1.3775(14) 1.3775(14) 1.4951(15) 1.4951(15) 1.4845(10) 1.3310(18) [1.4802(26)] 121.84(31) [130.28(27)] [107.88(7)] 108.12(8) 123.13(11) 108.40(9) [128.47(11)] 121.12(13) 107.06(9)	$\begin{array}{r c c c c c c c c c c c c c c c c c c c$

$\angle(C_4-C_5-C_1) / $ °	108.11(60)	[109.2(1.3)]] [108.39(80)]] [108.54(23)]] [108.58(24)]]
σ / MHz	-	0.129	0.158	0.042	0.049	

Tab. S6: Overview of bond distances (d) and angles (\angle) obtained with Kraitchman's substitution method (r_s), semiexperimental equilibrium structure ($r_{0\rightarrow e}^{SE}$) fits at the DSD-PBEP86 level of theory and equilibrium structures r_e at the DCSD-F12, CCSD(T)-F12c and AE-CCSD(T)-F12c (AE = all electron) level of theory of citraconic anhydride (CA). Values in brackets where derived and not fit. σ refers to the uncertainty of the respective structure fit.

	$r_{ m S}$	DSD-PBEP86	DCSD-F12b	CCSD(T)-F12c	AE-CCSD(T)-F12c
$d(C_1-O_7) / \text{\AA}$	1.196(19)	1.1905(60)	1.19047	1.191 58	1.191 91
$d(C_1-O_2) / Å$	1.390(10)	1.3897(30)	1.38986	1.39214	1.39337
$d(C_3-O_2)$ / Å	1.3755(32)	1.3775(14)	1.38032	1.38153	1.38266
$d(\mathrm{C}_3 ext{-}\mathrm{O}_8)$ / Å	1.2022(51)	1.1916(9)	1.19176	1.19297	1.19335
$d(C_3-C_4) / \text{\AA}$	1.48422(29)	1.4951(15)	1.49697	1.49790	1.49856
$d(C_4-C_9)$ / Å	1.49199(8)	1.4845(10)	1.48657	1.48656	1.48676
$d(C_4-C_5) / \text{\AA}$	1.32747(51)	1.3310(18)	1.33664	1.33805	1.33782
$d(C_1-C_5) / \text{ Å}$	1.4920(11)	[1.4802(26)]	1.48366	1.48394	1.48450
$\angle(O_{7}-C_{1}-O_{2}) / $ °	122.42(70)	121.84(31)	122.159	122.138	122.131
$\angle(O_7-C_1-C_5) / $ °	129.86(75)	[130.28(27)]	129.980	130.006	130.041
$\angle(C_5-C_1-O_2) / $ °	107.72(17)	[107.88(7)]	107.861	107.856	107.828
$\angle(C_1-O_2-C_3) / \circ$	107.82(25)	108.12(8)	108.184	108.164	108.157
$\angle(O_2-C_3-O_8) / $ °	122.45(19)	123.13(11)	122.872	122.926	122.909
$\angle(O_2-C_3-C_4) / $ °	108.96(20)	108.40(9)	108.512	108.507	108.476
$\angle(O_8-C_3-C_4) / $ °	128.59(21)	[128.47(11)]	128.616	128.567	128.615
$\angle(C_3-C_4-C_9) / $ °	121.49(17)	121.12(13)	121.319	121.248	121.266
$\angle(C_3-C_4-C_5) / $ °	107.39(18)	107.06(9)	106.871	106.887	106.921
$\angle(C_9-C_4-C_5) / $ °	131.12(20)	[131.82(11)]	131.810	131.865	131.813
$\angle(C_4-C_5-C_1) / $ °	108.11(60)	[108.54(23)]	108.571	108.585	108.618
σ / MHz	-	0.042	-	-	-

Tab. S7: Overview of bond distances (d) and angles (\angle) obtained with Kraitchman's substitution method (r_S) and semi-experimental equilibrium structure ($r_{0\rightarrow e}^{SE}$) fits where only the underlying computational method is specified of itaconic anhydride (IA). Values in brackets where derived and not fit. σ refers to the uncertainty of the respective structure fit.

	$r_{ m S}$	B3LYP	PBE0	CAM-B3LYP	$LC-\omega PBE$
$d(C_1-C_5) / \text{\AA}$	1.532(17)	1.510(13)	1.5111(93)	1.509(13)	1.5117(72)
$d(C_4-C_5) / \text{\AA}$	1.4907(34)	1.493(17)	1.499(13)	1.503(18)	1.5028(99)
$d(\mathrm{C}_3 ext{-}\mathrm{C}_4)$ / Å	1.3376(47)	1.331(87)	1.3303(67)	1.3299(92)	1.3297(52)
$d(\mathrm{C}_4 ext{-}\mathrm{C}_{10})/\ \mathrm{\AA}$	1.4789(29)	1.4843(93)	1.4871(72)	1.4890(99)	1.4910(56)
$\angle(C_1-C_5-C_4) / \circ$	102.83(47)	103.35(48)	103.34(37)	103.37(50)	103.37(29)
$\angle(C_5-C_4-C_{10}) / $ °	130.27(18)	130.88(96)	130.94(74)	131.0(1.0)	131.03(58)
$\angle(C_5-C_4-C_3) / \circ$	107.51(17)	107.48(59)	107.27(45)	107.22(62)	107.14(35)
σ / MHz	-	0.374	0.287	0.398	0.217
	$r_{ m S}$	M06-2X	B2PLYP	DSD-PBEP86	MP2

	$1.532(17) \\ 1.4907(34) \\ 1.3376(47) \\ 1.4789(29)$	$\begin{array}{c} 1.5119(54) \\ 1.5010(75) \\ 1.3301(39) \\ 1.4917(42) \end{array}$	$1.5142(61) \\ 1.4878(84) \\ 1.3314(44) \\ 1.4812(47)$	$\begin{array}{c} 1.5163(36) \\ 1.4876(50) \\ 1.3317(26) \\ 1.4818(28) \end{array}$	$1.518(10) \\ 1.480(14) \\ 1.3329(73) \\ 1.4813(78)$
$\angle (C_1-C_5-C_4) / ^{\circ} \\ \angle (C_5-C_4-C_{10}) / ^{\circ} \\ \angle (C_5-C_4-C_3) / ^{\circ}$	$102.83(47) \\130.27(18) \\107.51(17)$	$ \begin{array}{c} 103.35(22) \\ 131.11(43) \\ 107.18(27) \end{array} $	$103.24(24) \\130.59(48) \\107.66(30)$	$ \begin{array}{c} 103.21(14) \\ 130.58(29) \\ 107.60(18) \end{array} $	$ \begin{array}{c} 103.18(40) \\ 130.62(81) \\ 107.80(50) \end{array} $
σ / MHz	-	0.164	0.212	0.107	0.308

Tab. S8: Overview of bond distances (d) and angles (\angle) obtained with Kraitchman's substitution method (r_S), semiexperimental equilibrium structure ($r_{0\rightarrow e}^{SE}$) fits at the DSD-PBEP86 level of theory and equilibrium structures r_e at the DCSD-F12, CCSD(T)-F12c and AE-CCSD(T)-F12c (AE = all electron) level of theory of itaconic anhydride (IA). σ refers to the uncertainty of the respective structure fit.

	`		•		
	$r_{ m S}$	DSD-PBEP86	DCSD-F12b	CCSD(T)-F12c	AE-CCSD(T)-F12c
$d(C_1-C_5) / Å$	1.532(17)	1.5163(36)	1.51664	1.51753	1.51815
$d(C_4-C_5) / \text{\AA}$	1.4907(34)	1.4876(50)	1.49861	1.49873	1.49926
$d(C_3-C_4) / \text{\AA}$	1.4789(29)	1.3317(26)	1.49065	1.49051	1.49108
$d(C_4-C_{10})$ / Å	1.3376(47)	1.4818(28)	1.33169	1.33281	1.33252
$\angle(C_1-C_5-C_4) / $ °	102.83(47)	103.21(14)	103.211	103.237	103.262
$\angle(C_5-C_4-C_{10}) / $ °	130.27(18)	130.58(29)	130.779	130.853	130.783
$\angle(C_5-C_4-C_3)$ / °	107.51(17)	107.60(18)	107.280	107.369	107.373
σ / MHz	_	0.107	-	-	_

3.2 $r_m^{(1)}$ and $r_m^{(2)}$ results

Tab. S9: Overview of bond distances (d) and angles (\angle) obtained with Kraitchman's substitution method (r_S) and mass dependent $r_m^{(1)}$ structure fits where only the underlying computational method is specified of citraconic anhydride (CA). Values in brackets were derived and not fit and the given errors are unreliable. σ refers to the uncertainty of the respective structure fit.

	$r_{ m S}$	B3LYP	PBE0	CAM-B3LYP	$LC-\omega PBE$
$d(C_1-O_7) / \text{\AA}$ $d(C_1-O_7) / \text{\AA}$	1.196(19) 1.300(10)	1.19373(64) 1.3808(31)	1.19374(66) 1.2800(21)	1.19370(63) 1.3807(30)	1.19365(60) 1.3807(20)
$d(C_1-O_2) / A$ $d(C_2-O_2) / Å$	1.390(10) 1.3755(32)	1.3696(31) 1.3723(27)	1.3699(31) 1.3723(28)	1.3697(30) 1.3723(26)	1.3697(29) 1.3793(25)
$d(C_3-O_2) / A$ $d(C_3-O_2) / Å$	1.3735(52) 1.2022(51)	1.3723(27) 1.2007(11)	1.9729(20) 1.9008(11)	1.3725(20) 1.2006(11)	1.3723(20) 1.2007(10)
$d(C_3 - C_4) / Å$	1.2022(01) 1.484.22(20)	1.2007(11) 1.4857(22)	1.2000(11) 1.4858(23)	1.2000(11) 1.4855(22)	1.2007(10) 1.4853(21)
$d(C_4-C_0) / Å$	1.40422(23) 1 491 99(8)	1.4007(22) 1.4903(10)	1.4000(20) 1.4004(11)	1.4003(22) 1.4903(10)	1.4000(21) 1.40018(97)
$d(C_4 - C_5) / Å$	1.491.95(6) 1.327.47(51)	1.3300(32)	1.3299(33)	1.3299(31)	1.3294(30)
$d(C_4 C_5) / A$ $d(C_1 - C_5) / Å$	1.4920(11)	$\begin{bmatrix} 1.4844(32) \end{bmatrix}$	[1.4843(32)]	$\begin{bmatrix} 1.4845(31) \end{bmatrix}$	$\begin{bmatrix} 1.4846(30) \end{bmatrix}$
$\frac{\alpha(0_1, 0_3)}{\langle (\Omega_2, \Omega_1, \Omega_2) \rangle / \circ}$	122 42(70)	122 34(34)	$\frac{122}{22}(35)$	$\frac{12234(33)}{12234(33)}$	$\frac{122}{122} \frac{32}{32} $
2(07-01-02) / (0	122.42(70) 120.86(75)	[122.34(34)]	[122.32(33)]	[122.34(33)]	[122.32(32)]
$2(0_{7}-0_{1}-0_{5}) / (C_{7}-C_{4}-0_{5}) / $	123.00(13) 107.72(17)	$\begin{bmatrix} 123.78(30) \\ 107.88(11) \end{bmatrix}$	$\begin{bmatrix} 123.73(31) \\ 107.89(11) \end{bmatrix}$	$\begin{bmatrix} 123.11(23) \\ 107.88(11) \end{bmatrix}$	$\begin{bmatrix} 123.01(20) \end{bmatrix}$
$2(0_5 - 0_1 - 0_2) / (C_1 - 0_2 - C_2) / (C_1 - 0_2) / (C_1 - 0_2)$	107.72(17) 107.82(25)	107.824(03)	107.83(11)]	107.80(11)]	107.813(87)
$\angle (O_1 - O_2 - O_3) / (O_2 - O_2) / °$	107.02(20) 122.45(10)	107.024(93) 192.64(12)	107.818(95) 199.64(19)	107.825(91) 199.63(11)	107.813(87) 199.69(11)
$\angle (O_2 - C_3 - O_8) / (O_2 - C_3 - O_8) / (O_2 - C_3 - O_8) / (O_3 - O_3 - O_3) / (O_3 - O_3) / $	122.43(19) 108.06(20)	122.04(12) 108.027(04)	122.04(12) 108.028(05)	122.03(11) 108.028(01)	122.02(11) 108.033(87)
$\angle (O_2 - O_3 - O_4) / (O_2 - O_3 - O_4) / °$	12850(20)	[198/321(34)]	[128/32(18)]	$[198 \Lambda (17)]$	[198.45(16)]
$\angle (C_8 - C_3 - C_4) / (C_8 - C_4 - C_6) / ^{\circ}$	120.09(21) 121.49(17)	120.45(17)]	120.45(10)]	120.44(17)]	120.45(10)]
$\angle (C_3 - C_4 - C_5) / ^{\circ}$	107.39(18)	107100(08)	121.49(10) 107.20(1)	121.40(12) 107.204(95)	107.91/(91)
$\angle (C_3 - C_4 - C_5) / (C_6 - C_6 - C_4 - C_5) / (C_6 - C_6 - C_6) / (C_6 - C_6 - C_6) / (C_6 - C_6) / (C$	$131\ 12(20)$	[131 35(14)]	[131, 36(14)]	[131 34(14)]	$\begin{bmatrix} 131 & 34(13) \end{bmatrix}$
$\angle (C_4 - C_7 - C_1) / ^{\circ}$	101.12(20) 108 11(60)	$\begin{bmatrix} 101.00(14) \end{bmatrix}$	$\begin{bmatrix} 101.00(14) \\ 108.17(26) \end{bmatrix}$	$\begin{bmatrix} 101.04(14) \\ 108.16(25) \end{bmatrix}$	$\begin{bmatrix} 101.04(10) \end{bmatrix}$
$\frac{2(04\ 05\ 01)}{}$	100.11(00)	0.066(11)	0.065(11)	0.069(11)	
$c_a / \operatorname{amu} / A$	-	0.000(11)	0.005(11)	0.008(11)	0.008(10)
$c_b / \operatorname{amu} / A$	-	0.080(16)	0.079(10)	0.083(16)	0.087(15)
c_c / amu / A	-	0.102(17)	0.101(17)	0.105(16)	0.109(15)
σ / MHz	-	0.040 363	0.041 008	0.039374	0.037963
	$r_{ m S}$	M06-2X	B2PLYP	DSD-PBEP86	MP2
$d(C_1-O_7) / \text{\AA}$	1.196(19)	1.19362(59)	1.19367(61)	1.19366(60)	1.19361(60)
$d(C_1 - O_2) / Å$	1.390(10)	1.3900(28)	1.3897(29)	1.3896(29)	1.3896(28)
$d(C_3-O_2)$ / Å	1.3755(32)	1.3721(25)	1.3723(26)	1.3725(25)	1.3724(25)
$d(C_3-O_8) / Å$	1.2022(51)	1.2007(1)	1.2006(10)	1.2006(10)	1.2006(10)
$d(C_3-C_4)$ / Å	1.48422(29)	1.4853(21)	1.4854(21)	1.4853(21)	1.4852(21)
$d(C_4-C_9) / \text{\AA}$	1.49199(8)	1.49016(96)	1.4902(1)	1.49019(97)	1.49012(97)
$d(C_4-C_5) / \text{\AA}$	1.32747(51)	1.3287(29)	1.3298(30)	1.3298(30)	1.3297(30)
$d(C_1-C_5) / \text{ Å}$	1.4920(11)	[1.4847(29)]	[1.4845(30)]	[1.4847(30)]	[1.4846(29)]
$\angle (O_7 - C_1 - O_2) / ^{\circ}$	122.42(70)	122.28(31)	122.34(32)	122.34(32)	122.34(31)
$\angle (O_7 - C_1 - C_5) / ^{\circ}$	129.86(75)	[129.86(28)]	[129.78(29)]	[129.78(28)]	[129.79(28)]
$\angle (C_5 - C_1 - O_2) / \circ$	107.72(17)	[107.86(10)]	[107.88(10)]	[107.88(10)]	[107.88(10)]
$\angle (C_1 - O_2 - C_3) / \circ$	107.82(25)	107.798(86)	107.821(89)	107.819(87)	107.817(86)
$\angle (O_2 - C_3 - O_8) / ^{\circ}$	122.45(19)	122.61(11)	122.63(11)	122.62(11)	122.61(11)
$\angle (O_2 - C_3 - C_4) / \circ$	108.96(20)	108.937(86)	108.930(89)	108.932(87)	108.933(87)
$\angle (O_8 - C_3 - C_4) / \circ$	128.59(21)	[128.45(16)]	[128.44(17)]	[128.45(16)]	[128.45(16)]
$\angle (C_3 - C_4 - C_9) / $ °	121.49(17)	121.45(12)	121.45(12)	121.45(12)	121.45(12)
$/(C_{3}-C_{4}-C_{5}) / ^{\circ}$	107.39(18)	107.223(90)	107.208(93)	107.210(91)	107.212(91)

\angle (C ₉ -C ₄ -C ₅) / ° \angle (C ₄ -C ₅ -C ₁) / °	131.12(20) 108.11(60)	$\begin{bmatrix} 131.33(13) \\ 108.18(24) \end{bmatrix}$	$\begin{bmatrix} 131.34(14) \\ 108.16(24) \end{bmatrix}$	[131.34(13)] [108.16(24)]	$\begin{bmatrix} 131.33(13) \\ 108.16(24) \end{bmatrix}$
c_a / amu ^{1/2} Å	-	0.070(10)	0.068(11)	0.066(10)	0.068(10)
c_b / amu ^{1/2} Å	-	0.090(15)	0.085(15)	0.085(15)	0.088(15)
$c_c \; / \; \mathrm{amu}^{1/2} \mathrm{\AA}$	-	0.113(15)	0.108(16)	0.107(15)	0.111(15)
σ / MHz	_	0.038 339	0.03861	0.037486	0.037296

Tab. S10: Overview of bond distances (d) and angles (\angle) obtained with Kraitchman's substitution method (r_S) and mass dependent $r_m^{(2)}$ structure fits where only the underlying computational method is specified of citraconic anhydride (CA). Values in brackets were derived and not fit and the given errors are unreliable σ refers to the uncertainty of the respective structure fit.

	$r_{ m S}$	B3LYP	PBE0	CAM-B3LYP	$LC-\omega PBE$
$d(C_1-O_7) / Å$	1.196(19)	1.1892(20)	1.1893(21)	1.1893(19)	1.1897(19)
$d(C_1 - O_2) / Å$	1.390(10)	1.3866(32)	1.3869(34)	1.3866(31)	1.3870(31)
$d(C_3-O_2)$ / Å	1.3755(32)	1.3787(34)	1.3784(36)	1.3785(33)	1.3778(33)
$d(C_3-O_8) / Å$	1.2022(51)	1.1952(25)	1.1955(27)	1.1953(25)	1.1958(25)
$d(C_3-C_4) / Å$	1.48422(29)	1.4819(26)	1.4821(28)	1.4818(25)	1.4821(26)
$d(C_4-C_9)$ / Å	1.49199(8)	1.4840(28)	1.4842(30)	1.4840(27)	1.4845(27)
$d(C_4-C_5) / Å$	1.32747(51)	1.3364(37)	1.3361(39)	1.3361(36)	1.3350(36)
$d(C_1-C_5) / Å$	1.4920(11)	1.4790(32)	1.4790(34)	1.48(31)	1.48(32)
$\angle (O_7-C_1-O_2) / $ °	122.42(70)	122.20(31)	122.19(32)	122.21(30)	122.19(30)
$\angle(O_7-C_1-C_5) / $ °	129.86(75)	129.76(29)	129.78(30)	129.76(28)	129.80(28)
$\angle(C_5-C_1-O_2) / $ °	107.72(17)	108.04(12)	108.04(13)	108.03(12)	108.01(12)
$\angle(C_1-O_2-C_3) / $ °	107.82(25)	107.818(83)	107.813(88)	107.817(80)	107.808(81)
$\angle (O_2-C_3-O_8) / $ °	122.45(19)	122.49(13)	122.49(14)	122.49(12)	122.49(13)
$\angle(O_2-C_3-C_4) / $ °	108.96(20)	108.824(93)	108.827(98)	108.827(90)	108.840(91)
$\angle(O_8-C_3-C_4) / $ °	128.59(21)	128.69(22)	128.68(23)	128.69(21)	128.67(21)
$\angle(C_3-C_4-C_9) / $ °	121.49(17)	121.43(11)	121.43(12)	121.43(11)	121.43(11)
$\angle(C_3-C_4-C_5) / $ °	107.39(18)	107.086(96)	107.09(10)	107.094(93)	107.115(94)
$\angle(C_9-C_4-C_5) / $ °	131.12(20)	131.49(16)	131.49(17)	131.48(16)	131.46(16)
$\angle(C_4-C_5-C_1) / $ °	108.11(60)	108.23(24)	108.24(25)	108.23(23)	108.23(23)
$c_a / \operatorname{amu}^{1/2} \operatorname{\AA}$	_	0.155(51)	0.151(53)	0.154(49)	0.146(49)
c_b / $\mathrm{amu}^{1/2}$ Å	-	0.241(71)	0.236(75)	0.240(69)	0.228(69)
$c_c \ / \ \mathrm{amu}^{1/2} \mathrm{\AA}$	-	0.302(89)	0.297(94)	0.302(86)	0.287(87)
$d_a \ / \ \mathrm{amu}^{1/2} \mathrm{\AA}^2$	-	-0.22(17)	-0.22(17)	-0.22(16)	-0.20(16)
$d_b \; / \; \mathrm{amu}^{1/2} \mathrm{\AA}^2$	-	-0.98(41)	-0.95(43)	-0.96(40)	-0.86(40)
$d_c \ / \ \mathrm{amu}^{1/2} \mathrm{\AA}^2$	-	-1.37(59)	-1.34(62)	-1.34(57)	-1.22(58)
σ / MHz	-	0.042761	0.044903	0.041579	0.041 991
	$r_{ m S}$	M06-2X	B2PLYP	DSD-PBEP86	MP2
$d(C_1-O_7) / \text{\AA}$	1.196(19)	1.1901(20)	1.1894(19)	1.1895(19)	1.1895(19)
$d(C_1-O_2) / \text{\AA}$	1.390(10)	1.3878(33)	1.3867(31)	1.3867(31)	1.3868(31)
$d(C_3-O_2) / \text{\AA}$	1.3755(32)	1.3769(35)	1.3783(33)	1.3781(33)	1.3780(33)
$d(C_3-O_8)$ / Å	1.2022(51)	1.1965(26)	1.1954(24)	1.1956(24)	1.1956(24)
$d(C_3-C_4)$ / Å	1.48422(29)	1.4826(27)	1.4818(25)	1.4819(25)	1.4819(25)
$d(C_4-C_9)$ / Å	1.49199(8)	1.4852(29)	1.4841(27)	1.4843(27)	1.4843(27)
$d(C_4-C_5) / \text{\AA}$	1.32747(51)	1.3335(38)	1.3358(36)	1.3355(36)	1.3353(35)

$d(C_1-C_5) / \text{\AA}$	1.4920(11)	1.4804(33)	1.4794(31)	1.4797(31)	1.4797(31)
$\angle (O_7 - C_1 - O_2) / ^{\circ}$	122.42(70)	122.15(31)	122.21(29)	122.22(29)	122.21(29)
$\angle({\rm O_{7}-C_{1}-C_{5}}) / $ °	129.86(75)	129.87(29)	129.77(28)	129.77(28)	129.78(28)
$\angle(C_5-C_1-O_2) / $ °	107.72(17)	107.98(12)	108.02(12)	108.02(12)	108.01(12)
$\angle(C_1-O_2-C_3) / $ °	107.82(25)	107.792(84)	107.816(80)	107.816(80)	107.814(79)
$\angle(O_2-C_3-O_8) / $ °	122.45(19)	122.50(13)	122.49(12)	122.49(12)	122.49(12)
$\angle(O_2-C_3-C_4) / $ °	108.96(20)	108.854(95)	108.830(89)	108.835(90)	108.837(89)
$\angle(O_8-C_3-C_4) / $ °	128.59(21)	128.64(22)	128.68(21)	128.68(21)	128.67(21)
$\angle(C_3-C_4-C_9) / $ °	121.49(17)	121.43(11)	121.43(11)	121.43(11)	121.43(10)
$\angle(C_3-C_4-C_5) / $ °	107.39(18)	107.137(98)	107.101(92)	107.107(93)	107.111(92)
$\angle(C_9-C_4-C_5) / $ °	131.12(20)	131.44(16)	131.47(16)	131.46(16)	131.46(16)
$\angle(C_4-C_5-C_1) / $ °	108.11(60)	108.24(24)	108.23(23)	108.22(23)	108.23(23)
$c_a \ / \ \mathrm{amu}^{1/2} \mathrm{\AA}$	-	0.136(51)	0.153(48)	0.149(49)	0.150(48)
$c_b \ / \ { m amu}^{1/2} { m \AA}$	-	0.214(72)	0.238(68)	0.232(68)	0.234(68)
$c_c \; / \; \mathrm{amu}^{1/2} \mathrm{\AA}$	-	0.270(90)	0.299(85)	0.292(86)	0.294(85)
d_a / amu ^{1/2} Å ²	-	-0.17(17)	-0.22(16)	-0.22(16)	-0.22(16)
$d_b \ / \ { m amu}^{1/2} { m \AA}^2$	-	-0.75(42)	-0.93(39)	-0.90(39)	-0.88(39)
d_c / amu ^{1/2} Å ²	-	-1.08(60)	-1.31(57)	-1.26(57)	-1.25(56)
σ / MHz	_	0.043807	0.041207	0.041 338	0.041120

Tab. S11: Overview of bond distances (d) and angles (\angle) obtained with Kraitchman's substitution method (r_S) and mass dependent $r_m^{(1)}$ structure fits where only the underlying computational method is specified of itaconic anhydride (IA). σ refers to the uncertainty of the respective structure fit.

	$r_{ m S}$	B3LYP	PBE0	CAM-B3LYP	$LC-\omega PBE$
$\frac{d(C_1-C_5) / \text{\AA}}{d(C_4-C_5) / \text{\AA}}$ $\frac{d(C_3-C_4) / \text{\AA}}{d(C_3-C_4) / \text{\AA}}$	$1.532(17) \\ 1.4907(34) \\ 1.4789(29)$	$1.5081(47) \\ 1.5017(77) \\ 1.3348(24)$	$1.5086(41) \\ 1.4991(67) \\ 1.3342(21)$	$1.5062(49) \\ 1.5010(81) \\ 1.3337(26)$	$1.5073(47) \\ 1.4995(76) \\ 1.3337(24)$
$d(C_4-C_{10}) / Å$	1.3376(47)	1.4777(70)	1.4789(61)	1.4790(73)	1.4798(70)
$\angle (C_1-C_5-C_4) / °$ $\angle (C_5-C_4-C_{10}) / °$ $\angle (C_5-C_4-C_3) / °$	$102.83(47) \\ 130.27(18) \\ 107.51(17)$	$103.22(14) \\130.42(29) \\107.49(20)$	$103.16(12) \\130.39(26) \\107.39(18)$	$103.18(15) \\ 130.41(31) \\ 107.37(21)$	$103.15(14) \\130.41(29) \\107.32(20)$
$egin{array}{c_a}{c_b}/\operatorname{amu}^{1/2} \operatorname{\AA} \ c_c/\operatorname{amu}^{1/2} \operatorname{\AA} \end{array}$	- -	$0.096(56) \\ 0.052(36) \\ 0.084(41)$	$\begin{array}{c} 0.112(49) \\ 0.114(31) \\ 0.144(36) \end{array}$	$0.125(59) \\ 0.127(38) \\ 0.162(43)$	$\begin{array}{c} 0.132(56) \\ 0.139(36) \\ 0.176(41) \end{array}$
σ / MHz	-	0.080794	0.096842	0.117185	0.122435
	$r_{ m S}$	M06-2X	B2PLYP	DSD-PBEP86	MP2
	$\begin{array}{c} 1.532(17) \\ 1.4907(34) \\ 1.4789(29) \\ 1.3376(47) \end{array}$	$\begin{array}{c} 1.5080(48) \\ 1.5002(78) \\ 1.3337(25) \\ 1.4796(71) \end{array}$	$\begin{array}{c} 1.5105(40) \\ 1.5000(65) \\ 1.3354(21) \\ 1.4774(59) \end{array}$	$\begin{array}{c} 1.5118(33) \\ 1.4985(53) \\ 1.3355(17) \\ 1.4780(48) \end{array}$	$\begin{array}{c} 1.5138(30) \\ 1.4977(50) \\ 1.3362(16) \\ 1.4772(45) \end{array}$
$\begin{array}{c} \angle(\mathrm{C}_{1}\text{-}\mathrm{C}_{5}\text{-}\mathrm{C}_{4}) \ / \ ^{\circ} \\ \angle(\mathrm{C}_{5}\text{-}\mathrm{C}_{4}\text{-}\mathrm{C}_{10}) \ / \ ^{\circ} \\ \angle(\mathrm{C}_{5}\text{-}\mathrm{C}_{4}\text{-}\mathrm{C}_{3}) \ / \ ^{\circ} \end{array}$	$102.83(47) \\ 130.27(18) \\ 107.51(17)$	$103.13(14) \\ 130.42(30) \\ 107.32(21)$	$103.21(12) \\ 130.43(25) \\ 107.51(17)$	$103.177(96) \\130.41(20) \\107.48(14)$	$103.184(89) \\ 130.43(19) \\ 107.53(13)$
$c_a / \operatorname{amu}^{1/2} \mathring{A}$ $c_b / \operatorname{amu}^{1/2} \mathring{A}$	-	$0.141(57) \\ 0.129(36)$	$\begin{array}{c} 0.094(47) \\ 0.027(30) \end{array}$	$0.093(39) \\ 0.035(25)$	0.089(36) -0.005(23)

$c_c \ / \ \mathrm{amu}^{1/2} \mathrm{\AA}$	-	0.173(42)	0.062(35)	0.069(29)	0.034(26)
σ / MHz	-	0.123153	0.059283	0.057069	0.036789

Tab. S12: Overview of bond distances (d) and angles (\angle) obtained with Kraitchman's substitution method (r_S) and mass dependent $r_m^{(2)}$ structure fits where only the underlying computational method is specified of itaconic anhydride (IA). σ refers to the uncertainty of the respective structure fit.

)	5	I		
	$r_{ m S}$	B3LYP	PBE0	CAM-B3LYP	$LC-\omega PBE$
$d(C_1-C_5) / Å$	1.532(17)	1.5024(20)	1.5042(10)	1.5007(14)	1.5026(24)
$d(C_4-C_5) / Å$	1.4907(34)	1.5075(33)	1.5018(17)	1.5046(23)	1.5017(39)
$d(C_2-C_4) / Å$	1.4789(29)	1.3237(18)	1.325.35(95)	1.3229(13)	1.3245(21)
$d(C_4 - C_{10}) / Å$	1.376(47)	1.0207(10) 1.4723(27)	1.02000(00) 1.4750(14)	1.0220(10) 1.4742(10)	1.0240(21) 1.4759(31)
	100.02(47)	102.004(55)	102.02(00)	102.000(20)	102.044(C4)
$\angle (C_1 - C_5 - C_4) / (C_1 - C_5 - C_5 - C_5 - C_5 - C_4) / (C_1 - C_5 - C$	102.83(47)	103.264(55)	103.230(28)	103.268(38)	103.244(64)
$\angle (C_5 - C_4 - C_{10}) / (C_5 - C_{10}) / (C_{10}) / (C_{10}) / (C_{10}) / (C_{10}) / (C_{10}) / ($	130.27(18)	130.65(12)	130.654(60)	130.718(81)	130.71(14)
$\angle (C_5 - C_4 - C_3) / \circ$	107.51(17)	107.226(82)	107.187(42)	107.117(57)	107.102(96)
$c_a \ / \ \mathrm{amu}^{1/2} \mathrm{\AA}$	-	0.289(48)	0.318(25)	0.371(33)	0.370(56)
$c_b \ / \ \mathrm{amu}^{1/2} \mathrm{\AA}$	-	0.398(62)	0.370(32)	0.445(43)	0.402(73)
$c_c \ / \ \mathrm{amu}^{1/2} \mathrm{\AA}$	-	0.496(58)	0.487(30)	0.579(41)	0.542(68)
$d_a \ / \ \mathrm{amu}^{1/2} \mathrm{\AA}^2$	-	-0.61(20)	-0.75(10)	-0.89(14)	-0.89(24)
d_b / amu ^{1/2} Å ²	-	-2.46(46)	-1.77(24)	-2.20(32)	-1.80(54)
$d_c \ / \ { m amu}^{1/2} { m \AA}^2$	-	-3.23(46)	-2.65(24)	-3.22(32)	-2.81(54)
σ / MHz	-	0.031219	0.026813	0.035625	0.053467
	$r_{ m S}$	M06-2X	B2PLYP	DSD-PBEP86	MP2
$d(C_1-C_5) / \text{\AA}$	1.532(17)	1.5030(23)	1.5057(22)	1.5078(13)	1.5103(24)
$d(C_4-C_5) / \text{\AA}$	1.4907(34)	1.5031(39)	1.5055(37)	1.5026(21)	1.5024(40)
$d(C_3-C_4) / Å$	1.4789(29)	1.3239(21)	1.3260(20)	1.3277(11)	1.3293(22)
$d(C_4-C_{10})$ / Å	1.3376(47)	1.4753(31)	1.4728(30)	1.4743(17)	1.4737(32)
\angle (C ₁ -C ₅ -C ₄) / °	102.83(47)	103.216(63)	103.235(60)	103.210(34)	103.189(64)
$\angle(C_5-C_4-C_{10}) / $ °	130.27(18)	130.72(14)	130.59(13)	130.575(72)	130.52(14)
$\angle(C_5-C_4-C_3) / $ °	107.51(17)	107.085(95)	107.290(90)	107.293(51)	107.368(97)
c_a / amu ^{1/2} Å	-	0.377(56)	0.236(53)	0.226(30)	0.170(56)
$c_b \ / \ \mathrm{amu}^{1/2} \mathrm{\AA}$	-	0.415(72)	0.323(69)	0.276(38)	0.220(73)
c_c / amu ^{1/2} Å	-	0.557(67)	0.403(64)	0.358(36)	0.279(68)
$d_a \ / \ \mathrm{amu}^{1/2} \mathrm{\AA}^2$	-	-0.87(23)	-0.42(22)	-0.42(12)	-0.19(24)
$d_b \; / \; \mathrm{amu}^{1/2} \mathrm{\AA}^2$	-	-1.97(53)	-2.12(51)	-1.72(28)	-1.63(54)
$d_c \ / \ { m amu}^{1/2} { m \AA}^2$	-	-2.96(53)	-2.70(51)	-2.27(28)	-1.96(54)
σ / MHz	-	0.053266	0.034976	0.01756	0.040 363

4 Computational details and example inputs

Tab. S13: Overview of the different computational method used in this work. The program used, method, basis set, dispersion correction if possible/necessary, functional class for density functionals and type of frequency calculation are given. SCS refers to spin component scaling, VPT2 to vibrational perturbation theory of second order and AE to all electron.

program	method	basis set	dispersion corr.	functional class	frequency
Gaussian 16	B3LYP	aug-cc-pVTZ	D3(BJ)	hybrid	VPT2
Gaussian 16	PBE0	aug-cc-pVTZ	D3(BJ)	hybrid	VPT2
Gaussian 16	CAM-B3LYP	aug-cc-pVTZ	D3(BJ)	range-separated hybrid	VPT2
Gaussian 16	$LC-\omega PBE$	aug-cc-pVTZ	D3(BJ)	range-separated hybrid	VPT2
Gaussian 16	M06-2X	aug-cc-pVTZ	-	meta hybrid	VPT2
Gaussian 16	B2PLYP	aug-cc-pVTZ	D3(BJ)	double hybrid	VPT2
Gaussian 16	DSD-PBEP86	aug-cc-pVTZ	D3(BJ)	SCS double hybrid	VPT2
Gaussian 16	MP2	aug-cc- $pVTZ$	-	-	VPT2
Molpro 2022	DCSD-F12b	cc-pVDZ-F12	-	-	harmonic
Molpro 2022	CCSD(T)-F12c	cc-pVDZ-F12	-	-	harmonic
Molpro 2022	AE-CCSD(T)-F12c	cc-pVDZ-F12	-	-	harmonic

Tab. S14: Example inputs for the Gaussian 16 (Rev. C.01)^[6] calculations at the B3LYP and MP2 level of computation. The Print and Resonances settings follow one line after the geometry input. Only the method block is shown. Note that the geometry optimisation has been conducted separately from the VPT2 calculation reading the optimised geometry from a checkpoint file. See Tab. S13 whether or not dispersion correction has been applied for a given functional.

calculation	input
optimisation DFT	<pre># B3LYP aug-cc-pVTZ Int=SuperFine empiricaldispersion=gd3bj output=pickett # Opt=VeryTight</pre>
optimisation WFT	# MP2 aug-cc-pVTZ output=pickett # Opt=VeryTight
VPT2	<pre># B3LYP aug-cc-pVTZ Int=SuperFine empiricaldispersion=gd3bj output=pickett # Geom=Checkpoint # Freq=(anharmonic,ReadAnharm) Print=(NMOrder=AscNoIrrep) Resonances=No11Res</pre>

Tab. S15: Example input for the MOLPRO 2022.3^[7–9] calculations at CCSD(T) level of theory. Only the method block is shown. For the DCSD-F12b calculations, CCSD(T)-F12c keyword need to be substituted. For all electron (AE) calculations, the core,0 keyword needs to be added to the CCSD(T)-F12c input line.

gthresh,OPTSTEP=6.d-5,OPTGRAD=1.d-6,ENERGY=1.d-12,twoint=1.d-14,ZERO=1.d-16
orient,mass
symmetry,auto
MASS,ISO
geomtyp=xyz

angstrom geometry=GEOM_START.xyz basis=vdz-f12 {HF,accu,16} {CCSD(T)-F12c,gem_beta=0.9} {OPTG,GAUSSIAN,GRMS=1.d-5,SRMS=1.d-5} put,xyz,GEOM.xyz {frequencies,STEP=0.005 PRINT,HESSIAN,LOW}

Literature

- A. Kanzow, B. Hartwig, D. A. Obenchain, J.-U. Grabow, https://doi.org/10.25625/FQCEVB Microwave spectra of Citraconic and Itaconic anhydride, version V1, GRO.data, 2025.
- [2] A. Kanzow, B. Hartwig, D. A. Obenchain, https://doi.org/10.25625/IBKABW Computational outputs of DFT, MP2 and Coupled Cluster calculations for geometry optimizations and frequency calculations, version V1, GRO.data, 2025.
- [3] A. Kanzow, B. Hartwig, D. A. Obenchain, https://doi.org/10.25625/AFCLSC Experimental XIAM and Pickett Fits, Kraitchman structure and semi-experimental as well as mass dependent structure fits for citraconic and itaconic anhydride, version V1, GRO.data, 2025.
- [4] N. Vogt, E. P. Altova, N. M. Karasev, "Equilibrium structure of maleic anhydride from gas-phase electron diffraction (GED) and quantum-chemical studies", *Journal of Molecular Structure* 2010, 978, ELECTRON DIFFRACTION, THEORETICAL CALCULATIONS, AND MOLECULAR STRUCTURE, 153–157.
- [5] M. K. Jahn, D. A. Obenchain, K. P. R. Nair, J.-U. Grabow, N. Vogt, J. Demaison, P. D. Godfrey, D. Mc-Naughton, "The puzzling hyper-fine structure and an accurate equilibrium geometry of succinic anhydride", *Phys. Chem. Chem. Phys.* **2020**, *22*, 5170–5177.
- [6] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16 Revision C.01, Gaussian Inc., Wallingford CT, **2016**.
- [7] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, "Molpro: a general-purpose quantum chemistry program package", WIREs Comput. Mol. Sci. 2012, 2, 242–253.
- [8] H.-J. Werner, P. J. Knowles, F. R. Manby, J. A. Black, K. Doll, A. Heßelmann, D. Kats, A. Köhn, T. Korona, D. A. Kreplin, Q. Ma, T. F. Miller, A. Mitrushchenkov, K. A. Peterson, I. Polyak, G. Rauhut, M. Sibaev, "The Molpro quantum chemistry package", J. Chem. Phys. 2020, 152, 144107.
- [9] H.-J. Werner, P. J. Knowles, P. C. W. Györffy, A. Hesselmann, D. Kats, G. Knizia, A. Köhn, T. Korona, D. Kreplin, R. Lindh, Q. Ma, F. R. Manby, A. Mitrushenkov, G. Rauhut, M. Schütz, K. R. Shamasundar, T. B. Adler, R. D. Amos, J. Baker, S. J. Bennie, A. Bernhardsson, A. Berning, J. A. Black, P. J. Bygrave, R. Cimiraglia, D. L. Cooper, D. Coughtrie, M. J. O. Deegan, A. J. Dobbyn, K. Doll, M. Dornbach, F. Eckert, S. Erfort, E. Goll, C. Hampel, G. Hetzer, J. G. Hill, M. Hodges, T. Hrenar, G. Jansen, C. Köppl, C. Kollmar, S. J. R. Lee, Y. Liu, A. W. Lloyd, R. A. Mata, A. J. May, B. Mussard, S. J. McNicholas, W. Meyer, T. F. M. III, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, K. A. Peterson, K. Pflüger, R. Pitzer, I. Polyak, P. Pulay, M. Reiher, J. O. Richardson, J. B. Robinson, B. Schröder, M. Schwilk, T. Shiozaki, M. Sibaev, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, J. Toulouse, M. Wang, M. Welborn, B. Ziegler, MOLPRO, version 2022.3, a package of ab initio programs, see https://www.molpro.net, 2022.