ELECTRONIC SUPPORTING INOFRMATION

Photophysics and photochemistry of a prospective light-activated anticancer dirhodium complex

V.A. Meshcheryakova, K.S. Ershov, A.V. Baklanov, A.A. Kokorenko, I.P. Pozdnyakov, Yu.P. Tsentalovich, A.E. Zazulya, D.B. Vasilchenko, E.A. Polyakova, A.A. Melnikov, S.V. Chekalin, E.M. Glebov

S1. UV spectroscopy of Complex 5

Scheme S1. Complex 5.

Figure S1. Electronic absorption spectra of dppn in CH₃CN and Complex 5 in H₂O.

S2. Quantum yield of Complex 5 photoaquation

Quantum yield of reaction (S1) was measured with capillary electrophoresis. The dependence of free acetate ions ($O_2CCH_3^-$) released from the first coordination sphere of Rh(II) vs. irradiation time is shown in Fig. S2. The quantum yield was calculated using Eq. SI.

Figure S2. Dependence of acetate ions (O₂CCH₃⁻) measured by capillary electrophoresis as a function of irradiation time. Irradiation (282 nm) 6,87×10⁻⁶M of Complex 5 in an 1 cm cell, airsaturated aqueous solution.

$$[Rh_{_{2}}(dppn)_{_{2}}(\mu\text{-O}_{_{2}}CCH_{_{3}})_{_{2}}]^{^{2+}} \xrightarrow{\quad hv \quad } [Rh_{_{2}}(dppn)_{_{2}}(\mu\text{-O}_{_{2}}CCH_{_{3}})(H_{_{2}}O)_{_{2}}]^{^{3+}} + \ (O_{_{2}}CCH_{_{3}})^{^{-}} \qquad (S1)$$

$$\varphi = \frac{dC}{dt} / (I_0 \times (1-10^{D(282)}))$$
 (SI)

 $I_0 = 7.6 \times 10^{-4}$ moles of quanta per minute — the concentration (moles per liter) of quanta per one minute provided by the 282 nm excilamp in a 2 ml cell. The light is absorbed completely.

The result is $\varphi = 0.026$ (relative error ca. 10%).

Figure S3. Signal of IR photodetector obtained from the quartz cell filled with deionized water. Excitation at 355 nm, laser energy is 5.7 mJ. Red-dash vertical line indicates the short-time edge of temporal interval used for fitting of singlet oxygen luminescence signal.

Quantum yield was calculated with Eq. SII. where dA/dE and dA_{st}/dE are the slopes for the target compound and the standard correspondingly, D(355) and D(355)_{st} are the absorbancies at the excitation wavelength (355 nm), and φ_{st} is the quantum yield of the singlet oxygen formation for the reference sensitizer phenalenon.

$$\varphi = \varphi_{st} \frac{dA/dE}{dA_{st}/dE} \frac{1 - 10^{-D(355)_{st}}}{1 - 10^{-D(355)}}.$$
 (SII)

Equation (SII) is satisfied for small values of absorbancies, which didn't overcome 0.3 in our experiments. The slopes dA/dE and dA_{st}/dE for pulse energy dependence of the $^{1}O_{2}$

luminescence amplitude were measured at the fixed absorbance of investigated substances. The example of the determined slope dA/dE is presented in Fig.4b of Manuscript.

Figure S4. Changes of the UV absorption spectra of $Rh_2(\mu\text{-}O_2CCH_3)_2(dppn)_2$ in CH_3CN airsaturated solution during stationary photolysis ($\lambda = 305$ nm). 1 cm cell, concentration $1.35 \times 10-5$ M, irradiation time is indicated in the figure.

S4. Laser flash photolysis.

Figure S5. Kinetic curves obtained in the course of laser flash photolysis (355 nm) of Complex 5 $(3.1 \times 10^{-4} \text{ M} \text{ in deaerated H}_2\text{O})$. Wavelengths are depicted.

$$\Delta D(\lambda, t) = A_1(\lambda) \exp(-\frac{t}{\tau_1}) + A_2(\lambda) \exp(-\frac{t}{\tau_2})$$
 (SIII)

Exact formulae for calculation of Species Associated Difference Spectra (SADS) from the amplitudes of Eq. SIII for the case of sequential transitions of intermediates $A \to B \to$ (Ground State) [S1]:

$$S_A(\lambda) = A_1(\lambda) + A_2(\lambda)$$
 (SIV)

$$S_B(\lambda) = (1 - \frac{\tau_1}{\tau_2}) A_2(\lambda) \tag{SV}$$

Figure S6. Results of biexponential global fit (Eq. SII) of the kinetic curves (Fig. S5) obtained in the course of laser flash photolysis (355 nm) of Complex 5 (3.1×10^{-4} M in deaerated H₂O). Spectra of amplitudes.

S5. Ultrafast TA spectroscopy

The results of ultrafast TA experiments were globally fitted by 2- or 3-exponential functions with residuals (SVI, SVII). Assuming the successive transitions of the intermediates A \rightarrow B \rightarrow C, the SADS could be calculated form amplitudes using formulae (SVI, SVIII-SX) [S1]. For the case of big difference in characteristic lifetimes τ_1 and τ_2 these formulae could be simplified to the sums of amplitudes (SVIII, SXI, SX).

$$\Delta D(\lambda, t) = A_1(\lambda) \exp(-\frac{t}{\tau_1}) + A_2(\lambda) \exp(-\frac{t}{\tau_2}) + A_3(\lambda)$$
 (SVI)

$$\Delta D(\lambda, t) = A_1(\lambda) \exp(-\frac{t}{\tau_1}) + A_2(\lambda) \exp(-\frac{t}{\tau_2}) + A_3(\lambda) \exp(-\frac{t}{\tau_3}) + A_4(\lambda)$$
 (SVII)

$$S_A(\lambda) = A_1(\lambda) + A_2(\lambda) + A_3(\lambda) \tag{SVIII}$$

$$S_B(\lambda) = (1 - \frac{\tau_1}{\tau_2}) A_2(\lambda) + A_3(\lambda)$$
 (SIX)

$$S_C(\lambda) = A_3(\lambda)$$
 (SX)

$$S_{R}(\lambda) = A_{2}(\lambda) + A_{3}(\lambda) \tag{SXI}$$

The results of 2-exponential approximation with the residual for the case of Complex 5 ultrafast irradiation at 400 nm are shown in Figs. S7, S8. The characteristic lifetimes are $\tau_1 = 1.8 \pm 0.7$ ps and $\tau_2 = 120 \pm 50$ ps.

Assuming the successive transitions of the intermediates $A \to B \to C \to D$, the SADS could be calculated form amplitudes using formulae (SVII, SXII-SXV) [S1]. For the case of big difference in characteristic lifetimes τ_1 and, these formulae could be simplified to the sums of amplitudes (SXII, SXVI,-SXVII, SXV).

$$S_{A}(\lambda) = A_{1}(\lambda) + A_{2}(\lambda) + A_{3}(\lambda) + A_{4}(\lambda) \tag{SXII}$$

$$S_B(\lambda) = A_2(\lambda) \frac{\tau_2 - \tau_1}{\tau_2} + A_3(\lambda) \frac{\tau_3 - \tau_1}{\tau_3} + A_4(\lambda)$$
 (SXIII)

$$S_C(\lambda) = A_3(\lambda) \frac{(\tau_3 - \tau_1)(\tau_3 - \tau_2)}{\tau_3^2} + A_4(\lambda)$$
(SXIV)

$$S_D(\lambda) = A_4(\lambda)$$
 (SXV)

$$S_A(\lambda) = A_2(\lambda) + A_3(\lambda) + A_4(\lambda)$$
 (SXVI)

$$S_A(\lambda) = A_3(\lambda) + A_4(\lambda)$$
 (SXVII)

Figure S7. a - TA spectra obtained in ultrafast pump-probe experiment with Complex **5** in H_2O (1.2×10⁻⁴ M, `1 mm cell). Excitation at 400 nm. Curves 1-6 correspond to time delays between exciting and probing pulses equal to -1; 0.4; 2; 10; 130; 506 ps. **b** - examples of kinetic curves obtained by processing TA spectra and their 2-exponential global fit by function (SVI).

Figure S8. Results of processing of the TA spectra obtained in ultrafast pump-probe experiment with Complex 5 in H₂O (1.2×10⁻⁴ M, `1 mm cell, excitation at 400 nm) by formulae (SVI, SVIII, SXI, SX). **a** – amplitudes $A_i(\lambda)$, **b** – SADS. The characteristic lifetimes are $\tau_1 = 1.8 \pm 0.7$ ps; $\tau_2 = 120 \pm 50$ ps.

Figure S9. a - TA spectra obtained in ultrafast pump-probe experiment with Complex **5** in H_2O (1.28×10⁻⁴ M, `1 mm cell). Excitation at 320 nm. Curves 1-6 correspond to time delays between exciting and probing pulses equal to -1; 0.4; 2; 10; 130; 506 ps. **b** - examples of kinetic curves obtained by processing TA spectra and their 3-exponential global fit by function (SVII).

Figure S10. Results of processing of the TA spectra obtained in ultrafast pump-probe experiment with Complex **5** in H₂O (1.28×10⁻⁴ M, `1 mm cell, excitation at 320 nm) by formulae (SXII, SXVI, SXVII, SXV). **a** – amplitudes $A_i(\lambda)$, **b** – SADS. The characteristic lifetimes are τ_1 = 0.9 ± 0.4 ps, τ_2 = 6.7 ± 4.6 ps and τ_3 = 135 ± 18 ps.

References

[S1] A.S. Rury and R.J. Sension, *Chem. Phys.*, 2013, **422**, 220-228. https://doi.org/10.1016/j.chemphys.2013.01.025