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I. Choice for chemical space

To manage the size of the chemical space and ensure computational feasibility, the design was 
restricted to symmetric side chains. This restriction was applied to reduce the combinatorial 
complexity and to avoid an exponential increase in the number of molecular variants, which would 
otherwise exceed the practical limits of simulation and dataset generation. Meanwhile, this design 
strategy preserved the essential structure–property relationships relevant to antioxidant 
performance. In addition, symmetric substitution ensures that both aniline groups in p-
phenylenediamine derivatives are located in identical chemical environments, resulting in consistent 
N–H bond dissociation energies (BDEs) at both reactive sites. This simplification also reflects real-
world relevance, as many widely used aniline-based antioxidants are symmetric in structure, as 
reported in previous studies.1

To define a chemically relevant and practically feasible design space, the maximum length of 
the alkyl side chains was set to 20 carbon atoms. This upper limit was determined based on a review 
of existing antioxidant molecular structures. Molecular weights of most p-phenylenediamine-based 
antioxidants are typically found in the range of 100–300 g/mol, while those of other classes such as 
aromatic amines and hindered amine light stabilizers (HALS) have been reported to range up to 500 
g/mol.1 A few rare commercial examples, such as Tinuvin 123 (Decanedioic acid, bis(2,2,6,6-
tetramethyl-1-(octyloxy)-4-piperidinyl) ester), have been documented with molecular weights 
exceeding 700 g/mol. In this study, the largest designed molecule—with two alkyl side chains each 
with 20 carbon atoms and a polar group—was estimated to reach approximately 700 g/mol. 
Therefore, side chains longer than 20 carbon atoms were excluded.

When the carbon chain length is 20, the presence of a methyl side group on the 20th carbon 
results in a molecule with a 21-carbon linear chain and no side group, which exceeds the defined 
chemical space. Therefore, to avoid this, n = 20 is not allowed, and the maximum value of n is 
limited to the range [1, m − 1].

II. Molecular dynamics simulation procedure

For the force field selection, the COMPASSIII force field was employed for all molecular 
dynamics simulations involving both antioxidant molecules and triglyceride systems. This choice 
was based on the proven accuracy of COMPASS-based force fields in modeling complex organic 
materials, including lipids and nitrogen-containing functional groups.

Previous studies have demonstrated the reliability of this force field for similar systems. For 
instance, Li et al. applied the COMPASS force field to investigate the interactions between palmitic 
acid and supercritical CO₂, as well as the influence of temperature and pressure on its solubility 
behavior.2 Zhu et al. further utilized the COMPASSIII force field to study the adsorption behavior 
and mechanisms of triglycerides on activated bamboo charcoal using molecular dynamics 
simulations.3 These applications confirm the suitability of COMPASSIII for accurately representing 
both triglyceride dynamics and interactions with organic antioxidants.

In light of these validations and the force field’s broad applicability to hydrocarbons and 
heteroatom-containing organics, we adopted COMPASSIII to simulate the antioxidant–triglyceride 
composite systems in this work. The detailed MD simulation setup is provided below.

MD simulations included the following parts: geometry optimization, anneal, NPT and NVT. 
MD simulations of the antioxidants and triglyceride models were performed under the 
COMPASSIII force field. All atomic charges were assigned according to the force field 
parameters.4–7 The models were first subjected to multiple structural relaxations using a combination 
of the Smart minimization algorithm and the conjugate gradient method to minimize the system 
energy. The convergence criteria for the geometry optimization were set to 1.0 × 10⁻⁴ kcal/mol for 
energy, 0.005 kcal/mol/Å for force, and 5.0 × 10⁻⁵ Å for displacement, with a maximum of 
2,000,000 iterations. During this stage, electrostatic and van der Waals interactions were treated 
with atom-based summation methods, using a cubic spline truncation and a cutoff distance of 18.5 
Å.

After geometry optimization, the cells were annealed for 100 cycles between 300 K and 500 K 
to eliminate unreasonable local conformations and promote relaxation. Each annealing cycle 
consisted of 5 heating ramps, with 100 dynamic steps per ramp, totaling 100,000 steps. During the 
annealing process, atom-based summation methods were also used for non-bonded interactions with 
a cutoff distance of 12.5 Å.



Following annealing, a 500 ps dynamic simulation was performed under the canonical (NVT) 
ensemble at 298 K to allow sufficient structural relaxation. The time step was set to 1.0 fs, resulting 
in 500,000 integration steps. Initial atomic velocities were randomly assigned according to the 
Maxwell–Boltzmann distribution. The Andersen thermostat was employed to maintain a constant 
temperature during this process.8

Subsequently, the equilibrated structures underwent further relaxation under the isothermal-
isobaric (NPT) ensemble at 298 K and 1 atm pressure. The NPT dynamics were conducted for 1000 
ps (1.0 ns) with a time step of 1.0 fs, corresponding to 1,000,000 steps in total. The Andersen 
thermostat and the Berendsen barostat were used to control the system’s temperature and pressure, 
respectively. The Ewald summation method was applied for the accurate treatment of long-range 
electrostatic interactions throughout the simulation.

III. Genetic algorithm procedure

During the GA iterations, candidate models with randomly initialized hyperparameters were 
generated and evaluated based on their coefficient of determination (R²) and residual predictive 
deviation (RPD) values. These two metrics were jointly used as the fitness criteria to ensure a 
balance between model accuracy and generalization ability. Over successive generations, better-
performing configurations were selected and modified through crossover and mutation operations, 
suitable hyperparameter combinations were obtained that improved the predictive performance and 
robustness of the final model. The hyperparameter search space was defined as follows: Number of 
hidden layers: 1 to 10; Number of neurons per layer: 16 to 512; Dropout rate: 0.0 to 0.5; Learning 
rate: 0.00001 to 0.01; Batch size: 16 to 256.

IV. Relative Percent Difference and R-squared

The formula for RPD is as follows:

                                                       Eq. (S1)
𝑅𝑃𝐷 =

𝑆𝐷𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑠

𝑆𝐷𝐸𝑟𝑟𝑜𝑟𝑠

where  is the standard deviation of actual values,  is the standard deviation of 𝑆𝐷𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝑎𝑙𝑢𝑒𝑠 𝑆𝐷𝐸𝑟𝑟𝑜𝑟𝑠

errors, RPD > 2.0 indicates that the model has good predictive ability; 1.4 < RPD < 2.0 indicates 
that the model has moderate predictive ability; 1 < RPD < 1.4 indicates that the model has poor 
predictive ability; RPD < 1 indicates that the model has no predictive ability.9

The R2 is given by

                                                          Eq. (S2)

𝑅2 =  

𝑛

∑
𝑖 = 1

(�̂�𝑖 ‒ �̅�)2

𝑛

∑
𝑖 = 1

(𝑦𝑖 ‒ �̅�)2

where  is the empirical value for the ith record,  is the predicted value for the ith record, and  is 𝑦𝑖 �̂�𝑖 �̅�
the empirical mean value. A high R2 value means a better prediction.

V. Normalization Method

The Z-Score is given by

                                       Eq. (S3)
𝑥' =  

𝑥 ‒ 𝜇
𝜎

where μ and σ is the mean value and standard deviation, respectively.



Δδ and BDE are normalized using the Min-Max method to obtain values between 0 and 1, 
eliminating dimensional differences, as follows:

                  Eq. (S4)
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 =

𝑉𝑎𝑙𝑢𝑒 ‒ 𝑀𝑖𝑛(𝑉𝑎𝑙𝑢𝑒)
𝑀𝑎𝑥(𝑉𝑎𝑙𝑢𝑒) ‒ 𝑀𝑖𝑛(𝑉𝑎𝑙𝑢𝑒)

The weighted average of the normalized values of Δδ and BDE is calculated as κ. When both 
parameters are given equal weight, κ is calculated as follows:

                      Eq. (S5)
𝜅 =

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(Δ𝛿) + 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝐵𝐷𝐸)
2



VI. Other Figures and Tables

Table S1 Software environment for obtaining descriptors in RDkit

Package Name Version Build String
boost 1.78.0 py311h12feb9d_4

boost-cpp 1.78.0 h9f4b32c_1
brotli 1.0.9 hcfcfb64_8

brotli-bin 1.0.9 hcfcfb64_8
bzip2 1.0.8 h8ffe710_4

ca-certificates 2023.01.10 haa95532_0
cairo 1.16.0 hd694305_1014
certifi 2022.12.7 py311haa95532_0

contourpy 1.0.7 py311h005e61a_0
cycler 0.11.0 pyhd8ed1ab_0

et_xmlfile 1.1.0 py311haa95532_0
expat 2.5.0 h1537add_0

font-ttf-dejavu-sans-mono 2.37 hab24e00_0
font-ttf-inconsolata 3 h77eed37_0

font-ttf-source-code-pro 2.038 h77eed37_0
font-ttf-ubuntu 0.83 hab24e00_0

fontconfig 2.14.2 hbde0cde_0
fonts-conda-ecosystem 1 0

fonts-conda-forge 1 0
fonttools 4.39.0 py311ha68e1ae_0
freetype 2.12.1 h546665d_1
gettext 0.21.1 h5728263_0
greenlet 2.0.2 py311h12c1d0e_0

icu 70.1 h0e60522_0
intel-openmp 2023.0.0 h57928b3_25922

kiwisolver 1.4.4 py311h005e61a_1
lcms2 2.15 h3e3b177_1
lerc 4.0.0 h63175ca_0

libblas 3.9.0 16_win64_mkl
libbrotlicommon 1.0.9 hcfcfb64_8

libbrotlidec 1.0.9 hcfcfb64_8
libbrotlienc 1.0.9 hcfcfb64_8

libcblas 3.9.0 16_win64_mkl
libdeflate 1.17 hcfcfb64_0

libffi 3.4.2 h8ffe710_5



libglib 2.74.1 he8f3873_1
libhwloc 2.9.0 h51c2c0f_0
libiconv 1.17 h8ffe710_0

libjpeg-turbo 2.1.5.1 hcfcfb64_0
liblapack 3.9.0 16_win64_mkl

(continued)
Package Name Version Build String

(continued)
libpng 1.6.39 h19919ed_0

libsqlite 3.40.0 hcfcfb64_0
libtiff 4.5.0 hc3b8658_5

libwebp-base 1.2.4 h8ffe710_0
libxcb 1.13 hcd874cb_1004

libxml2 2.10.3 hc3477c8_0
libzlib 1.2.13 hcfcfb64_4

m2w64-gcc-libgfortran 5.3.0 6
m2w64-gcc-libs 5.3.0 7

m2w64-gcc-libs-core 5.3.0 7
m2w64-gmp 6.1.0 2

m2w64-libwinpthread-git 5.0.0.4634.697f757 2
matplotlib-base 3.7.1 py311h6e989c2_0

mkl 2022.1.0 h6a75c08_874
msys2-conda-epoch 20160418 1

munkres 1.1.4 pyh9f0ad1d_0
numpy 1.24.2 py311h0b4df5a_0

openjpeg 2.5.0 ha2aaf27_2
openpyxl 3.0.10 py311h2bbff1b_0
openssl 3.0.8 hcfcfb64_0

packaging 23 pyhd8ed1ab_0
pandas 1.5.3 py311hf63dbb6_0
pcre2 10.4 h17e33f8_0
pillow 9.4.0 py311h339194b_0

pip 23.0.1 pyhd8ed1ab_0
pixman 0.40.0 h8ffe710_0

pthread-stubs 0.4 hcd874cb_1001
pthreads-win32 2.9.1 hfa6e2cd_3

pycairo 1.23.0 py311h99894aa_0
pyparsing 3.0.9 pyhd8ed1ab_0

python 3.11.0 hcf16a7b_0_cpython
python-dateutil 2.8.2 pyhd8ed1ab_0

python_abi 3.11 3_cp311
pytz 2022.7.1 pyhd8ed1ab_0
rdkit 2022.09.5 py311h5f60fae_0

reportlab 3.6.12 py311hae2e3ae_2



setuptools 67.5.1 pyhd8ed1ab_0
six 1.16.0 pyh6c4a22f_0

sqlalchemy 2.0.5.post1 py311ha68e1ae_0
tbb 2021.8.0 h91493d7_0
tk 8.6.12 h8ffe710_0

(continued)
Package Name Version Build String

(continued)
typing-extensions 4.4.0 hd8ed1ab_0
typing_extensions 4.4.0 pyha770c72_0

tzdata 2022g h191b570_0
ucrt 10.0.22621.0 h57928b3_0
vc 14.3 hb6edc58_10

vs2015_runtime 14.34.31931 h4c5c07a_10
wheel 0.38.4 pyhd8ed1ab_0

xorg-libxau 1.0.9 hcd874cb_0
xorg-libxdmcp 1.1.3 hcd874cb_0

xz 5.2.6 h8d14728_0
zlib 1.2.13 hcfcfb64_4
zstd 1.5.2 h12be248_6

Table S2 Software environment for modelling

Package Name Version Build String
_tflow_select 2.3.0 mkl

absl-py 1.4.0 py310haa95532_0
aiohttp 3.9.0 py310h2bbff1b_0

aiosignal 1.2.0 pyhd3eb1b0_0
astunparse 1.6.3 py_0

async-timeout 4.0.2 py310haa95532_0
attrs 23.1.0 py310haa95532_0
blas 1 mkl

blinker 1.6.2 py310haa95532_0
bottleneck 1.3.7 py310h9128911_0

brotli 1.0.9 h2bbff1b_7
brotli-bin 1.0.9 h2bbff1b_7

brotli-python 1.0.9 py310hd77b12b_7
bzip2 1.0.8 he774522_0

ca-certificates 2024.3.11 haa95532_0
cachetools 4.2.2 pyhd3eb1b0_0

certifi 2024.2.2 py310haa95532_0
cffi 1.16.0 py310h2bbff1b_0

charset-normalizer 2.0.4 pyhd3eb1b0_0
click 8.1.7 py310haa95532_0



cloudpickle 2.2.1 py310haa95532_0
colorama 0.4.6 py310haa95532_0
contourpy 1.2.0 py310h59b6b97_0

cryptography 41.0.3 py310h3438e0d_0
cycler 0.11.0 pyhd3eb1b0_0

(continued)
Package Name Version Build String

(continued)
et_xmlfile 1.1.0 py310haa95532_0
flatbuffers 2.0.0 h6c2663c_0
fonttools 4.25.0 pyhd3eb1b0_0
freetype 2.12.1 ha860e81_0

frozenlist 1.4.0 py310h2bbff1b_0
gast 0.4.0 pyhd3eb1b0_0

giflib 5.2.1 h8cc25b3_3
glib 2.78.4 hd77b12b_0

glib-tools 2.78.4 hd77b12b_0
google-auth 2.22.0 py310haa95532_0

google-auth-oauthlib 0.4.4 pyhd3eb1b0_0
google-pasta 0.2.0 pyhd3eb1b0_0

grpcio 1.42.0 py310hc60d5dd_0
gst-plugins-base 1.18.5 h9e645db_0

gstreamer 1.18.5 hd78058f_0
h5py 3.9.0 py310hfc34f40_0
hdf5 1.12.1 h51c971a_3
icc_rt 2022.1.0 h6049295_2

icu 58.2 ha925a31_3
idna 3.4 py310haa95532_0

intel-openmp 2023.1.0 h59b6b97_46320
joblib 1.2.0 py310haa95532_0
jpeg 9e h2bbff1b_1
keras 2.10.0 py310haa95532_0

keras-preprocessing 1.1.2 pyhd3eb1b0_0
kiwisolver 1.4.4 py310hd77b12b_0

krb5 1.19.4 h5b6d351_0
lerc 3 hd77b12b_0

libbrotlicommon 1.0.9 h2bbff1b_7
libbrotlidec 1.0.9 h2bbff1b_7
libbrotlienc 1.0.9 h2bbff1b_7

libclang 14.0.6 default_hb5a9fac_1
libclang13 14.0.6 default_h8e68704_1

libcurl 8.4.0 h86230a5_1
libdeflate 1.17 h2bbff1b_1

libffi 3.4.4 hd77b12b_0



libglib 2.78.4 ha17d25a_0
libiconv 1.16 h2bbff1b_2
libogg 1.3.5 h2bbff1b_1
libpng 1.6.39 h8cc25b3_0

libprotobuf 3.20.3 h23ce68f_0
(continued)

Package Name Version Build String
(continued)

libssh2 1.10.0 hcd4344a_2
libtiff 4.5.1 hd77b12b_0

libvorbis 1.3.7 he774522_0
libwebp-base 1.3.2 h2bbff1b_0

llvmlite 0.42.0 py310hf2fb9eb_0
lz4-c 1.9.4 h2bbff1b_0

markdown 3.4.1 py310haa95532_0
markupsafe 2.1.1 py310h2bbff1b_0
matplotlib 3.8.0 py310haa95532_0

matplotlib-base 3.8.0 py310h4ed8f06_0
mkl 2023.1.0 h6b88ed4_46358

mkl-service 2.4.0 py310h2bbff1b_1
mkl_fft 1.3.8 py310h2bbff1b_0

mkl_random 1.2.4 py310h59b6b97_0
multidict 6.0.4 py310h2bbff1b_0
munkres 1.1.4 py_0
numba 0.59.1 py310hd77b12b_0

numexpr 2.8.7 py310h2cd9be0_0
numpy 1.26.2 py310h055cbcc_0

numpy-base 1.26.2 py310h65a83cf_0
oauthlib 3.2.2 py310haa95532_0
openjpeg 2.4.0 h4fc8c34_0
openpyxl 3.0.10 py310h2bbff1b_0
openssl 1.1.1w h2bbff1b_0

opt_einsum 3.3.0 pyhd3eb1b0_1
packaging 23.1 py310haa95532_0

pandas 2.1.4 py310h4ed8f06_0
pcre2 10.42 h0ff8eda_0
pillow 10.2.0 py310h2bbff1b_0

pip 23.3.1 py310haa95532_0
ply 3.11 py310haa95532_0

protobuf 3.20.3 py310hd77b12b_0
pyasn1 0.4.8 pyhd3eb1b0_0

pyasn1-modules 0.2.8 py_0
pycparser 2.21 pyhd3eb1b0_0

pyjwt 2.4.0 py310haa95532_0



pyopenssl 23.2.0 py310haa95532_0
pyparsing 3.0.9 py310haa95532_0

pyqt 5.15.10 py310hd77b12b_0
pyqt5-sip 12.13.0 py310h2bbff1b_0
pysocks 1.7.1 py310haa95532_0

(continued)
Package Name Version Build String

(continued)
python 3.10.3 hbb2ffb3_5

python-dateutil 2.8.2 pyhd3eb1b0_0
python-flatbuffers 2 pyhd3eb1b0_0

python-tzdata 2023.3 pyhd3eb1b0_0
pytz 2023.3.post1 py310haa95532_0

qt-main 5.15.2 he8e5bd7_8
requests 2.31.0 py310haa95532_0

requests-oauthlib 1.3.0 py_0
rsa 4.7.2 pyhd3eb1b0_1

scikit-learn 1.3.0 py310h4ed8f06_0
scipy 1.11.4 py310h309d312_0

setuptools 68.0.0 py310haa95532_0
shap 0.42.1 py310h4ed8f06_0
sip 6.7.12 py310hd77b12b_0
six 1.16.0 pyhd3eb1b0_1

slicer 0.0.7 pyhd3eb1b0_0
snappy 1.1.9 h6c2663c_0
sqlite 3.41.2 h2bbff1b_0
tbb 2021.8.0 h59b6b97_0

tensorboard 2.10.0 py310haa95532_0
tensorboard-data-server 0.6.1 py310haa95532_0
tensorboard-plugin-wit 1.8.1 py310haa95532_0

tensorflow 2.10.0 mkl_py310hd99672f_0
tensorflow-base 2.10.0 mkl_py310h6a7f48e_0

tensorflow-estimator 2.10.0 py310haa95532_0
termcolor 2.1.0 py310haa95532_0

threadpoolctl 2.2.0 pyh0d69192_0
tk 8.6.12 h2bbff1b_0

tomli 2.0.1 py310haa95532_0
tornado 6.3.3 py310h2bbff1b_0
tqdm 4.65.0 py310h9909e9c_0

typing_extensions 4.7.1 py310haa95532_0
tzdata 2023c h04d1e81_0
urllib3 1.26.18 py310haa95532_0

vc 14.2 h21ff451_1
vs2015_runtime 14.27.29016 h5e58377_2



werkzeug 2.2.3 py310haa95532_0
wheel 0.41.2 py310haa95532_0

win_inet_pton 1.1.0 py310haa95532_0
wrapt 1.14.1 py310h2bbff1b_0

xz 5.4.5 h8cc25b3_0
(continued)

Package Name Version Build String
(continued)

yarl 1.9.3 py310h2bbff1b_0
zlib 1.2.13 h8cc25b3_0
zstd 1.5.5 hd43e919_0

Table S3 Comparisons of BDE results from simulation and experiment 
SMILES for antioxidant BDEsim

(kJ/mol)
BDEexp

10

(kJ/mol)

Relative Error

Nc1ccc(N)cc1 353.9 359.8 1.64 %
CN(C)c1ccc(NC)cc1 338.7 342.4 1.08 %

c2ccccc2Nc1ccc(Nc3cccccc3)cc1 347.8 352.8 1.42 %
c1c(NC(C)C)ccc(Nc2ccccc2)c1 345.0 350.2 1.48 %

c1c(Nc3ccc(Nc4ccc5ccccc5c4)cc3)cc2ccccc2c1 351.1 354.6 0.99 %
c1ccccc1NCCNc2ccccc2 363.3 372.7 2.52 %

Fig. S1 (a) Oxidant process of edible oil; (b) Antioxidant process of antioxidant molecule (AH) 



Fig. S2 Molecular structures of the: (a) 'N-2-1' molecule (smallest δ); (b) ' N-19-1' molecule (smallest 

Δδ); (c) ‘N-15-1' molecule (smallest κ)
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