Supplementary information

Mireia Sainz-Menchón,^a Iñigo González de Arrieta,^{*a} Telmo Echániz,^b Karam Nader,^c

Maite Insausti,^{c,d} Aurélien Canizarès ^e, Olivier Rozenbaum,^e and Gabriel A. López^a

^a Physics Department, University of the Basque Country (UPV/EHU), E-48940 Leioa, Spain.

^b Applied Mathematics, University of the Basque Country (UPV/EHU), E-48013 Bilbao, Spain.

^c Departamento Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, University of the Basque Country (UPV/EHU), Sarriena s/n, 48940 Leioa, Spain.

^d BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.

^e Université d'Orléans, CNRS, CEMHTI UPR 3079, Orléans, France

inigo.gonzalezdearrieta@ehu.eus

1 Raman vibrational modes:

According to group theory, the Raman spectrum of the magnetite spinel structure exhibits five Raman active modes $(A_{1g} + 3T_{2g} + E_g)^{-1}$, the indexation of which has caused some controversy in the literature during the past two decades. During these years a large number of experimental studies, as well as some computational ones, were conducted in order to reach an accurate indexation ²⁻⁵, but one of the most accepted interpretations nowadays is that presented by Shebanova *et al.* based on polarized Raman studies ^{6,7}. The reported wavenumber values for these vibrational modes are $v_{T2g(1)}=193$ cm⁻¹, $v_{Eg}=306$ cm⁻¹, $v_{T2g(2)}=450-490$ cm⁻¹, $v_{T2g(3)}=538$ cm⁻¹ and $v_{A1g}=668$ cm⁻¹. Nevertheless, the typical room temperature Raman spectrum of magnetite nanoparticles is characterized by a high-intensity band corresponding to A_{1g} found at $\approx 660-670$ cm⁻¹, together with two low-intensity bands corresponding to E_g and $T_{2g(3)}$ located around ≈ 300 and ≈ 530 cm⁻¹, respectively. The observation of the bands corresponding to $T_{2g(1)}$ and $T_{2g(2)}$ is not always reported.

In the case of γ -Fe₂O₃, even if group theory predicts the same number of Raman active vibrational modes as for Fe₃O₄, a spectrum consisting of three vibrational bands is typically recorded. In this case, the main A_{1g} is located around \approx 710 cm⁻¹, blue-shifted compared to that of magnetite. Two lower intensity broad bands corresponding to the vibrational modes T_{2g} and E_g are usually located at \approx 350 cm⁻¹ and \approx 500 cm⁻¹, respectively^{2, 4}.

2 Supplementary tables:

Table S1: Computed cell parameter applying the DICVOL04 cell refinement method. It must be taken into account that, given a cubic cell structure, a=b=c and $\alpha = \beta = \gamma = 90^{\circ}$. The lattice parameter values (*a*) for magnetite and maghemite have been taken from references [8-10]

Material	a (Å)
Fe3O4 ^{8,9}	8.396
γ -Fe2O3 ¹⁰	8.33
40:120_S	8.363 ± 0.005
40:120_L	8.352 ± 0.004
40:115_S	8.346 ± 0.005
40:125_S	8.342 ± 0.005
40:115_S_OAm	8.331 ± 0.008

Table S2: position and mixing parameter (η) of the fitted Raman peaks.

	λ=633 nm			λ=514 nm				
	A _{1g} Fe ₃ O ₄		$A_{1g}\gamma$ -Fe ₂ O ₃		A _{1g} Fe ₃ O ₄		$A_{1g}\gamma$ -Fe ₂ O ₃	
	Position	η	Position	η	Position	η	Position	η
40:120_S	670	0.998	702	0.988	664	0.999	706	0.986
40:120_L	670	0.999	707	0.999	666	0.999	714	0.981
40:115_S	670	0.970	704	0.862	664	0.999	704	0.999
40:125_S	670	0.996	710	0.999	662	0.971	714	0.999
40:115_S_OAm	670	0.999	716	0.999	665	0.999	706	0.997

Table S3: Raman and infrared active modes corresponding to each space groups related to γ -Fe₂O₃. Built using the Bilbao Crystallographic Server [1]

Space group	Wyckoff positions	IR active modes	Raman active modes
	8a	-	T_{2g}
Fd-3m	16d	$2T_{1u}$	-
	32e	$2T_{1u}$	$A_{1g} + E_g + T_{2g}$
P4132, P4332	4b	$1\overline{T_1}$	$E + T_2$
	8c	$3T_1$	$A_1+2E+3T_2\\$
	12d	$5T_1$	$A_1+3E+4T_2\\$
	24e	$9T_1$	$3A_1 + 6E + 9T_2$
P41212, P43212	4a	$A_2 + 2E$	$\overline{A_1+2B_1}+B_2+3E$
	8b	$3\Lambda_{2} \pm 6F$	$3A_1 + 3B_1 + 3B_2 +$
	60	$3R_2 \pm 0E$	6E

3 Supplementary figures:

Figure S1: a vertically enlarged section of the diffractogram to enhance the visualization of peaks (210) and (211).

Figure S2: The real and imaginary parts of the effective permittivity of the samples computed using Kramers-Kronig analysis (solid lines) and obtained from the modelization (dashed lines) for samples 40:120_S (FIR (a), MIR (b)), 40:120_L (FIR (c), MIR (d)) and 40:125_S (FIR (e), MIR (f)).

4 References

[1] M.I. Aroyo, J. M. Perez-Mato, D. Orobengoa, E. Tasci, G. de la Flor and A. Kirov. *Bulgarian Chemical Communications*, 2011, 43,183-197

[2] I. Chamritski and G. Burns, *The Journal of Physical Chemistry B*, 2005, 109, 4965–4968.

[3] L. Gasparov, D. Tanner, D. Romero, H. Berger, G. Margaritondo and L. Forro, *Physical Review B*, 2000, 62, 7939.

[4] D. L. De Faria, S. Venâncio Silva and M. T. de Oliveira, *Journal of Raman Spectroscopy*, 1997, 28, 873–878.

[5] S.P. Schwaminger, D. Bauer, P. Fraga- García, F.E. Wagner and S. Berensmeier. *CrystEngComm*, 2017, 19, 246-255

[6] O. N. Shebanova and P. Lazor. Journal of Raman Spectroscopy, 2003, 34, 845-852.

[7] M. Testa-Anta, M.A. Ramos-Docampo, M. Comesaña-Hermo, B. Rivas-Murias and V. Salgueiriño. *Nanoscale Advances*. 2019, 1, 2086-2103

[8] O. Lemine, K. Omri, B. Zhang, L. El Mir, M. Sajieddine, A. Alyamani and M. Bououdina, *Superlattices and Microstructures*, 2012, 52, 793–799.

[9] S. Nasrazadani and A. Raman, Corrosion Science, 1993, 34, 1355–1365.

[10] C. Pecharromán, T. Gonzalez-Carreno and J. E. Iglesias, *Physics and Chemistry of Minerals*, 1995, 22, 21–29.