Supporting Information

Computational design and screening of high-efficient metal dual-atom-modified g-C₃N₄ catalysts for CO₂ photoreduction to C₂ chemicals

Yuming Jin ^{#a}, Shuang Wang ^{#a}, Xiaowa Nie ^{a*}, Chunshan Song ^b, and Xinwen

Guo^{a*}

^{*a*} State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024.

^b Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong 999077.

*Corresponding Authors:

Xiaowa Nie: niexiaowa@dlut.edu.cn

Xinwen Guo: guoxw@dlut.edu.cn

[#]These authors contributed equally to this work

Fig. S1. Different initial structures considered for dual-atom Cu-M being placed into the sixfold cavity of the g-C₃N₄ substrate.

Fig. S2. Stable configuration screening of (a) CuPd/g-C₃N₄ and (b) CuSn/g-C₃N₄ according to structural optimization and binding energy calculation.

Fig. S3. An overview of metal-modified g-C₃N₄-based catalysts for the photocatalytic CO₂ reduction reported in the literature.

Fig. S4. Optimized configurations of metal dual-atom-modified $CuM/g-C_3N_4$ (M = Cu, Pd, Sn, Bi, Fe, Co, Ni, Mn, In, and Pt) catalysts.

Fig. S5. Binding energies of metal dual-atom assembles CuM (M = Cu, Pd, Sn, Bi, Fe, Co, Ni, Mn, In, and Pt) over the g-C₃N₄ support.

Fig. S6. The stable adsorption configurations of CO_2 and the adsorption energies of CO_2 on the CuM/g-C₃N₄ (M = Cu, Pd, Sn, Bi, Fe, Co, Ni, Mn, In, and Pt) catalysts.

Fig. S7. (a) The most stable CO_2 adsorption structures on the $CuM/g-C_3N_4$ (M = Mn, Fe, Co, Ni, Cu, Pd, In, Sn, Pt, and Bi) catalysts. (b)The adsorption energies of CO_2 on the $CuM/g-C_3N_4$ (M = Mn, Fe, Co, Ni, Cu, Pd, In, Sn, Pt, and Bi) catalysts.

Fig. S8. Possible reaction pathways considered for the reduction of CO₂ to C₂ (C₂H₅OH and C₂H₄) products on the CuM/g-C₃N₄ (M = Mn, Fe, Co, Ni, Cu, Pd, In, Sn, Pt, and Bi) catalysts.

Fig. S9. The calculated Gibbs free energy diagrams of the optimal reaction pathway and other possible pathways for the reduction of CO_2 to C_2 (C_2H_4 and C_2H_5OH) products on CuPd/g- C_3N_4 , as well as the optimized structures of all intermediate species.

S13

		and the	<u>\$</u>	er de	••• •••	0 •	<u> </u>	and a	<u> </u>	and a	*		• •		
*CC	ЮН	*(CO	*CO-	-*CO ₂	*CO-*	соон	*CO	-*CO	*СНС)-*CO	*CH ₂ 0	D-*CO	*CH ₂ O	H-*CO
	*CH ₂ (онсо	*CH	2CO	*CH ₂	СОН	*CH ₂ C	СНОН	*CH ₂ C	CH ₂ OH	*CH ₃ C	CH ₂ OH	*C	₂ H ₄	

Fig. S10. (a) The calculated Gibbs free energy diagram of the optimal pathway for CO_2 reduction to C_2 (C_2H_5OH and C_2H_4) products on $CuCu/g-C_3N_4$. (b) The optimized structures of all intermediate species.

Fig. S11. (a) The calculated Gibbs free energy diagram of the optimal pathway for CO_2 reduction to C_2 (C_2H_5OH and C_2H_4) products on $CuCo/g-C_3N_4$. (b) The optimized structures of all intermediate species.

Fig. S12. (a) The calculated Gibbs free energy diagram of the optimal pathway for CO_2 reduction to C_2 (C_2H_5OH and C_2H_4) products on $CuMn/g-C_3N_4$. (b) The optimized structures of all intermediate species.

Fig. S13. (a) The calculated Gibbs free energy diagram of the optimal pathway for CO_2 reduction to C_2 (C_2H_5OH and C_2H_4) products on CuFe/g-C₃N₄. (b) The optimized structures of all intermediate species.

Fig. S14. (a) The calculated Gibbs free energy diagram of the optimal pathway for CO_2 reduction to C_2 (C_2H_5OH and C_2H_4) products on CuNi/g-C₃N₄. (b) The optimized structures of all intermediate species.

S23

Fig. S15. (a) The calculated Gibbs free energy diagram of the optimal pathway for CO_2 reduction to C_2 (C_2H_5OH and C_2H_4) products on CuIn/g-C₃N₄. (b) The optimized structures of all intermediate species.

Fig. S16. (a) The calculated Gibbs free energy diagram of the optimal pathway for CO_2 reduction to C_2 (C_2H_5OH and C_2H_4) products on CuPt/g- C_3N_4 . (b) The optimized structures of all intermediate species.

Fig. S17. The calculated Gibbs free energy diagrams of the optimal paths for CO_2 reduction to C_2 (C_2H_5OH and C_2H_4) products on (a) CuBi/g- C_3N_4 and (b) CuSn/g- C_3N_4 .

Fig. S18. The calculated projected density of states (PDOS) for CO₂ adsorption on (a) $CuCu/g-C_3N_4$, (b) $CuPd/g-C_3N_4$, (c) $CuSn/g-C_3N_4$, and (d) $CuBi/g-C_3N_4$.

Fig. S19. The calculated differential charge density maps and charge transfer values of CO₂ adsorption on (a) CuCu/g-C₃N₄, (b) CuPd/g-C₃N₄, (c) CuSn/g-C₃N₄, and (d) CuBi/g-C₃N₄.

Fig. S21. The calculated valence-band maximum (VBM) (left side) and conductionband minimum (CBM) (right side) of (a) $CuCu/g-C_3N_4$, (b) $CuPd/g-C_3N_4$, (c) $CuSn/g-C_3N_4$, and (d) $CuBi/g-C_3N_4$.

	3d	Mn	Fe	Со	Ni	Cu
	O*OC	0.37	0.88	0.24	0.09	0.26
	* 0 C0	0.63	0.38	0.41	0.21	0.3
$\Delta G_{ads}/\mathrm{eV}$	*COO	-0.25	-0.18	-0.55	-0.45	-0.22
	O(M)*C(Cu)O	-1.01	-0.95	-1.11	-1.24	-0.55
	O(Cu)*C(M)O	0.65	-0.41	-0.75	-0.56	/
		4.3	DJ	I	6	_
		40	Pa	In	Sn	_
		O*O C	0.19	0.26	i /	
		*0C0	0.51	0.45 (linea	0.54 r) (linear)	
	$\Delta G_{ads}/{ m eV}$	*COO	0.09	0.15	/	
	0(1	M)*C(Cu)O	-0.67	0.06	0.13	
	0(Cu)*C(M)O	-0.45	0.24	. /	
		5d		Pt	Bi	
		0*0C		0.27	/	
		*0C0		0.47	0.49 (linear)	
	$\Delta G_{ads}/\mathrm{eV}$	*COO		0.13	0.54	
		O(M)*C(C	u)O	-0.65	/	
		O(Cu)*C(I	O(N	-0.42	/	

Table S1. Adsorption free energies (ΔG_{ads}) of CO₂ molecule on CuM/g-C₃N₄ (M = Cu, Pd, Sn, Bi, Fe, Co, Ni, Mn, In, and Pt) catalysts.

	CO ₂ reduction to C ₂ H ₅ O	Η	CO ₂ reduction to C ₂ H ₄	
	Selectivity-determining step	ΔG	Selectivity-determining step	ΔG
CuPd/g-C ₃ N ₄	*CO-*CO ₂ →*CO-*COOH	0.43	$^{*}CH_{2}CH_{2} \rightarrow ^{*}+C_{2}H_{4}$	1.67
CuCu/g-C ₃ N ₄	*CO-*CO→*CHO-*CO	0.56	$^{*}CH_{2}CH_{2} \rightarrow ^{*}+C_{2}H_{4}$	1.35
CuIn/g-C ₃ N ₄	*CO-*CO ₂ →*CO-*COOH	0.63	*CH ₂ CHO→*CH ₂ CHOH	0.96
CuSn/g-C ₃ N ₄	*CH ₂ CHO→*CH ₂ CH ₂ O	0.35	*CH ₂ CHO→*CH ₂ CHOH	0.29
CuBi/g-C ₃ N ₄	*CH ₃ CH ₂ O→*CH ₃ CH ₂ OH	0.52	$^{*}CH_{2}CH_{2}OH \rightarrow ^{*}CH_{2}CH_{2}$	-0.15
CuMn/g-C ₃ N ₄	*CO-*CO→*COH-*CO	0.83	$^{*}CH_{2}CH_{2} \rightarrow ^{*}+C_{2}H_{4}$	1.45
CuCo/g-C ₃ N ₄	*CO-*CO→*COH-*CO	0.87	$^{*}CH_{2}CH_{2} \rightarrow ^{*}+C_{2}H_{4}$	1.78
CuPt/g-C ₃ N ₄	*CO-*CO ₂ →*CO-*COOH	0.89	$^{*}CH_{2}CH_{2} \rightarrow ^{*}+C_{2}H_{4}$	0.90
CuFe/g-C ₃ N ₄	*CO-*CO→*CHO-*CO	0.91	$^{*}CH_{2}CH_{2} \rightarrow ^{*}+C_{2}H_{4}$	1.48
CuNi/g-C ₃ N ₄	*CO-*CO→*CHO-*CO	1.36	$^{*}CH_{2}CH_{2} \rightarrow ^{*}+C_{2}H_{4}$	2.21

Table S2. Gibbs free energy change (ΔG) associated with the selectivity-determining step in CO₂ reduction to C₂H₅OH and C₂H₄ products on CuM/g-C₃N₄ (M = Cu, Pd, Sn, Bi, Fe, Co, Ni, Mn, In, and Pt) catalysts.

	ZPE
*CH ₂ O-*CHO	1.15
*CH ₂ O*COH	1.24
*CH ₃ O*CO	1.28
*CH ₂ OHCO	1.35
*CH ₂ *CO	0.82
*CH ₂ OH*CHO	1.55
*CH ₂ CO	0.89
*CH ₂ *CHO	1.07
*CH ₂ CHO	1.22
*CH ₂ COH	1.21
*CH ₂ CH ₂ O	1.50
*CH ₂ CHOH	1.54
*CH ₂ CH ₂ OH	1.87
*CH ₃ CHO	1.50
*CH ₂ CH ₂ OH	1.84
*CH ₃ CH ₂ O	1.86
*CH ₃ CH ₂ OH	2.14
*CH ₂ CH	1.11
*C ₂ H ₄	1.38
	*CH2O-*CHO *CH2O*COH *CH2O*CO *CH2OHCO *CH2OHCO *CH2OH*CHO *CH2CO *CH2CO *CH2CO *CH2CO *CH2CO *CH2CHO *CH2CHO *CH2CHO *CH2CHO *CH2CHQ *CH3CHQ *CH3CH2Q *CH3CH2QH *CH2CH *CH2CH *CH2CH

Table S3. The zero-point energy (ZPE) values for all adsorbed species involved in CO_2 reduction to C_2 products over the CuM/g-C₃N₄ (M = Mn, Fe, Co, Ni, Cu, Pd, In, Sn, Pt, and Bi) catalysts.

Elementary steps	ΔG	Elementary steps	ΔG
*+CO ₂ →*CO ₂	-1.01	*CH ₂ -*CO→*CH ₂ CO	0.09
*CO ₂ →*COOH	0.13	*CH ₂ CO→*CH ₂ CHO	-0.63
*COOH→*CO	0.40	*CH ₂ CHO→*CH ₃ CHO	-0.37
*CO→*CO-*CO ₂	-0.41	*CH ₃ CHO→*CH ₃ CHOH	0.55
*CO-*CO ₂ →*CO-*COOH	-0.20	*CH ₃ CHOH→*CH ₃ CH ₂ OH	0.66
*CO-*COOH→*CO-*CO	-0.56	*CH ₃ CH ₂ OH→*+C ₂ H ₅ OH	0.05
*CO-*CO→*COH-*CO	0.83	*CH ₂ CHO→*CH ₂ CH ₂ O	-0.09
*СОН-*СО→*СНОН-*СО	-0.21	*CH ₂ CH ₂ O→*CH ₂ CH ₂ OH	0.19
*СНОН-*СО→*СН-*СО	0.05	*CH ₂ CH ₂ OH→*C ₂ H ₄	-0.50
*CH-*CO→*CH ₂ -*CO	-0.54	$*C_2H_4 \rightarrow *+C_2H_4$	1.45

Table S4. The Gibbs free energy change of each elementary step corresponding to theoptimal energy path on the CuMn/g-C $_3N_4$ catalyst.

Elementary steps	ΔG	Elementary steps	ΔG
*+ $CO_2 \rightarrow *CO_2$	-0.95	*CH ₂ -*CO→*CH ₂ CO	0.36
*CO ₂ →*COOH	0.09	*CH ₂ CO→*CH ₂ CHO	-0.54
*COOH→*CO	-0.49	*CH ₂ CHO→*CH ₃ CHO	0.00
*CO→*CO-*CO ₂	-0.66	*CH3CHO→*CH3CHOH	0.49
*CO-*CO ₂ →*CO-*COOH	0.27	*CH ₃ CHOH→*CH ₃ CH ₂ OH	0.19
*CO-*COOH→*CO-*CO	-0.73	$*CH_{3}CH_{2}OH \rightarrow *+C_{2}H_{5}OH$	0.49
*CO-*CO→*CHO-*CO	0.91	*CH ₂ CHO→*CH ₂ CH ₂ O	0.19
*CHO-*CO→*CH ₂ O-*CO	-0.46	*CH ₂ CH ₂ O→*CH ₂ CH ₂ OH	0.29
*CH ₂ O-*CO→*CH ₂ OH-*CO	0.48	*CH ₂ CH ₂ OH→*C ₂ H ₄	-0.63
*CH ₂ OH-*CO→*CH ₂ -*CO	-0.62	$*C_2H_4 \rightarrow *+C_2H_4$	1.48

Table S5. The Gibbs free energy change of each elementary step corresponding to the optimal energy path on the $CuFe/g-C_3N_4$ catalyst.

Elementary steps	ΔG	Elementary steps	ΔG
*+ $CO_2 \rightarrow *CO_2$	-1.11	*CH ₂ -*CO→*CH ₂ CO	0.01
*CO ₂ →*COOH	0.29	*CH ₂ CO→*CH ₂ CHO	0.22
*COOH→*CO	-0.75	*CH ₂ CHO→*CH ₂ CHOH	0.13
*CO→*CO-*CO ₂	-0.59	*CH ₂ CHOH→*CH ₂ CH ₂ OH	0.28
*CO-*CO ₂ →*CO-*COOH	0.10	*CH ₂ CH ₂ OH→* CH ₃ CH ₂ OH	-0.07
*CO-*COOH→*CO-*CO	-0.73	*CH ₃ CH ₂ OH→*+C ₂ H ₅ OH	0.54
*CO-*CO→*COH-*CO	0.87	*CH ₂ CHOH→*CH ₂ CH	0.21
*СОН-*СО→*СНОН-*СО	0.06	*CH ₂ CH→*C ₂ H ₄	-1.08
*CHOH-*CO→*CH-*CO	0.04	$*C_2H_4 \rightarrow *+C_2H_4$	1.78
*CH-*CO→*CH ₂ -*CO	-0.46		

Table S6. The Gibbs free energy change of each elementary step corresponding to the optimal energy path on the $CuCo/g-C_3N_4$ catalyst.

Elementary steps	ΔG	Elementary steps	ΔG
$*+CO_2 \rightarrow *CO_2$	-1.24	*CH ₂ -*CO→*CH ₂ CO	-0.08
*CO ₂ →*COOH	0.25	*CH ₂ CO→*CH ₂ CHO	0.02
*COOH→*CO	-0.12	*CH ₂ CHO→*CH ₃ CHO	-0.10
*CO→*CO-*CO ₂	-1.03	*CH ₃ CHO→*CH ₃ CH ₂ O	0.39
*CO-*CO ₂ →*CO-*COOH	0.54	*CH ₃ CH ₂ O→*CH ₃ CH ₂ OH	0.29
*CO-*COOH→*CO-*CO	-1.30	*CH ₃ CH ₂ OH→*+C ₂ H ₅ OH	0.59
*CO-*CO→*CHO-*CO	1.36	*CH ₂ CHO→*CH ₂ CH ₂ O	0.23
*CHO-*CO→*CHOH-*CO	-0.25	*CH ₂ CH ₂ O→*CH ₂ CH ₂ OH	0.25
*CHOH-*CO→*CH ₂ OH-*CO	0.61	*CH ₂ CH ₂ OH→*C ₂ H ₄	-1.36
*CH ₂ OH-*CO→*CH ₂ -*CO	-1.10	$*C_2H_4 \rightarrow *+C_2H_4$	2.21

Table S7. The Gibbs free energy change of each elementary step corresponding to the optimal energy path on the $CuNi/g-C_3N_4$ catalyst.

Elementary steps	ΔG	Elementary steps	ΔG
$*+CO_2 \rightarrow *CO_2$	-0.55	*CH2OH-*CO→*CH2OHCO	0.03
*CO ₂ →*COOH	-0.27	*CH ₂ OHCO→*CH ₂ CO	-0.38
*COOH→*CO	-0.28	*CH ₂ CO→*CH ₂ COH	-0.54
*CO→*CO-*CO ₂	-0.25	*CH ₂ COH→*CH ₂ CHOH	0.55
*CO-*CO ₂ →*CO-*COOH	0.24	*CH ₂ CHOH→*CH ₂ CH ₂ OH	-0.54
*CO-*COOH→*CO-*CO	-0.39	*CH ₂ CH ₂ OH→* CH ₃ CH ₂ OH	0.45
*СО-*СО→*СНО-*СО	0.56	*CH ₃ CH ₂ OH→*+C ₂ H ₅ OH	0.19
*CHO-*CO→*CH ₂ O-*CO	0.20	$^{*}CH_{2}CH_{2}OH \rightarrow ^{*}C_{2}H_{4}$	-0.55
*CH ₂ O-*CO→*CH ₂ OH-*CO	-0.19	$*C_2H_4 \rightarrow *+C_2H_4$	1.35

Table S8. The Gibbs free energy change of each elementary step corresponding to the optimal energy path on the $CuCu/g-C_3N_4$ catalyst.

Elementary steps	ΔG	Elementary steps	ΔG
*+CO ₂ →*CO ₂	-0.67	*CH ₂ -*CO→*CH ₂ CO	-0.90
*CO ₂ →*COOH	0.11	*CH ₂ CO→*CH ₂ CHO	-0.21
*COOH→*CO	-0.99	*CH ₂ CHO→*CH ₂ CHOH	0.27
*CO→*CO-*CO ₂	0.01	*CH2CHOH→*CH2CH2OH	0.31
*CO-*CO ₂ →*CO-*COOH	0.43	*CH ₂ CH ₂ OH→*CH ₃ CH ₂ OH	-0.24
*СО-*СООН→*СНО-*СООН	0.26	*CH ₃ CH ₂ OH→*+C ₂ H ₅ OH	0.42
*СНО-*СООН→*СНО-*СО	-0.47	*CH2CHOH→*CH2CH	-0.08
*CHO-*CO→*CH ₂ O-*CO	-0.14	*CH ₂ CH→*C ₂ H ₄	-0.94
*CH ₂ O-*CO→*CH ₂ OH-*CO	0.22	$*C_2H_4 \rightarrow *+C_2H_4$	1.67
*CH ₂ OH-*CO→*CH ₂ -*CO	0.42		

Table S9. The Gibbs free energy change of each elementary step corresponding to the optimal energy path on the $CuPd/g-C_3N_4$ catalyst.

Elementary steps	ΔG	Elementary steps	ΔG
*+CO ₂ →*CO ₂	0.06	*CH ₂ *CO→*CH ₂ CO	-0.05
*CO ₂ →*COOH	-0.3	*CH ₂ CO→*CH ₂ CHO	-1.00
*COOH→*CO	-0.11	*CH ₂ CHO→*CH ₃ CHO	0.24
*CO→*CO-*CO ₂	-0.25	*CH ₃ CHO→*CH ₃ CH ₂ O	-0.88
*CO-*CO ₂ →*CO-*COOH	0.63	*CH ₃ CH ₂ O→*CH ₃ CH ₂ OH	0.60
*CO-*COOH→*CO-*CO	-0.22	*CH ₃ CH ₂ OH→*+C ₂ H ₅ OH	0.09
*CO-*CO→*CHO-*CO	0.42	*CH ₂ CHO→*CH ₂ CHOH	0.96
*CHO-*CO→*CHOH-*CO	-0.30	*CH ₂ CHOH→*CH ₂ CH	-1.07
*CHOH-*CO→*CH2OH-*CO	0.23	*CH ₂ CH→*C ₂ H ₄	-0.54
*CH ₂ OH-*CO→*CH ₂ *CO	-0.33	$*C_2H_4 \rightarrow *+C_2H_4$	0.86

Table S10. The Gibbs free energy change of each elementary step corresponding to theoptimal energy path on the $CuIn/g-C_3N_4$ catalyst.

Elementary steps	ΔG	Elementary steps	ΔG
$*+CO_2 \rightarrow *CO_2$	0.13	$*CH_2-*CO \rightarrow *CH_2CO$	-0.69
*CO ₂ →*COOH	0.5	$*CH_2CO \rightarrow *CH_2CHO$	-0.22
*СООН→*СО	-0.34	$*CH_2CHO \rightarrow *CH_2CH_2O$	0.35
$*CO \rightarrow *CO - *CO_2$	-0.10	$*CH_2CH_2O \rightarrow *CH_3CH_2O$	-0.68
*CO-*CO ₂ →*CO-*COOH	0.20	$*CH_3CH_2O \rightarrow *CH_3CH_2OH$	0.11
*СО-*СООН→*СО-*СО	0.21	$*CH_3CH_2OH \rightarrow *+C_2H_5OH$	-0.53
*CO-*CO→*CHO-*CO	0.08	$*CH_2CHO \rightarrow *CH_2CHOH$	0.29
*СНО-*СО→*СНОН-*СО	0.68	*CH ₂ CHOH→*CH ₂ CH ₂ OH	-0.09
*CHOH-*CO \rightarrow *CH ₂ OH-*CO	-1.13	$*CH_2CH_2OH \rightarrow *C_2H_4$	-0.94
$^{*}CH_{2}OH\text{-}^{*}CO \rightarrow ^{*}CH_{2}\text{-}^{*}CO$	0.26	$*C_2H_4 \rightarrow *+C_2H_4$	0.15

Table S11. The Gibbs free energy change of each elementary step corresponding to theoptimal energy path on the $CuSn/g-C_3N_4$ catalyst.

Elementary steps	ΔG	Elementary steps	ΔG
$*+CO_2 \rightarrow *CO_2$	-0.65	$*CH_{2}-*CO \rightarrow *CH_2CO$	0.19
*CO ₂ →*COOH	-0.51	*CH ₂ CO→*CH ₂ CHO	0.47
*СООН→*СО	-0.87	*CH ₂ CHO→*CH ₂ CHOH	-0.41
$*CO \rightarrow *CO - *CO_2$	-0.22	*CH ₂ CHOH→*CH ₃ CHOH	0.31
*CO-*CO ₂ →*CO-*COOH	0.89	*CH ₃ CHOH→*CH ₃ CH ₂ OH	0.05
*CO-*COOH→*CO-*CO	-0.64	$*CH_3CH_2OH \rightarrow *+C_2H_5OH$	0.59
*CO-*CO→*CHO-*CO	0.76	$*CH_2CHOH \rightarrow *CH_2CH_2OH$	0.50
*СНО-*СО→*СНОН-*СО	0.63	$*CH_2CH_2OH \rightarrow *C_2H_4$	-0.29
*CHOH-*CO \rightarrow *CH ₂ OH-*CO	-0.64	$*C_2H_4 \rightarrow *+C_2H_4$	0.90
*CH ₂ OH-*CO→*CH ₂ -*CO	-1.12		

Table S12. The Gibbs free energy change of each elementary step corresponding to theoptimal energy path on the CuPt/g-C $_3N_4$ catalyst.

Elementary steps	ΔG	Elementary steps	ΔG
$*+CO_2 \rightarrow *CO_2$	0.49	$*CH_{2}-*CO \rightarrow *CH_2CO$	-0.89
$*CO_2 \rightarrow *COOH$	0.25	*CH ₂ CO→*CH ₂ CHO	-0.44
*COOH→*CO	-0.15	*CH ₂ CHO→*CH ₂ CH ₂ O	0.42
$*CO \rightarrow *CO - *CO_2$	-0.13	$*CH_2CH_2O \rightarrow *CH_3CH_2O$	-1.02
*CO-*CO ₂ →*CO-*COOH	0.09	$*CH_3CH_2O \rightarrow *CH_3CH_2OH$	0.52
*CO-*COOH→*CO-*CO	-0.06	$*CH_3CH_2OH \rightarrow *+C_2H_5OH$	-0.57
*CO-*CO→*CHO-*CO	0.25	$*CH_2CH_2O \rightarrow *CH_2CH_2OH$	-0.53
*СНО-*СО→*СНОН-*СО	0.75	$*CH_2CH_2OH \rightarrow *C_2H_4$	-0.15
*CHOH-*CO \rightarrow *CH ₂ OH-*CO	-1.00	$*C_2H_4 \rightarrow *+C_2H_4$	-0.23
*CH ₂ OH-*CO→*CH ₂ -*CO	0.32		

Table S13. The Gibbs free energy change of each elementary step corresponding to the optimal energy path on the CuBi/g-C₃N₄ catalyst.