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S1 Rovibrational Hamiltonian with Radau coordinates
Radau coordinates for an XY2 molecule are well known1,2 and consist of the two stretching-type
coordinates R1 and R2, and of the bending-type coordinate γ̃. The corresponding rovibrational
Hamiltonian is also well known1,2 and is given below attaching the xyz molecular fixed axis
system to the molecule so that its origin coincides with the molecular center of mass, the xz plane
containing the three atoms, the x-axis bisecting the usual bending angle γ and pointing towards
the X atom, and the z axis pointing towards atom Y1. Using the Radau bending-type coordinate
z = cos γ̃, instead of γ̃, the exact Hamiltonian H can be expanded as3

H = Hs +Hb +Hr + V (R1, R2, z), (S1)

where Hs and Hb are kinetic energy operators for the stretching and bending modes, respectively;
Hr is the rotational Hamiltonian; and V (R1, R2, z) is the potential energy function. It can be
deduced from the potential energy function expressed with the usual stretching and bending
coordinates r1, r2, γ using the transformations in Eqs. (2.19)–(2.22) of Johnson and Reinhardt.1

The stretching kinetic energy operator takes the following form

Hs =
PR1

2

2m
+

PR2

2

2m
(S2)

where m is the mass of the Y atom; and PR1
and PR2

are conjugate momenta for R1 and R2,
respectively. The bending kinetic energy operator is

Hb =
1

2m

(
1

R2
1

+
1

R2
2

)
Pz(1− z2)Pz, (S3)

where m is defined as for Eq. (S2) and Pz is the conjugate momentum for z. The rotational
Hamiltonian is written

Hr = 1
2m

(
1
R2

1

+ 1
R2

2

)[
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x
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+
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N2
z
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]
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)[
Ny{
√
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1− z2

]
,

(S4)

where m is defined as for Eq. (S2); Nx, Ny, and Nz are the components of the rotational angular
momentum in the molecular fixed axis system; and {, } is the anticommutator. The volume
element to be used for the Hamiltonian in Eq. (S1) is dR1dR2dz sin θdθdφdχ, where χ, θ, φ are
the usual Eulerian angles parameterizing the orientation of the molecular fixed axis system with
respect to the space fixed axis system.

S2 Applying the MCTDH method
S2.1 Operators
The MCTDH method4,5 is used to solve the vibrational problem for the Hamiltonian in Eq. (S1).
The MCTDH wavefunction can be obtained from Eq. (19) of Beck et al.4 and takes the following
expression in the case of f = 3 degrees of freedom

Ψ(Q1, Q2, Q3, t) =

n1∑
j1=1

n2∑
j2=1

n3∑
j3=1

Aj1j2j3(t)φ
(1)
j1

(Q1, t)φ
(2)
j2

(Q2, t)φ
(3)
j3

(Q3, t), (S5)

where the nuclear coordinates Q1, Q2, and Q3 correspond respectively to the Radau bond lengths
R1 and R2, and to the Radau bending coordinate z, the Aj1j2j3 denote the expansion coefficients;
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and φ
(κ)
jκ

(Qκ, t), with 1 ≤ κ ≤ 3, are the single-particle functions. The single-particle operators
h(κ), as defined in Eq. (42) of Beck et al.,4 are chosen in the following way:

h(1) =
PR1

2

2m
+ V (1)(R1),

h(2) =
PR2

2

2m
+ V (2)(R2),

h(3) =
1

mR2
e

Pz(1− z2)Pz + V (3)(z),

(S6)

where Re is a constant equal to the equilibrium value of either Radau bond length. With the
choice indicated by these equations, the residual Hamiltonian HR, also defined in Eq. (42) of Beck
et al.,4 is written

HR =

2∑
i=1

1

2m

(
1

R2
i

− 1

R2
e

)
Pz(1− z2)Pz + Ṽ (R1, R2, z), (S7)

where the first two terms are expressed as products of two single-particle operators and the po-
tential energy term Ṽ (R1, R2, z) is V (R1, R2, z)− V (1)(R1)− V (2)(R2)− V (3)(z).

S2.2 Overall rotation
Taking into account the overall rotation, in agreement with Eqs. (3)–(5) of the paper, requires
rewriting the single-particle operators h(3) in the third of Eqs. (S6) as follows

h(3) =
1

mR2
e

[
Pz(1− z2)Pz +

V+

2(1 + z)
+

V−

2(1− z)
+ V0

]
+ V (3)(z), (S8)

while the first and second terms of the residual Hamiltonian HR in Eq. (S7) should be rewritten

1

2m

(
1

R2
i

− 1

R2
e

)[
Pz(1− z2)Pz +

V+

2(1 + z)
+

V−

2(1− z)
+ V0

]
, (S9)

where i = 1 and 2. In these equations, V+, V−, and V0 are defined in Eqs. (5) of the paper.

S2.3 Basis set functions
The single-particle functions are expanded in the following way

φ
(κ)
j (Qκ, t) =

Nκ∑
α=1

c
(κ)
jα (t)χ(κ)

α (Qκ) (S10)

where 1 ≤ κ ≤ 3; c(κ)jα (t) are Nκ time dependent expansion coefficients; and χ
(κ)
α (Qκ) are Nκ basis

set functions.
For the two stretching modes, the single-particle functions are expanded using for the χ

(κ)
α

functions, with κ = 1 and 2, the DVR functions associated with the generalized Gauss-Laguerre
quadrature,6 corresponding to the weight function xρ exp(−x), where x = ξR. The matrix el-
ements between two DVR functions of the stretching operators 1/R2 and PR

2, appearing in
Eqs. (S2)–(S4), can be determined from those computed exactly in Gutlé and Coudert3 with
the Sturmian functions7

uρ,ξ
n (R) = Nρ,ξ

n xρ/2 exp(−x/2)L(ρ)
n (x), (S11)

where n ≥ 0 is an integer; Nρ,ξ
n is a normalization factor; and L

(ρ)
n (x) is a generalized Laguerre

polynomial.8 These functions are an orthonormal basis set because the generalized Laguerre poly-
nomials are orthogonal with respect to integration over the [0, +∞) range with the weight function.
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For the bending coordinate, the single-particle function φ
(3)
j3

(Q3, t) is expanded using for the
χ
(3)
α functions the DVR functions associated with the Gauss-Jacobi quadrature, corresponding to

the weight function (1− z)γ(1+ z)δ. The matrix elements between two DVR functions of bending
operators such as 1/(1 + z), 1/(1 − z), {

√
1− z2, Pz}, and Pz(1 − z2)Pz, appearing in Eqs. (S3)

and (S4), can be obtained from those computed exactly in Gutlé and Coudert3 with the following
functions9–11

vγ,δm (z) = Nγδ
m (1− z)γ/2(1 + z)δ/2P (γ,δ)

m (z), (S12)

where m ≥ 0 is an integer; Nγ,δ
m is a normalization factor; and P

(γ,δ)
m (z) is a Jacobi polynomial.8

These functions are an orthonormal basis set because the Jacobi polynomials are orthogonal with
respect to integration over the [−1, +1] range with the weight function. These functions also are
eigenfunctions of the operator

Pz(1− z2)Pz +
1

2

(
γ2

1− z
+

δ2

1 + z

)
, (S13)

with eigenvalues (m+ δ+)(m+ 1 + δ+), where δ+ = (γ + δ)/2.

S2.4 Symmetry relations
The MCTDH wavefunction in Eq. (S5) involves the expansion coefficients AJ depending on the
compound index J = (j1, j2, j3) with 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2, and 1 ≤ j3 ≤ n3. Assuming
that the symmetry relations in Eqs. (2) of the paper are fulfilled, the n2n3 compound indexes are
mapped onto the [1, n2n3] integer interval using an integer function g(J) such that

1 ≤ g(J) ≤ Ns when j1 ≤ j2,

Ns + 1 ≤ g(J) ≤ Ns +Na when j1 > j2,
(S14)

where Ns = n(n + 1)n3/2 and Na = n(n − 1)n3/2 are the number of indexes with j1 ≤ j2 and
j1 > j2, respectively. The following n2n3 × n2n3 unitary matrix UJ′,J is introduced and has the
following non-vanishing matrix elements

UJ′,J =


δj′1,j1δj′2,j2δj′3,j3 when j1 = j2,

(δj′1,j1δj′2,j2δj′3,j3 + δj′2,j1δj′1,j2δj′3,j3)/
√
2 when j1 < j2,

(δj′1,j1δj′2,j2δj′3,j3 − δj′2,j1δj′1,j2δj′3,j3)/
√
2 when j1 > j2.

(S15)

Using the unitary matrix U , the matrix H of the Hamiltonian H is transformed as follows

H ′
J,J′ =

∑
L,L′

(U−1)J,LHL,L′UL′,J′ =
∑
L,L′

UL,JHL,L′UL′,J′ (S16)

The transformed matrix H ′
J,J′ is nonzero only if 1 ≤ g(J), g(J ′) ≤ Ns and Ns +1 ≤ g(J), g(J ′) ≤

Ns +Na because H is invariant under the interchange of atoms Y1 and Y2. This implies that the
n2n3 × n2n3 matrix H is block diagonalized into two blocks. The first Ns ×Ns block is denoted
H s; the second Na × Na block is denoted H a. These results are also valid for the residual
Hamiltonian HR in Eq. (42) of Beck al.4

The unitary matrix U can also be used to transform the expansion coefficients AJ . In the case
of the upper (lower) sign for the third of Eqs. (2) of the paper, evaluating

∑
L(U

−1)J,LAL yields an
expansion vector As (Aa) with only Ns (Na) nonvanishing components. Since the unitary matrix
is time independent, Eqs. (40) and (43) of Beck al.4 should be replaced by the two equations

iȦs
J =

∑
L

H s
J,LA

s
L and iȦa

J =
∑
L

H a
J,LA

a
L (S17)
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involving smaller matrices and vectors. When computing eigenvalues and eigenvectors by energy
relaxation,12 the matrix to be diagonalized in Eq. (80) of this reference should be replaced by
either H s of H a which allows us to assign the appropriate symmetry label to the energy levels.

Using the third of Eqs. (2) of the paper, it can be shown that the projectors, the mean-fields
operators, and the density matrices defined respectively in Eqs. (24), (26), and (27) of Beck al.4

fulfill the following relations

P (1) = P (2), 〈H〉(1) = 〈H〉(2), and ρ(1) = ρ(2) (S18)

These relations imply that the equations of motions for φ(1) and φ(2) are identical which is
consistent with the second of Eqs. (2) of the paper.

S3 RT Hamiltonian
For a doubly degenerate Λ electronic state split into two electronic states, denoted a and b, by the
RT coupling, the Hamiltonian in the adiabatic representation can be expressed as a 2× 2 matrix
written using as basis set functions the electronic wavefunctions |a〉 and |b〉. In agreement with
Eqs. (12), (13) and (33) of Jungen and Merer13 and Eq. (5) of Zhang et al.,14 this matrix is the
following:

H =

(
Ha 0
0 Hb

)
+

(
Haa Hab

Hba Hbb

)
(S19)

where Ha and Hb are the vibrational Hamiltonian for the a and b electronic states, respectively,
to be obtained from Eq. (S1) where the potential energy function V (R1, R2, z) should be replaced
by either Va(R1, R2, z) or Vb(R1, R2, z) as appropriate; and Haa, Hbb, Hab, and Hba are four
vibrational operators. They are given by

Haa = Hbb =
Λ2

2m

(
1

R2
1

+
1

R2
2

)
1

2(1 + z)
(S20)

and
Hab = Hba =

−KΛ

m

(
1

R2
1

+
1

R2
2

)
1

2(1 + z)
+ASOΣΛ. (S21)

In Eqs. (S20) and (S21), Λ and Λ2 are the matrix elements 〈a|Lz|b〉 and 〈a|L2
z|a〉, respectively,

where Lz is the component of the electronic angular momentum along the molecule fixed z axis.
In Eq. (S21), K is the rotational quantum number introduced in Eq. (3) of the paper; ASO is the
spin-orbit coupling constant; and Σ is the quantum number corresponding to Sz the component of
the spin operator along the molecule fixed z axis. In the case of the X̃+ 2A1 and Ã+ 2B1 electronic
states of the cation, ASO is 140 cm−1 and Σ = ±1/2. The RT wavefunction is written:

Ψ(t) = Ψa(R1, R2, z, t)|a〉+Ψb(R1, R2, z, t)|b〉 (S22)

where Ψa(R1, R2, z, t) and Ψb(R1, R2, z, t) are two time dependent vibrational wavefunctions.
When computing the TPE spectrum of the Λ ← X ionization transition, the vibrational

function of the X electronic state φ(R1, R2, z) should be time propagated using the rovibronic
Hamiltonian in Eq. (S19). The auto-correlation function c(t) should be evaluated taking the initial
condition Ψa(R1, R2, z, t = 0) = φ(R1, R2, z)/

√
2 and Ψb(R1, R2, z, t = 0) = φ(R1, R2, z)/

√
2.

Fourier transforming the auto-correlation function yields the TPS spectra of both the a← X and
b← X ionizing transitions.

S4 Weights used in the TPES modeling
The weights WK,v of a neutral energy level, labeled with the rotational quantum number K and the
shorthand vibrational label v, introduced in Section 4, is evaluated taking a rotational temperature

S5



Trot and a vibrational temperature Tvib. We have

WK,v = gK,v exp−[(EK,v=0 − E0,0)/(kTrot) + (EK=0,v − E0,0)/(kTvib)], (S23)

where E0,0 is the energy EK=0,v=0 of the K = v = 0 ground level of the neutral and the statistical
weight gK,v is

gK,v =
∑
J≥K

(2J + 1)e−[J(J+1)B̄] (S24)

where B̄ = (B + C)/2 = 5.3633255 cm−1 is defined in terms of the rotational constants B and C
of the neutral.
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Table S3: Potential energy parameters for the neutral triplet ã 3B1 electronic state
Param.a Valueb Param.a Valueb

re12 1.464 12(54) f
(5)
1

11 498.9(6434)

a1 1.40c f
(1)
11

3861.8(25356)

f
(0)
0

−63 672 129.3(89) f
(2)
11

12 182.9(58050)

f
(0)
11

38 633.9(4713) f
(3)
11

12 752.4(58127)

f
(0)
13

−1727.4(4608) f
(4)
11

3279.6(19585)

f
(0)
111

−6386.1(18515) f
(1)
13

−819.5(28519)
f
(0)
113

−4395.8(14057) f
(2)
13

4590.4(69633)

f
(0)
1111

−3259.3(90122) f
(3)
13

6311.6(70929)

f
(0)
1113

−6732.7(64927) f
(4)
13

3353.4(23973)

f
(0)
1133

−7100.7(84502) f
(1)
111

−8481.0(99873)
f
(1)
0

59 251.9(1736) f
(2)
111

−6821.8(147198)
f
(2)
0

210 204.0(14475) f
(3)
111

−510.1(65016)
f
(3)
0

476 592.1(54063) f
(1)
113

−12 352.9(78115)
f
(4)
0

668 490.1(100682) f
(2)
113

−13 183.3(117352)
f
(5)
0

534 722.8(98038) f
(3)
113

−4986.0(52050)
f
(6)
0

225 611.3(47783) f
(1)
1111

−13 209.3(345172)
f
(7)
0

38 693.7(9197) f
(2)
1111

−7961.8(241989)
f
(1)
1

15 965.3(5006) f
(1)
1113

−17 105.4(247970)
f
(2)
1

53 320.7(18452) f
(2)
1113

−9957.4(173649)
f
(3)
1

78 373.8(31615) f
(1)
1133

−16 781.2(323010)
f
(4)
1

49 300.2(23825) f
(2)
1133

−7986.1(226278)
aParameters are defined in Eqs. (1)–(4) of Bunker and Jensen.15

bIn cm−1 except for re12 and a1 which are in Å and Å−1, respectively.
cConstrained value.
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Table S4: Potential energy parameters for the cation ground X̃+ 2A1 and first excited Ã+ 2B1

electronic states
Param.a Valueb Param.a Valueb

r
(res)
12

1.4692(33) f
(1,+)
111

3807.2(450440)

a1 1.40c f
(2,+)
111

−552.9(288337)
f
(0)
0

−63 606 558.2(603) f
(1,+)
113

877.6(365305)

f
(0)
11

37 006.9(26397) f
(2,+)
113

3292.8(245871)

f
(0)
13

−1934.2(31345) f
(1,+)
1111

3147.2(627633)

f
(0)
111

−2098.9(145003) f
(1,+)
1113

−5087.8(489254)
f
(0)
113

−2950.8(114029) f
(1,+)
1133

739.9(654424)

f
(0)
1111

−2496.7(249324) f
(1,−)
0

−15 974.6(8491)
f
(0)
1113

−631.8(194817) f
(2,−)
0

−17 407.4(48563)
f
(0)
1133

3372.1(260489) f
(3,−)
0

−44 687.9(114072)
f
(1,+)
0

45 936.1(9072) f
(4,−)
0

−36 360.9(113209)
f
(2,+)
0

94 283.0(36646) f
(5,−)
0

−11 807.7(39611)
f
(3,+)
0

83 474.0(51757) f
(1,−)
1

4474.8(24638)

f
(4,+)
0

31 000.3(23378) f
(2,−)
1

2739.2(48851)

f
(1,+)
1

17 188.5(31373) f
(3,−)
1

3398.6(28094)

f
(2,+)
1

58 170.0(102786) f
(1,−)
11

−8154.2(62812)
f
(3,+)
1

71 406.8(136858) f
(2,−)
11

−14 052.2(50297)
f
(4,+)
1

27 443.5(61315) f
(1,−)
13

−10 887.1(168553)
f
(1,+)
11

−4018.6(135577) f
(2,−)
13

−22 489.1(277134)
f
(2,+)
11

−4077.6(128642) f
(3,−)
13

−17 194.4(148501)
f
(1,+)
13

−2750.0(181541) f
(1,−)
111

12 301.2(82624)

f
(2,+)
13

−6085.8(295486) f
(1,−)
113

4240.0(239913)

f
(3,+)
13

−5237.9(163396) f
(2,−)
113

10 848.0(230242)
aParameters are defined in Eqs. (1)–(4) of Gu et al.16 σ = −/+ for
the ground X̃+ 2A1 and first excited Ã+ 2B1 electronic states, respec-
tively.

bIn cm−1 except for r(res)12 and a1 which are in Å and Å−1, respectively.
cConstrained value.
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Table S5: Vibrational energies of the ground X̃ 1A1 electronic state of the neutral calculated in
Section 3.2.2 are compared to those from Clark et al.17 Energies are given in cm−1 with respect to
the ground vibrational state. Vibrational states are assigned with the three vibrational quantum
numbers v1, v2, v3 in parentheses, where v2 is the bent molecule quantum number.

State Clark et al.17 This work State Clark et al.17 This work
(010) 998 998 (011) 2975 2978
(020) 1978 1980 (110) 3002 3002
(001) 1996 1997 (120) 3914 3915
(100) 2009 2009 (101) 3913 3923
(030) 2954 2954 (200) 3930 3932
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r1

r2

γH
1

H
2

Si

Figure S1: The bond lengths r1 and r2 and the bond angle γ are defined.
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Figure S2: For the 9 lowest symmetrical vibrational states, upper panels, and the 9 lowest an-
tiysymmetrical vibrational states, lower panels, of the ground X̃ 1A1 electronic state of the neutral,
the variations of the bending, left panels, and stretching, right panels, probability densities, as
defined in Eqs. (7) of the paper, are shown. pb(γ̃) is plotted as a function of the Radau bending
angle γ̃ in degrees. Contour plots of ps(R1, R2) are drawn with respect to the Radau stretching
coordinates R1 and R2 in Å. Each vibrational state is identified by a counter n and its vibrational
energy in cm−1.
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Figure S3: For the 9 lowest symmetrical vibrational states, upper panels, and the 9 lowest an-
tiysymmetrical vibrational states, lower panels, of the triplet ã 3B1 electronic state of the neutral,
the variations of the bending, left panels, and stretching, right panels, probability densities, as
defined in Eqs. (7) of the paper, are shown. pb(γ̃) is plotted as a function of the Radau bending
angle γ̃ in degrees. Contour plots of ps(R1, R2) are drawn with respect to the Radau stretching
coordinates R1 and R2 in Å. Each vibrational state is identified by a counter n and its vibrational
energy in cm−1.
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Figure S4: For the 9 lowest symmetrical vibrational states, upper panels, and the 9 lowest an-
tiysymmetrical vibrational states, lower panels, of the ground X̃+ 2A1 electronic state of the cation,
the variations of the bending, left panels, and stretching, right panels, probability densities, as
defined in Eqs. (7) of the paper, are shown. pb(γ̃) is plotted as a function of the Radau bending
angle γ̃ in degrees. Contour plots of ps(R1, R2) are drawn with respect to the Radau stretching
coordinates R1 and R2 in Å. Each vibrational state is identified by a counter n and its vibrational
energy in cm−1.

S14



Figure S5: For the 9 lowest symmetrical rovibronic states of the excited Ã+ 2B1 electronic state
of the cation with K = 0, the variations of the bending, left panel, and stretching, right panel,
probability densities, as defined in Eqs. (7) of the paper, are shown. pb(γ̃) is plotted as a function
of the Radau bending angle γ̃ in degrees. Contour plots of ps(R1, R2) are drawn with respect to
the Radau stretching coordinates R1 and R2 in Å. Each vibrational state is identified by a counter
n and its vibrational energy in cm−1.
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Figure S6: Calculated TPE spectra of the photoionizing transitions originating from the ground
X̃ 1A1 electronic state of the neutral are plotted as functions of the photon energy in eV. The
selection rule K+ = K ′′±1 was adopted. Each panel is characterized by a rotational temperature
Trot and a vibrational temperature Tvib given in Kelvin. The intensity scale of the two transitions
differs.
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Figure S7: Calculated TPE spectra of the photoionizing transitions originating from the triplet
ã 3B1 electronic state of the neutral are plotted as functions of the photon energy in eV. The
selection rule K+ = K ′′±1 was adopted. Each panel is characterized by a rotational temperature
Trot and a vibrational temperature Tvib given in Kelvin. The intensity scale of the two transitions
differs.
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