Supplementary Information

The orientation design of high-polarity ligand dipole CF₃-PEA for enhancing surface stability and optoelectronic properties of FAPbI₃ perovskite

Xiuchen Han ^a, Qi Yang ^b, Shuning Wang ^a, Xinyue Zhang ^a Dongmeng Chen ^a, Peiwen Xiao ^{c, d}
Wenjing Fang ^{a,*}, Bing Liu ^{a,b,*}

^a College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.

^b College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.

^c Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China;

^d Key Laboratory of Nano Chemistry, China National Petroleum Corporation, Beijing 100083, China;

*Corresponding authors.

E-mail addresses: fangwj@upc.edu.cn (W.J. Fang), liubing19720115@gmail.com (B. Liu).

Fig. S1. The crystal structure of FAPbI₃ perovskite adsorbed by CF₃-PEA.

Fig. S2. The front view of atomic structure of surface adsorption systems M1-M9 after structural optimization.

Fig. S3. (a) C-axis potential distribution and (b) Charge density difference (isosurface value of 0.0007 e/bohr³; blue indicates electron depletion; yellow indicates electron accumulation) for systems M2, M3, M6, and M8.

Fig. S4. Density of state of systems containing M3, M6, and M8, where VBM is corrected to be 0 eV.

Table S1. Adsorption Position with Adsorption Site and the corresponding Crystal Plane of adsorption systems M1-M6, and M8-M9.

	Adsorption Position Description	Adsorption Site	Crystal Plane
M1	Vertical adsorption of positive dipole; -	C_3	[1, -1, -2]
	NH ₃ group located above C ₃		
M2	Vertical adsorption of positive dipole; -	C_3	[2, -1, -4]
	NH ₃ group located above C ₃		
M3	Vertical adsorption of positive dipole; -	C_3	[-2, -1, -5]
	NH ₃ group located above C ₃		
M4	Parallel adsorption of dipole; -NH3 group	C_3	[2, 4, -1]
	located above C ₃ ; -CF ₃ group is further		
	from the FAPbI ₃ surface, directly above		
	the A_2		
M5	Vertical adsorption of negative dipole; -	A_2	[0, 0, 1]
	CF ₃ group located above A ₂		
M6	Parallel adsorption of dipole; -NH3 group	C_3	[2, 4, 1]
	located above C ₃ ; -CF ₃ group is further		
	from the FAPbI ₃ surface, directly above		
	the A_2		
M8	Parallel adsorption of dipole; -NH ₃ group	C_3	[1, 1, -3]
	located above C ₃ ; -CF ₃ group is further		
	from the FAPbI ₃ surface, directly above		
	the A_2		
M9	Parallel adsorption of dipole; -NH ₃ group	C_3	[1, 3, -1]
	located above C ₃ ; -CF ₃ group is further		
	from the $FAPbI_3$ surface, directly above		
	the A_2		

Table S2. The values of E_{tot} , ΔE_{tot} , E_{ad} , and E_{form} of Bare-FAPbI₃ and surface adsorption systems M1-M6, and M8-M9, respectively.

	$E_{tot}(eV)$	$\Delta E_{tot}(eV)$	E_{ad} (eV)	E _{form} (eV)
Bare-FAPbI ₃	-244.57	128.01	-	-0.485
M1	-372.42	0.16	-4.03	-0.743
M2	-372.33	0.25	-3.88	-0.740
M3	-372.36	0.22	-3.85	-0.742
M4	-372.58	0	-4.14	-0.746
M5	-369.05	3.53	-0.42	-0.477
M6	-372.52	0.06	-4.08	-0.740
M8	-372.33	0.25	-4.08	-0.728
M9	-372.50	0.08	-4.06	-0.740

Table S3. Minimum potential gradient ($\Delta \rho_{Min}$), maximum potential gradient ($\Delta \rho_{Max}$), and the resulting potential gradient span ($\Delta G = \Delta \rho_{Max} - \Delta \rho_{Min}$) along the c-axis direction for systems M1-M6, and M8-M9.

	$\Delta ho_{Min} \left(eV/\mathring{A} ight)$	$\Delta ho_{Max} \left(eV/\mathring{A} \right)$	ΔG (eV/Å)
M1	-0.124	0.136	0.260
M2	-0.124	0.164	0.288
M3	-0.163	0.184	0.347
M4	-0.129	0.201	0.330
M5	-0.044	0.099	0.143
M6	-0.123	0.204	0.327
M 8	-0.169	0.199	0.368
M9	-0.103	0.209	0.312

Table S4. Work function (WF), Fermi level, vacuum level, and Δ WF for both the bare FAPbI3 and the adsorption systems M1-M6 and M8-M9. Δ WF = WF _{bare FAPbI3} – WF _{system}.

	WF (eV)	Fermi Level (eV)	Vacuum Level (eV)	ΔWF (eV)
Bare FAPbI3	6.764	-3.505	3.259	0
M1	6.762	-1.636	5.126	0.002
M2	6.731	-1.818	4.913	0.033
M3	6.739	-1.833	4.906	0.025
M4	6.743	-1.425	5.318	0.021
M5	7.331	-1.991	5.340	-0.567
M6	6.773	-1.281	5.492	-0.009
M 8	6.734	-1.605	5.129	0.03
M9	6.74	-1.468	5.272	0.024