Supplementary Information ## The orientation design of high-polarity ligand dipole CF₃-PEA for enhancing surface stability and optoelectronic properties of FAPbI₃ perovskite Xiuchen Han ^a, Qi Yang ^b, Shuning Wang ^a, Xinyue Zhang ^a Dongmeng Chen ^a, Peiwen Xiao ^{c, d} Wenjing Fang ^{a,*}, Bing Liu ^{a,b,*} ^a College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China. ^b College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China. ^c Research Institute of Petroleum Exploration & Development, PetroChina, Beijing 100083, China; ^d Key Laboratory of Nano Chemistry, China National Petroleum Corporation, Beijing 100083, China; *Corresponding authors. E-mail addresses: fangwj@upc.edu.cn (W.J. Fang), liubing19720115@gmail.com (B. Liu). **Fig. S1.** The crystal structure of FAPbI₃ perovskite adsorbed by CF₃-PEA. **Fig. S2.** The front view of atomic structure of surface adsorption systems M1-M9 after structural optimization. **Fig. S3.** (a) C-axis potential distribution and (b) Charge density difference (isosurface value of 0.0007 e/bohr³; blue indicates electron depletion; yellow indicates electron accumulation) for systems M2, M3, M6, and M8. **Fig. S4.** Density of state of systems containing M3, M6, and M8, where VBM is corrected to be 0 eV. **Table S1.** Adsorption Position with Adsorption Site and the corresponding Crystal Plane of adsorption systems M1-M6, and M8-M9. | | Adsorption Position Description | Adsorption Site | Crystal Plane | |----|--|-----------------|---------------| | M1 | Vertical adsorption of positive dipole; - | C_3 | [1, -1, -2] | | | NH ₃ group located above C ₃ | | | | M2 | Vertical adsorption of positive dipole; - | C_3 | [2, -1, -4] | | | NH ₃ group located above C ₃ | | | | M3 | Vertical adsorption of positive dipole; - | C_3 | [-2, -1, -5] | | | NH ₃ group located above C ₃ | | | | M4 | Parallel adsorption of dipole; -NH3 group | C_3 | [2, 4, -1] | | | located above C ₃ ; -CF ₃ group is further | | | | | from the FAPbI ₃ surface, directly above | | | | | the A_2 | | | | M5 | Vertical adsorption of negative dipole; - | A_2 | [0, 0, 1] | | | CF ₃ group located above A ₂ | | | | M6 | Parallel adsorption of dipole; -NH3 group | C_3 | [2, 4, 1] | | | located above C ₃ ; -CF ₃ group is further | | | | | from the FAPbI ₃ surface, directly above | | | | | the A_2 | | | | M8 | Parallel adsorption of dipole; -NH ₃ group | C_3 | [1, 1, -3] | | | located above C ₃ ; -CF ₃ group is further | | | | | from the FAPbI ₃ surface, directly above | | | | | the A_2 | | | | M9 | Parallel adsorption of dipole; -NH ₃ group | C_3 | [1, 3, -1] | | | located above C ₃ ; -CF ₃ group is further | | | | | from the $FAPbI_3$ surface, directly above | | | | | the A_2 | | | **Table S2.** The values of E_{tot} , ΔE_{tot} , E_{ad} , and E_{form} of Bare-FAPbI₃ and surface adsorption systems M1-M6, and M8-M9, respectively. | | $E_{tot}(eV)$ | $\Delta E_{tot}(eV)$ | E_{ad} (eV) | E _{form} (eV) | |-------------------------|---------------|----------------------|---------------|------------------------| | Bare-FAPbI ₃ | -244.57 | 128.01 | - | -0.485 | | M1 | -372.42 | 0.16 | -4.03 | -0.743 | | M2 | -372.33 | 0.25 | -3.88 | -0.740 | | M3 | -372.36 | 0.22 | -3.85 | -0.742 | | M4 | -372.58 | 0 | -4.14 | -0.746 | | M5 | -369.05 | 3.53 | -0.42 | -0.477 | | M6 | -372.52 | 0.06 | -4.08 | -0.740 | | M8 | -372.33 | 0.25 | -4.08 | -0.728 | | M9 | -372.50 | 0.08 | -4.06 | -0.740 | | | | | | | **Table S3.** Minimum potential gradient ($\Delta \rho_{Min}$), maximum potential gradient ($\Delta \rho_{Max}$), and the resulting potential gradient span ($\Delta G = \Delta \rho_{Max} - \Delta \rho_{Min}$) along the c-axis direction for systems M1-M6, and M8-M9. | | $\Delta ho_{Min} \left(eV/\mathring{A} ight)$ | $\Delta ho_{Max} \left(eV/\mathring{A} \right)$ | ΔG (eV/Å) | |------------|--|---|-----------| | M1 | -0.124 | 0.136 | 0.260 | | M2 | -0.124 | 0.164 | 0.288 | | M3 | -0.163 | 0.184 | 0.347 | | M4 | -0.129 | 0.201 | 0.330 | | M5 | -0.044 | 0.099 | 0.143 | | M6 | -0.123 | 0.204 | 0.327 | | M 8 | -0.169 | 0.199 | 0.368 | | M9 | -0.103 | 0.209 | 0.312 | **Table S4.** Work function (WF), Fermi level, vacuum level, and Δ WF for both the bare FAPbI3 and the adsorption systems M1-M6 and M8-M9. Δ WF = WF _{bare FAPbI3} – WF _{system}. | | WF (eV) | Fermi Level (eV) | Vacuum Level (eV) | ΔWF (eV) | |-------------|---------|------------------|-------------------|----------| | Bare FAPbI3 | 6.764 | -3.505 | 3.259 | 0 | | M1 | 6.762 | -1.636 | 5.126 | 0.002 | | M2 | 6.731 | -1.818 | 4.913 | 0.033 | | M3 | 6.739 | -1.833 | 4.906 | 0.025 | | M4 | 6.743 | -1.425 | 5.318 | 0.021 | | M5 | 7.331 | -1.991 | 5.340 | -0.567 | | M6 | 6.773 | -1.281 | 5.492 | -0.009 | | M 8 | 6.734 | -1.605 | 5.129 | 0.03 | | M9 | 6.74 | -1.468 | 5.272 | 0.024 |