Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2025

Supplemental Information

Polycyclic (Anti)aromatic Hydrocarbons: Interstellar Formation and Spectroscopic Characterization of Biphenylene and Benzopentalene

Athena R. Flint¹, Vincent J. Esposito², and Ryan C. Fortenberry¹

 $^1\rm Department$ of Chemistry and Biochemistry, University of Mississippi, University, MS 38677, USA $^2\rm NASA$ Ames Research Center, MS N245-6, Moffett Field, CA 94035, USA

1 Excited States of *ortho*-Benzyne

MCSCF excited-state calculations are used to correlate the relative energies of the 1 ${}^{1}A_{g}$ and 2 ${}^{1}A_{g}$ states of the D_{2h}-symmetry association of o-C₆H₄ at the furthest distance from the minimum computed ($r_{C-C} = 5.0$ Å) with the energies of the low-lying excited states of o-C₆H₄ in order to determine which electronic states of o-C₆H₄ would need to be present in order to barrierlessly proceed through the avoided crossing shown in Fig. 1 in the main text. In Fig. 1, the vertical excitation energy at $r_{C-C} = 5.0$ Å from the 1 ${}^{1}A_{g}$ state to the 2 ${}^{1}A_{g}$ state is 96.9 kcal mol⁻¹, or 4.20 eV, determined at the MRCI-F12+Q/cc-pVDZ-F12//MCSCF/aug-cc-pVDZ level of theory with a (6e,6o) active space. The orbitals used to construct this active space are defined in Table S1. Determination of the vertical excitation energy from the MCSCF values only results in a slightly lower value of 3.62 eV.

		\mathbf{a}_g	\mathbf{b}_{3u}	\mathbf{b}_{2u}	\mathbf{b}_{1g}	\mathbf{b}_{1u}	\mathbf{b}_{2g}	\mathbf{b}_{3g}	\mathbf{a}_u	
(G_{α}, G_{α})	Occupied	10	2	8	2	10	2	8	1	
(00,00)	Closed	9	2	7	1	9	1	7	1	

Table S1: Occupied and closed orbitals used in the MRCI-F12+Q/cc-pVDZ-F12//MCSCF/aug-cc-pVDZ PES for the dimerization of o-C₆H₄ shown in Fig. 1 in the main text.

			Acti	ve Space		
State	(6e, 7o)	(6e, 9o)	(12e, 9o)	(12e, 11o)	(6e, 13o)	(8e, 14o)
1 ¹ A ₁	0.00	0.00	0.00	0.00	0.00	0.00
$2 {}^{1}A_{1}$	8.54	6.65	7.94	6.63	6.57	6.27
$1 \ {}^{1}B_{1}$	4.29	3.86	5.11	4.05	4.03	3.83
$2 {}^{1}B_{1}$	6.99	7.42	6.63	6.66	7.13	7.29
$1 \ {}^{1}B_{2}$	8.01	7.04	7.26	7.15	6.20	6.19
$2 {}^{1}B_{2}$	9.63	8.77	11.0	8.05	8.36	7.74
$1 \ {}^{1}A_{2}$	3.54	4.11	4.33	4.61	4.63	3.94
$2 {}^{1}A_{2}$	6.44	8.02	6.31	8.73	7.88	6.81
$ \Delta (1 {}^{1}B_{1}, 1 {}^{1}A_{2})$	0.75	0.25	0.78	0.56	0.60	0.11

Table S2: MCSCF/aug-cc-pVDZ vertical excitation energies (in eV) for o-C₆H₄ computed with six different active spaces. Energies are computed for the two lowest-energy states of each symmetry. The lowest-energy excited state located within each calculation is bolded.

As shown in Table S2, there are two excited states of o-C₆H₄ that can appear when supplied with approximately the same energy as is required to undergo a vertical transition near the dissociation limit in Fig. 1. The order in which these states appear (i.e. which state is lower in energy) is not consistent across the active spaces tested, however. Complete definitions of the active spaces listed in Table S2 are listed in Table S3. The computed HF orbitals for the F12-DZ-optimized o-C₆H₄ molecule show that the HOMO is of b₂ symmetry with a HOMO-1 of a₂ symmetry. The energy difference between the HOMO and HOMO-1, both π orbitals containing electrons involved in aromaticity, is computed to be 0.0318 eV, indicating that these orbitals are nearly degenerate and could be prone to swapping. The LUMO is of b₂ symmetry. A simple excitation of one electron from the HOMO to the LUMO would result in an A₂ electronic state, while an excitation of one electron from the HOMO-1 to the LUMO would result in a B₁ electronic state. The two active spaces that predict an A₂ state to be the first excited state have much larger gaps between the first and second excited states than the other active spaces. The active space with the greatest number of orbitals involved shrinks the gap between the two to 0.11 eV.

Considering that there will still be some interaction energy between the two o-C₆H₄ monomers at their greatest intermolecular distance in Fig. 1, making a direct numerical comparison to the data in Table S2 would be very challenging. As such, the 2 ${}^{1}A_{g}$ PES in

		a_1	\mathbf{b}_1	b_2	a_2
(6e, 7o)	Occupied Closed	$\frac{12}{9}$	$\frac{2}{1}$	9 7	$\begin{array}{c} 1 \\ 0 \end{array}$
(6e,9o)	Occupied Closed	$\frac{12}{9}$	$\frac{4}{1}$	9 7	$\begin{array}{c} 1 \\ 0 \end{array}$
(12e,9o)	Occupied Closed	$\frac{12}{8}$	21	$\frac{8}{5}$	$\begin{array}{c} 1 \\ 0 \end{array}$
(12e,11o)	Occupied Closed	$\frac{12}{8}$	$\begin{array}{c} 4 \\ 1 \end{array}$	$\frac{8}{5}$	$\begin{array}{c} 1 \\ 0 \end{array}$
(6e,13o)	Occupied Closed	$\frac{13}{9}$	$5 \\ 1$	$\begin{array}{c} 10 \\ 7 \end{array}$	$\begin{array}{c} 2 \\ 0 \end{array}$
(8e,14o)	Occupied Closed	$\frac{13}{9}$	$5 \\ 0$	$\begin{array}{c} 10 \\ 7 \end{array}$	$\begin{array}{c} 2\\ 0 \end{array}$

Table S3: Sets of occupied and closed orbitals for o-C₆H₄ that define the active spaces in Table S2.

Fig. 1 is tentatively identified as resulting from the association between $\tilde{X}^{1} A_{1} o$ -C₆H₄ and 1 ${}^{1}A_{2}/{}^{1}B_{1} o$ -C₆H₄ (note that the \tilde{A} assignment is avoided as neither state can be confirmed as the true first excited state).

2 Structures

-					
\mathbf{C}	0.0000000000	0.6262739089	1.1815193381		
\mathbf{C}	0.0000000000	-0.6262739089	1.1815193381		
\mathbf{C}	0.0000000000	1.4703431584	0.0853087666		
\mathbf{C}	0.0000000000	-1.4703431584	0.0853087666		
\mathbf{C}	0.0000000000	0.7061089066	-1.1017852267		
\mathbf{C}	0.0000000000	-0.7061089066	-1.1017852267		
Η	0.0000000000	2.5503990468	0.0885910802		
Η	0.0000000000	-2.5503990468	0.0885910802		
Η	0.0000000000	1.2215561901	-2.0553053760		
Η	0.0000000000	-1.2215561901	-2.0553053760		
	T1 Diagnostic	0.01417630			
D1 Diagnostic 0.04284069					
C	CCSD(T)-F12/cc-pVDZ-F12 Harmonic Frequencies				
	390.67	110	1.73		
	438.40	115	3.02		
	465.91	126	4.23		
	596.68	130	5.20		
	612.44	143	0.11		
	739.27	147	2.25		
	854.39	147	7.66		
	860.83	193	3.96		
	911.66	317	3.88		
	948.56	318	8.49		
	984.74	322	1.03		
	1061.44	322	3.60		

Table S4: Optimized geometry for o-benzyne. Cartesian coordinates in Å.

2.1 Unimolecular Products

С	0.0000000000	-0.7131219361	0.7564036549
\mathbf{C}	0.0000000000	0.7131219361	-0.7564036549
\mathbf{C}	0.0000000000	-0.7131219361	-0.7564036549
\mathbf{C}	0.0000000000	0.7131219361	0.7564036549
\mathbf{C}	0.0000000000	-1.4488851108	1.9201809793
\mathbf{C}	0.0000000000	1.4488851108	-1.9201809793
\mathbf{C}	0.0000000000	-1.4488851108	-1.9201809793
\mathbf{C}	0.0000000000	1.4488851108	1.9201809793
\mathbf{C}	0.0000000000	-0.6965943881	3.1281114185
\mathbf{C}	0.0000000000	0.6965943881	-3.1281114185
\mathbf{C}	0.0000000000	-0.6965943881	-3.1281114185
\mathbf{C}	0.0000000000	0.6965943881	3.1281114185
Η	0.0000000000	-2.5386632299	1.9414412863
Η	0.0000000000	2.5386632299	-1.9414412863
Η	0.0000000000	-2.5386632299	-1.9414412863
Η	0.0000000000	2.5386632299	1.9414412863
Η	0.0000000000	-1.2257870969	4.0820322223
Η	0.0000000000	1.2257870969	-4.0820322223
Η	0.0000000000	-1.2257870969	-4.0820322223
Η	0.0000000000	1.2257870969	4.0820322223
	T1 Diagnostic	0.01200780	
	D1 Diagnostic	0.03649517	
	B3LYP/aug-cc-p	oVDZ Harmonic	Frequencies
	102.27	868.42	1308.50
	147.15	920.02	1419.06
	209.25	925.07	1444.39
	318.34	950.20	1461.65
	377.64	982.15	1463.96
	397.32	989.90	1506.25
	431.53	990.31	1623.16
	468.37	992.70	1626.47
	560.81	1009.98	1640.03
	594.73	1037.34	1703.72
	604.39	1063.82	3168.34
	620.93	1103.16	3168.48
	729.64	1133.78	3178.02
	734.21	1138.73	3178.82
	739.45	1171.34	3187.03
	750.32	1180.60	3187.68
	777.28	1276.69	3194.82
	859.51	1293.10	3195.43

Table S5: Optimized geometry for biphenylene. Cartesian coordinates in Å.

С	-1.0758744851	0.0000100595	-2.8415082874
\mathbf{C}	0.2757983494	0.0001639967	-3.1794238868
\mathbf{C}	1.2657850432	0.0000353405	-2.1719649888
\mathbf{C}	0.8662416349	-0.0000184565	-0.8428017852
\mathbf{C}	-0.5218049054	-0.0000791827	-0.4949120843
\mathbf{C}	-1.4877882222	-0.0000557931	-1.4892730093
Η	-2.5499443654	-0.0000995315	-1.2418248088
\mathbf{C}	-0.5734815770	-0.0001640219	0.9769357847
\mathbf{C}	-1.4021145153	0.0000152674	2.0571992393
\mathbf{C}	-0.5522587364	0.0001372814	3.2793815682
\mathbf{C}	0.7677472541	0.0000809782	2.9315228024
\mathbf{C}	0.8142411207	-0.0000981564	1.4653924792
\mathbf{C}	1.6689952411	-0.0001655955	0.4053125704
Η	2.7584543966	0.0004930747	0.4298797881
Η	1.6188851290	0.0002314410	3.6072078020
Η	-0.9456877347	0.0003404312	4.2946496730
Η	-2.4907666127	0.0002476993	2.0674134681
Η	2.3233078750	0.0001698621	-2.4403829532
Η	0.5728023176	0.0001451435	-4.2286698805
Η	-1.8290820518	0.0001197049	-3.6305824457
	T1 Diagnostic	0.01259461	
	D1 Diagnostic	0.04046058	
	B3LYP/aug-cc-p	VDZ Harmonic	Frequencies
	111.24	852.25	1321.46
	149.52	852.38	1331.02
	245.36	880.44	1405.38
	280.97	900.38	1458.61
	342.36	918.25	1467.50
	439.08	940.52	1528.04
	459.66	954.17	1614.17
	513.21	980.58	1634.24
	548.39	988.11	1637.33
	571.86	1035.79	1653.71
	584.01	1080.06	3166.25
	678.35	1095.26	3171.65
	682.71	1121.21	3182.65
	740.03	1163.46	3195.13
	762.72	1174.17	3198.86
	769.45	1193.53	3202.28
	798.80	1249.79	3214.20
	830.66	1299.40	3236.72

Table S6: Optimized geometry for benzopentalene. Cartesian coordinates in Å.

2.2 Bimolecular Products

Н	0.0000000000	0.000000000	-1.6662775069
С	0.00000000000	0.00000000000000000000000000000000000	-0.6030316726
\mathbf{C}	0.0000000000	0.0000000000	0.6030316726
Η	0.0000000000	0.0000000000	1.6662775069
	T1 Diagnostic	0.01484676	
	D1 Diagnostic	0.03216889	
CC	CSD(T)-F12/cc-p	VDZ-F12 Harmo	nic Frequencies
		607.49	
		607.49	
		746.16	
		746.16	
		2007.59	
		3412.50	
		3505.42	

Table S7: Optimized geometry for acetylene. Cartesian coordinates in Å.

С	1.2120100095	-0.6997543052	0.0000000000	
\mathbf{C}	0.0000000000	-1.3995086105	0.0000000000	
\mathbf{C}	-1.2120100095	-0.6997543052	0.0000000000	
\mathbf{C}	-1.2120100095	0.6997543052	0.00000000000	
\mathbf{C}	0.0000000000	1.3995086105	0.0000000000	
\mathbf{C}	1.2120100095	0.6997543052	0.0000000000	
Η	2.1569629026	-1.2453231125	0.00000000000	
Η	0.0000000000	-2.4906462249	0.00000000000	
Η	-2.1569629026	-1.2453231125	0.00000000000	
Η	-2.1569629026	1.2453231125	0.00000000000	
Η	0.0000000000	2.4906462249	0.00000000000	
Н	2.1569629026	1.2453231125	0.0000000000	
	T1 Diagnostic	0.01139370		
	D1 Diagnostic	0.03255238		
B3LYP/aug-cc-pVDZ Harmonic Frequencies				
	411.88	1163	3.36	
	411.88	1186.67		
	615.52	1186.73		
	615.54	1348.68		
	680.13	1352.98		
	728.39	1491.25		
	855.29	1491.27		
	855.29	1631	.46	
	980.99	1631	.47	
	980.99	3164	1.09	
	1004.02	3172	2.03	
	1012.00	3172	2.12	
	1014.71	3187.03		
	1054.65	3187	7.11	
	1054.75	3196	6.80	

Table S8: Optimized geometry for benzene. Cartesian coordinates in Å.

С	0.0000000000	0.7000622613	2.3813440622
\mathbf{C}	0.0000000000	-0.7000622613	2.3813440622
Η	0.0000000000	1.2494312642	3.3232531827
Η	0.0000000000	-1.2494312642	3.3232531827
\mathbf{C}	0.0000000000	1.3962681891	1.1738471203
\mathbf{C}	0.0000000000	-1.3962681891	1.1738471203
Η	0.0000000000	2.4856043378	1.1661563452
Η	0.0000000000	-2.4856043378	1.1661563452
\mathbf{C}	0.0000000000	0.7117909839	-0.0567372306
\mathbf{C}	0.0000000000	-0.7117909839	-0.0567372306
\mathbf{C}	0.0000000000	1.4494220050	-1.2815337880
\mathbf{C}	0.0000000000	-1.4494220050	-1.2815337880
\mathbf{C}	0.0000000000	2.0759976598	-2.3219288948
\mathbf{C}	0.0000000000	-2.0759976598	-2.3219288948
Η	0.0000000000	2.6277507568	-3.2380851767
Η	0.0000000000	-2.6277507568	-3.2380851767
	T1 Diagnostic	0.01289669	
	D1 Diagnostic	0.03494988	
	B3LYP/aug-cc-p	VDZ Harmonic	Frequencies
	103.36	651.47	1277.50
	116.52	652.12	1320.45
	142.36	718.77	1448.64
	177.81	767.81	1495.28
	298.50	786.06	1589.06
	354.01	816.94	1629.37
	419.28	895.55	2201.34
	455.65	967.64	2207.80
	490.04	1006.98	3177.12
	548.06	1057.08	3188.55
	559.02	1104.57	3199.66
	581.86	1173.46	3204.64
	585.69	1201.57	3478.30
	591.44	1226.16	3478.55

Table S9: Optimized geometry for o-dietheynyl benzene. Cartesian coordinates in Å.

Н	0.0000000000	0.0000000000	-4.2562712219
\mathbf{C}	0.0000000000	0.0000000000	-3.1927122048
\mathbf{C}	0.0000000000	0.0000000000	-1.9796322257
\mathbf{C}	0.0000000000	0.0000000000	-0.6093105969
\mathbf{C}	0.0000000000	0.0000000000	0.6093105969
\mathbf{C}	0.0000000000	0.0000000000	1.9796322257
\mathbf{C}	0.0000000000	0.0000000000	3.1927122048
Η	0.0000000000	0.0000000000	4.2562712219
	T1 Diagnostic	0.01538470	
	D1 Diagnostic	0.03585606	
CC	CSD(T)-F12/cc-pV	/DZ-F12 Harmo	nic Frequencies
		104.91	
		104.95	
		234.25	
		234.29	
		383.27	
		383.28	
		427.63	
		427.63	
		615.71	
		628.36	
		628.40	
		628.58	
		628.66	
		1167.28	
		2062.56	
		2168.66	
		2271.59	
		3455.58	
		3455.72	

Table S10: Optimized geometry for triacetylene. Cartesian coordinates in Å.

2.3 Intermediates

\mathbf{C}	-0.0052274144	-0.7396921470	0.0000000000
\mathbf{C}	0.0052274144	0.7396921470	0.0000000000
\mathbf{C}	0.0208117967	-3.5873607555	0.0000000000
\mathbf{C}	-0.0208117967	3.5873607555	0.0000000000
Η	0.0272371403	-4.6786680755	0.0000000000
Η	-0.0272371403	4.6786680755	0.0000000000
\mathbf{C}	1.1544775613	-1.5056341642	0.0000000000
\mathbf{C}	-1.1544775613	1.5056341642	0.0000000000
\mathbf{C}	-1.2070540771	-1.4865536041	0.0000000000
\mathbf{C}	1.2070540771	1.4865536041	0.0000000000
Η	-2.1583384568	-0.9516191177	0.0000000000
Η	2.1583384568	0.9516191177	0.0000000000
\mathbf{C}	1.2376246072	-2.8790308392	0.0000000000
\mathbf{C}	-1.2376246072	2.8790308392	0.0000000000
\mathbf{C}	-1.1892959698	-2.8831368134	0.0000000000
\mathbf{C}	1.1892959698	2.8831368134	0.0000000000
Η	2.1943331615	-3.4031062452	0.0000000000
Η	-2.1943331615	3.4031062452	0.0000000000
Η	-2.1325305326	-3.4305006735	0.0000000000
Η	2.1325305326	3.4305006735	0.0000000000
	T1 Diagnostic	0.01453720	
	D1 Diagnostic	0.04569929	
	B3LYP/aug-cc-r	VDZ Harmonic I	Frequencies
	42.97	848.68	1326.59
	96.03	865.99	1337.59
	131.56	943.94	1411.22
	242.30	951.68	1452.59
	312.77	975.90	1453.65
	416.91	986.99	1485.90
	417.66	994.57	1563.74
	428.81	996.04	1572.20
	462.47	1021.68	1633.26
	571.73	1040.16	1634.95
	598.89	1061.02	3164.55
	616.42	1104.44	3164.88
	634.81	1123.17	3170.73
	689.73	1161.81	3170.77
	718.75	1163.65	3180.59
	734.76	1219.08	3180.96
	744.26	1250.61	3192.81
	775.22	1308.10	3192.96

Table S11: Optimized geometry for I1. Cartesian coordinates in Å.

С	0.0000000000	-0.7447236857	0.7165532982
\mathbf{C}	0.0000000000	0.7447236857	-0.7165532982
\mathbf{C}	0.0000000000	-0.7447236857	-0.7165532982
\mathbf{C}	0.0000000000	0.7447236857	0.7165532982
\mathbf{C}	0.0000000000	-1.4757401096	1.9187280190
\mathbf{C}	0.0000000000	1.4757401096	-1.9187280190
\mathbf{C}	0.0000000000	-1.4757401096	-1.9187280190
\mathbf{C}	0.0000000000	1.4757401096	1.9187280190
\mathbf{C}	0.0000000000	-0.7241165675	3.0865080456
\mathbf{C}	0.0000000000	0.7241165675	-3.0865080456
\mathbf{C}	0.0000000000	-0.7241165675	-3.0865080456
\mathbf{C}	0.0000000000	0.7241165675	3.0865080456
Η	0.0000000000	-2.5656107071	1.9516548625
Η	0.0000000000	2.5656107071	-1.9516548625
Η	0.0000000000	-2.5656107071	-1.9516548625
Η	0.0000000000	2.5656107071	1.9516548625
Η	0.0000000000	-1.2330736445	4.0511549613
Η	0.0000000000	1.2330736445	-4.0511549613
Η	0.0000000000	-1.2330736445	-4.0511549613
Η	0.0000000000	1.2330736445	4.0511549613
	T1 Diagnostic	0.01429784	
	D1 Diagnostic	0.03987321	
	B3LYP/aug-cc-p	oVDZ Harmonic	Frequencies
	89.98	825.55	1317.23
	133.72	858.21	1390.61
	218.32	914.06	1410.57
	285.56	928.39	1420.82
	364.96	929.87	1464.92
	384.56	957.44	1465.49
	411.80	958.56	1519.21
	417.17	050 / 3	1520.99
		505.40	101010
	526.80	961.07	1552.17
	$526.80 \\ 543.95$	961.07 974.09	1552.17 1657.28
	$526.80 \\ 543.95 \\ 582.93$	961.07 974.09 1057.83	1552.17 1657.28 3168.32
	526.80 543.95 582.93 593.39	$\begin{array}{c} 353.43\\ 961.07\\ 974.09\\ 1057.83\\ 1110.88\end{array}$	$ \begin{array}{r} 1552.17 \\ 1657.28 \\ 3168.32 \\ 3169.45 \end{array} $
	526.80 543.95 582.93 593.39 665.09	$\begin{array}{c} 353.43\\ 961.07\\ 974.09\\ 1057.83\\ 1110.88\\ 1134.85\end{array}$	1552.17 1657.28 3168.32 3169.45 3173.70
	526.80 543.95 582.93 593.39 665.09 710.38	$\begin{array}{c} 353.43\\ 961.07\\ 974.09\\ 1057.83\\ 1110.88\\ 1134.85\\ 1153.37 \end{array}$	$1552.17 \\ 1657.28 \\ 3168.32 \\ 3169.45 \\ 3173.70 \\ 3175.00$
	526.80 543.95 582.93 593.39 665.09 710.38 713.58	$\begin{array}{c} 353.49\\ 961.07\\ 974.09\\ 1057.83\\ 1110.88\\ 1134.85\\ 1153.37\\ 1167.23\\ \end{array}$	$1552.17\\1657.28\\3168.32\\3169.45\\3173.70\\3175.00\\3185.79$
	526.80 543.95 582.93 593.39 665.09 710.38 713.58 722.43	$\begin{array}{c} 353.43\\ 961.07\\ 974.09\\ 1057.83\\ 1110.88\\ 1134.85\\ 1153.37\\ 1167.23\\ 1224.40\\ \end{array}$	$1552.17\\1657.28\\3168.32\\3169.45\\3173.70\\3175.00\\3185.79\\3186.44$
	526.80 543.95 582.93 593.39 665.09 710.38 713.58 722.43 758.08	$\begin{array}{c} 353.43\\ 961.07\\ 974.09\\ 1057.83\\ 1110.88\\ 1134.85\\ 1153.37\\ 1167.23\\ 1224.40\\ 1281.64 \end{array}$	$1552.17\\1657.28\\3168.32\\3169.45\\3173.70\\3175.00\\3185.79\\3186.44\\3195.51$

Table S12: Optimized geometry for 1 $^3\mathrm{B}_{3g}$ (C₆H₄)₂. Cartesian coordinates in Å.

\mathbf{C}	-0.5217079740	-0.7493564022	-0.7489810661
\mathbf{C}	-0.2944893837	-0.7316299809	0.6966779538
\mathbf{C}	-0.3255317360	0.6806372928	0.6826367133
\mathbf{C}	-0.7843114893	0.7527512931	-0.7987637018
\mathbf{C}	-0.0420489608	1.4720734925	-1.8671847435
\mathbf{C}	0.6731041935	0.7394492486	-2.7919536461
\mathbf{C}	0.4085930834	-0.6577122734	-2.9425905787
\mathbf{C}	-0.0718359577	-1.4272575327	-1.8644485500
Η	0.0775198601	-2.5084185253	-1.8709593238
Η	0.6523273177	-1.1569687336	-3.8855242641
Η	1.3103384070	1.2361701481	-3.5289570475
\mathbf{C}	0.0509820156	1.4461871581	1.7728199064
\mathbf{C}	0.3713045334	0.7232237117	2.9399586539
\mathbf{C}	0.3586913285	-0.6835410254	2.9744643352
\mathbf{C}	0.0443105056	-1.4533451250	1.8433084221
Η	0.0727488133	-2.5422063809	1.8768675819
Η	0.6156568729	-1.1866837443	3.9077423751
Η	0.6293837180	1.2680667706	3.8492340541
Η	0.0759726615	2.5351687791	1.7535025983
Η	-1.8497854623	1.0264349112	-0.8619311341
	T1 Diagnostic	0.03616796	
	D1 Diagnostic	0.24272911	
	B3LYP/aug-cc-p	VDZ Harmonic	Frequencies
	79.50	845.75	1288.94
	116.74	867.32	1330.22
	201.88	889.96	1335.00
	246.29	934.25	1392.17
	345.45	936.39	1445.61
	389.20	948.20	1477.00
	418.93	991.43	1502.13
	447.29	994.58	1561.65
	485.67	1015.37	1614.79
	542.15	1044.81	1646.47
	554.85	1101.03	3018.87
	621.11	1104.12	3132.96
	649.56	1128.08	3147.03
	710.96	1147.22	3170.58
	729.25	1168.73	3176.04
	729.25 757.01	1168.73 1184.11	$3176.04 \\ 3182.44$
	729.25 757.01 780.10	$1168.73 \\1184.11 \\1232.24$	3176.04 3182.44 3193.38

Table S13: Optimized geometry for I2. Cartesian coordinates in Å.

С	-3.1973961824	0.4618133619	-0.3191537398
Η	-4.1675089101	0.8433971377	-0.6367127113
\mathbf{C}	-2.9136159658	-0.8370731499	-0.0313954886
Η	-3.6163780761	-1.6674813244	-0.0242530408
\mathbf{C}	-1.9920508809	1.2910353389	-0.1782204548
Η	-1.9091653081	2.3163732609	-0.5377665292
\mathbf{C}	-0.9795671659	0.5025359311	0.2776930143
\mathbf{C}	-1.4860996542	-0.9179962604	0.4363045428
Η	-1.4761409644	-1.1916063546	1.5150590418
\mathbf{C}	-0.3914105169	-1.8282176683	-0.1092609585
\mathbf{C}	0.7763345138	-0.9687437968	-0.0326988286
\mathbf{C}	2.7976534276	0.9534825555	0.0088645697
\mathbf{C}	2.1193246862	-1.3707289978	-0.2005118674
\mathbf{C}	0.4614908739	0.4226149799	0.1646928095
\mathbf{C}	1.4780714992	1.3860958304	0.1663522517
\mathbf{C}	3.1245048784	-0.4091971725	-0.1637913944
Η	2.3439966978	-2.4257834811	-0.3604077861
Η	1.2566402720	2.4456277376	0.2977943814
Η	4.1689088142	-0.6973723083	-0.2859733876
Η	3.6024079618	1.6912243802	0.0133855759
	T1 Diagnostic	0.01543573	
	D1 Diagnostic	0.05948058	
	B3LYP/aug-cc-p	oVDZ Harmonic	Frequencies
	101.49	855.94	1278.18
	140.65	868.45	1300.43
	244.17	883.83	1348.55
	267.47	927.02	1368.20
	286.80	928.08	1439.79
	424.66	970.99	1477.13
	471.36	980.50	1535.35
	497.06	1004.01	1577.43
	537.02	1004.26	1621.71
	546.08	1028.21	1646.21
	568.34	1031.41	2935.40
	657.55	1067.96	3167.28
	688.37	1109.48	3180.35
	725.26	1130.69	3187.15
	762.13	1157.13	3190.91
	765.03	1177.62	3198.44
	775.79	1210.21	3203.11
	825.11	1249.25	3227.34

Table S14: Optimized geometry for I3. Cartesian coordinates in Å.

С	-0 1080537157	-0 7355304782	-0 5762900780
C	0.1351278206	-1.2999757714	0 5840795534
č	0.6773148310	-1 3916293851	1 7914937795
č	0.2671008443	-0.6249800987	2 9768318059
c	-0.2675373364	0.6252468763	2.9766722500
c	-0.20733462060	1 3916108595	1 7910063302
C	-0.134/323052	1.30101000000	0.5838002/50
č	0.100310/0//	0.7356313704	-0 5765316966
C	0.1333134344 0.7234350050	1 2507723806	1 81/8326717
C	0.7254555555	0.6027273720	-2 9702761837
C	0.4003113342	0.0021213120	2.0700286433
č	0.7234858600	1 2508018400	1 81/37796/0
ц	1 2600144265	-1.2036316430	1 8252066277
H	-1.2090144303	-2.2030073237	-1.020000277
ц	0.7151545350	1.0160750345	2 0205682271
ц	1 2600021464	2.0100700040	-5.9295062571 1.8961373079
п п	1.2090021404	2.2034229182	-1.02013/39/0 1.0179/69795
п u	-1.0040000012	2.0240090009	1.9176402760
п	-0.4900000000000000000000000000000000000	1.0750206720	3.9439032084
п	0.4930297834	-1.0730290730	3.9402203207
п	1.3041273661	-2.0230479828	1.9188907459
	T1 Diagnostic	0.01505980	
	D1 Diagnostic	0.04806341	
	B3LYP/aug-cc-	oVDZ Harmonic	Frequencies
	109.96	782.26	1360.04
	128.71	802.19	1391.22
	178.55	817.82	1408.58
	269.76	857.04	1463.39
	286.74	876.45	1473.87
	354.67	892.51	1514.00
	368.70	936.77	1593.41
	436.50	963.36	1632.79
	469.40	979.51	1862.91
	476.90	986.34	1932.28
	500.97	1014.74	3091.16
	000.01		
	531.23	1098.53	3091.37
	531.23 557.93	1098.53 1111.96	$3091.37 \\ 3147.79$
	531.23 557.93 609.12	$1098.53 \\1111.96 \\1180.47$	3091.37 3147.79 3167.78
	531.23 557.93 609.12 689.26	1098.53 1111.96 1180.47 1196.40	3091.37 3147.79 3167.78 3170.32
	$531.23 \\ 557.93 \\ 609.12 \\ 689.26 \\ 708.15$	1098.53 1111.96 1180.47 1196.40 1228.92	$\begin{array}{c} 3091.37\\ 3147.79\\ 3167.78\\ 3170.32\\ 3178.96\end{array}$
	$531.23 \\ 557.93 \\ 609.12 \\ 689.26 \\ 708.15 \\ 716.20$	$1098.53 \\1111.96 \\1180.47 \\1196.40 \\1228.92 \\1235.72$	$\begin{array}{c} 3091.37\\ 3147.79\\ 3167.78\\ 3170.32\\ 3178.96\\ 3191.02 \end{array}$

Table S15: Optimized geometry for I4. Cartesian coordinates in Å.

\mathbf{C}	-0.2644989160	-0.6632532039	-0.3561460414
\mathbf{C}	-0.6482535708	-1.2183713699	0.8677996739
\mathbf{C}	-0.7045671269	-1.2032069120	2.1878351900
\mathbf{C}	0.5700023182	-0.6365962912	2.6251356727
\mathbf{C}	1.0073605783	0.6443471565	2.2149157013
\mathbf{C}	0.1912550905	1.5190438883	1.5647856185
\mathbf{C}	-0.6394542614	1.6772608437	0.5436010911
\mathbf{C}	-0.3789173302	0.7560359504	-0.5883304841
\mathbf{C}	-0.1409359793	1.2487990737	-1.8876679210
\mathbf{C}	0.2485899709	0.4041594643	-2.9184079605
\mathbf{C}	0.4411017113	-0.9761133369	-2.6759360999
\mathbf{C}	0.1811958081	-1.5009969509	-1.4266521521
Η	0.2917563222	-2.5687790691	-1.2365225692
Η	0.7697377489	-1.6294730388	-3.4848790022
Η	0.4045140732	0.8048816870	-3.9210309030
Η	-0.2591630128	2.3177634303	-2.0738329380
Η	-1.4081359371	2.4529745633	0.4850046489
Η	2.0377571058	0.9347004458	2.4387079908
Η	1.2730834052	-1.2707307608	3.1729188317
Η	-1.4755547984	-1.6503635260	2.8210668469
	T1 Diagnostic	0.02069468	
	D1 Diagnostic	0.10998526	
	B3LYP/aug-cc-	oVDZ Harmonic	Frequencies
	88.46	764.64	1308.30
	108.39	794.83	1335.10
	143.94	822.56	1395.26
	231.77	841.87	1408.33
	319.25	872.31	1447.04
	335.81	913.18	1473.09
	361.73	960.65	1552.30
	414.19	972.64	1625.56
	430.12	986.81	1793.89
	469.99	1041.25	1818.40
	524.10	1073.40	3122.03
	542.18	1108.85	3125.05
	554.35	1155.38	3133.01
	616.51	1181.12	3149.00
	691.23	1190.14	3164.14
	725.09	1203.76	3175.22
	736.66	1246.99	3185.89
	748.56	1287.47	3197.03

Table S16: Optimized geometry for I5. Cartesian coordinates in Å.

\mathbf{C}	-0.4682358296	0.6990340591	2.8220658509
\mathbf{C}	-0.4682358296	-0.6990340591	2.8220658509
\mathbf{C}	-0.0508288517	1.3973989500	1.6849881688
\mathbf{C}	-0.0508288517	-1.3973989500	1.6849881688
\mathbf{C}	0.3704956670	0.7137063183	0.5372385302
\mathbf{C}	0.3704956670	-0.7137063183	0.5372385302
Η	-0.7932673320	1.2469390907	3.7074992160
Η	-0.7932673320	-1.2469390907	3.7074992160
Η	-0.0505635690	2.4882879632	1.6842654990
Η	-0.0505635690	-2.4882879632	1.6842654990
\mathbf{C}	0.8295950992	1.4159340053	-0.7134154972
\mathbf{C}	0.8295950992	-1.4159340053	-0.7134154972
\mathbf{C}	0.0795048113	1.3655799636	-1.7972500111
\mathbf{C}	0.0795048113	-1.3655799636	-1.7972500111
\mathbf{C}	-0.7178564336	0.7499341832	-2.6543221192
\mathbf{C}	-0.7178564336	-0.7499341832	-2.6543221192
Η	1.8434348687	1.8287542350	-0.7434261479
Η	1.8434348687	-1.8287542350	-0.7434261479
Η	-1.5081292476	1.2568972312	-3.2100896855
Η	-1.5081292476	-1.2568972312	-3.2100896855
	T1 Diagnostic	0.01333278	
	D1 Diagnostic	0.04062285	
	B3LYP/aug-cc-p	VDZ Harmonic	Frequencies
	91.70	791.04	1287.68
	105.54	807.16	1299.50
	196.41	842.23	1380.82
	266.89	864.77	1421.33
	269.73	880.13	1462.09
	320.16	898.77	1487.68
	369.84	917.04	1593.98
	426.86	955.52	1631.49
	445.56	994.38	1940.34
	483.02	1053.75	1966.94
	534.08	1070.56	3111.10
	534.52	1106.33	3112.68
	626.82	1123.78	3166.71
	634.71	1171.71	3167.75
	718.47	1181.84	3173.98
	725.96	1219.19	3179.78
	740.52	1259.61	3183.76
	759 57	1264.00	310/ 20

Table S17: Optimized geometry for I6. Cartesian coordinates in Å.

\mathbf{C}	0.3291746004	-0.6069447015	-0.4714651922
\mathbf{C}	-0.0727037471	-0.6707796577	1.0029392549
\mathbf{C}	-0.2135934559	0.6955391233	1.4494361178
\mathbf{C}	0.0344293414	1.5943406684	0.3816522242
\mathbf{C}	0.2031151637	0.8656037741	-0.7942348556
\mathbf{C}	0.1615498709	1.2876547719	-2.1527723051
\mathbf{C}	-0.0681262161	0.3517811363	-3.1329630069
\mathbf{C}	-0.2804573713	-1.0449868569	-2.8194117252
\mathbf{C}	-0.1521341303	-1.5158697665	-1.5513957150
Η	-0.3008588940	-2.5717634428	-1.3232555684
Η	-0.5555704623	-1.7228736774	-3.6286645673
Η	-0.1606592183	0.6713010468	-4.1720198354
Η	0.2086051250	2.3495838709	-2.3981324288
Η	0.0650478669	2.6804001243	0.4589604613
\mathbf{C}	-0.2800088503	0.7485434376	2.9192702039
\mathbf{C}	-0.0742309663	-0.5387975749	3.3304091909
\mathbf{C}	0.4036782029	-1.2758834229	2.1422262861
Η	-0.1273017547	-0.9399685136	4.3397670641
Η	-0.4405638201	1.6420591973	3.5194282131
Η	1.4222135913	-0.8003307482	-0.4149756625
	T1 Diagnostic	0.02985487	
	D1 Diagnostic	0.18380480	
	Dal VD /		n ·
	B3LYP/aug-cc-I	OVDZ Harmonic 1	Frequencies
	110.00	820.12 850.54	1301.31
	130.24	852.54	1342.37
	210.00	803.01	1374.49
	200.70	055 49	1410.00
	010.40 412.67	900.40	1450.91
	413.07	900.94	1400.09
	402.71	970.94	1494.00 1595.10
	410.20	904.12 1000-11	1549 70
	490.22	1000.11	1040.70
	044.19 555 74	1050.19	1049.20
	610.64	1000.12	2997.00 3167.89
	650.20	1112.08	2174.06
	009.00 662.87	1112.90	3174.90 3188 51
	002.07 702.70	1150.07	0100.01 2106 50
	712.70	1107.00 1176.50	3190.00 2100.25
	112.91	11/0.09	0199.20 2002 42
	103.04	1212.09	3202.42 2220-70
	800.45	1238.01	3229.19

Table S18: Optimized geometry for I7. Cartesian coordinates in Å.

С	-0.7091032873	0.2431605817	-3.0032617398
\mathbf{C}	0.7457249364	0.2585160278	-3.0019366818
\mathbf{C}	1.4444677559	-0.0346614354	-1.8883467784
\mathbf{C}	0.7456944719	-0.5147597630	-0.6292192287
\mathbf{C}	-0.7478818481	-0.1313315907	-0.5744234868
\mathbf{C}	-1.4055246374	0.0591780962	-1.8446300081
Η	-2.4935011164	0.1467207640	-1.8504208301
\mathbf{C}	-1.4898385882	-0.0812000134	0.6027015876
\mathbf{C}	-1.2973891591	-0.2975668677	1.9633230398
\mathbf{C}	-0.6216813726	0.2285277346	3.0832692043
\mathbf{C}	0.7541926936	0.3344678938	3.1052031689
\mathbf{C}	1.3650935656	0.0621038814	1.8539013540
\mathbf{C}	1.3510637169	-0.1495800367	0.6526014833
Η	0.7781331086	-1.6253253564	-0.6759414417
Η	1.3108042371	0.4908591363	4.0287353526
Η	-1.1890435239	0.3390002312	4.0138768478
Η	-2.5761719544	-0.0505190203	0.4033969724
Η	2.5343270576	-0.0215043617	-1.8761364159
Η	1.2703700665	0.5349491502	-3.9179682682
Η	-1.2414638708	0.4616300184	-3.9290364443
	T1 Diagnostic	0.02307370	
	D1 Diagnostic	0.12831582	
	B3LYP/aug-cc-p	oVDZ Harmonic	Frequencies
	75.44	763.98	1302.56
	95.81	796.08	1326.66
	190.77	804.68	1379.55
	216.23	835.15	1416.65
	239.06	878.02	1445.58
	258.70	922.84	1457.40
	339.02	955.19	1508.67
	397.01	971.55	1580.36
	414.41	982.01	1677.53
	444.74	993.39	2268.16
	497.09	1038.31	2901.14
	513.92	1140.65	3018.22
	531.26	1154.34	3122.14
	598.96	1165.53	3164.01
	612.18	1187.16	3170.43
	631.84	1195.70	3190.89
	684.11	1233.07	3190.95
	733.56	1263.20	3197.83

Table S19: Optimized geometry for I8. Cartesian coordinates in Å.

\mathbf{C}	0.7788034241	-0.8492843575	-0.6615243724
\mathbf{C}	0.5102633142	-1.2742382459	0.7191757783
\mathbf{C}	-0.2168650921	1.3456546039	1.6754429503
\mathbf{C}	0.2082404935	1.3035529350	0.5296649742
\mathbf{C}	0.8176010196	0.7689281331	-0.6999270581
\mathbf{C}	0.2196387679	1.3635787433	-1.9625415920
\mathbf{C}	-0.5065204440	0.6513353355	-2.8378580239
\mathbf{C}	-0.7883552545	-0.7706385437	-2.6272682097
\mathbf{C}	-0.2292992501	-1.4609546346	-1.6215383626
Η	-0.4688088009	-2.5125666617	-1.4607812821
Η	-1.4865751631	-1.2679761972	-3.3025031034
Η	-0.9266620800	1.1402441982	-3.7182637817
Η	0.3821237334	2.4325495160	-2.1094476360
Η	1.8852781188	1.0394038832	-0.6768949666
\mathbf{C}	-0.5519811021	0.7671485929	2.9331754080
\mathbf{C}	-0.3524816022	-0.5872957270	3.0468155868
\mathbf{C}	0.1378787457	-1.2481876508	1.8833377238
Η	-0.5603807293	-1.1115519108	3.9792004854
Η	-0.9281080562	1.3545152768	3.7704524695
Η	1.7823079349	-1.1890056688	-0.9737003311
	T1 Diagnostic	0.01358602	
	D1 Diagnostic	0.03713162	
	D1 Diagnostic B3LYP/aug-cc-	0.03713162 oVDZ Harmonic 1	Frequencies
	D1 Diagnostic B3LYP/aug-cc-j 43.30	0.03713162 oVDZ Harmonic 1 755.52	Frequencies 1289.43
	D1 Diagnostic B3LYP/aug-cc-j 43.30 84.23	0.03713162 oVDZ Harmonic 1 755.52 781.60	Frequencies 1289.43 1296.08
	D1 Diagnostic B3LYP/aug-cc-p 43.30 84.23 185.64	0.03713162 DVDZ Harmonic 1 755.52 781.60 865.35	Frequencies 1289.43 1296.08 1372.90
	D1 Diagnostic B3LYP/aug-cc-p 43.30 84.23 185.64 244.10	0.03713162 DVDZ Harmonic 1 755.52 781.60 865.35 899.03	Frequencies 1289.43 1296.08 1372.90 1390.47
	D1 Diagnostic B3LYP/aug-cc-p 43.30 84.23 185.64 244.10 260.13	0.03713162 oVDZ Harmonic 2 755.52 781.60 865.35 899.03 948.60	Frequencies 1289.43 1296.08 1372.90 1390.47 1430.03
	D1 Diagnostic B3LYP/aug-cc-j 43.30 84.23 185.64 244.10 260.13 345.48	0.03713162 oVDZ Harmonic 2 755.52 781.60 865.35 899.03 948.60 955.51	Frequencies 1289.43 1296.08 1372.90 1390.47 1430.03 1519.21
	D1 Diagnostic B3LYP/aug-cc-j 43.30 84.23 185.64 244.10 260.13 345.48 366.75	0.03713162 oVDZ Harmonic 2 755.52 781.60 865.35 899.03 948.60 955.51 958.93	Frequencies 1289.43 1296.08 1372.90 1390.47 1430.03 1519.21 1660.63
	D1 Diagnostic B3LYP/aug-cc-1 43.30 84.23 185.64 244.10 260.13 345.48 366.75 415.03	0.03713162 oVDZ Harmonic 2 755.52 781.60 865.35 899.03 948.60 955.51 958.93 972.35	Frequencies 1289.43 1296.08 1372.90 1390.47 1430.03 1519.21 1660.63 1712.30
	D1 Diagnostic B3LYP/aug-cc-1 43.30 84.23 185.64 244.10 260.13 345.48 366.75 415.03 438.25	0.03713162 oVDZ Harmonic 1 755.52 781.60 865.35 899.03 948.60 955.51 958.93 972.35 978.76	Frequencies 1289.43 1296.08 1372.90 1390.47 1430.03 1519.21 1660.63 1712.30 2236.36
	D1 Diagnostic B3LYP/aug-cc-1 43.30 84.23 185.64 244.10 260.13 345.48 366.75 415.03 438.25 452.99	0.03713162 oVDZ Harmonic 1 755.52 781.60 865.35 899.03 948.60 955.51 958.93 972.35 978.76 991.57	Frequencies 1289.43 1296.08 1372.90 1390.47 1430.03 1519.21 1660.63 1712.30 2236.36 2266.63
	D1 Diagnostic B3LYP/aug-cc-1 43.30 84.23 185.64 244.10 260.13 345.48 366.75 415.03 438.25 452.99 484.41	0.03713162 oVDZ Harmonic 1 755.52 781.60 865.35 899.03 948.60 955.51 958.93 972.35 978.76 991.57 1059.38	Frequencies 1289.43 1296.08 1372.90 1390.47 1430.03 1519.21 1660.63 1712.30 2236.36 2266.63 2981.14
	D1 Diagnostic B3LYP/aug-cc-1 43.30 84.23 185.64 244.10 260.13 345.48 366.75 415.03 438.25 452.99 484.41 533.00	0.03713162 oVDZ Harmonic 1 755.52 781.60 865.35 899.03 948.60 955.51 958.93 972.35 978.76 991.57 1059.38 1114.29	Frequencies 1289.43 1296.08 1372.90 1390.47 1430.03 1519.21 1660.63 1712.30 2236.36 2266.63 2981.14 3015.97
	D1 Diagnostic B3LYP/aug-cc-1 43.30 84.23 185.64 244.10 260.13 345.48 366.75 415.03 438.25 452.99 484.41 533.00 570.70	0.03713162 oVDZ Harmonic 1 755.52 781.60 865.35 899.03 948.60 955.51 958.93 972.35 978.76 991.57 1059.38 1114.29 1166.01	Frequencies 1289.43 1296.08 1372.90 1390.47 1430.03 1519.21 1660.63 1712.30 2236.36 2266.63 2981.14 3015.97 3163.24
	D1 Diagnostic B3LYP/aug-cc-1 43.30 84.23 185.64 244.10 260.13 345.48 366.75 415.03 438.25 452.99 484.41 533.00 570.70 578.57	0.03713162 oVDZ Harmonic 1 755.52 781.60 865.35 899.03 948.60 955.51 958.93 972.35 978.76 991.57 1059.38 1114.29 1166.01 1187.14	Frequencies 1289.43 1296.08 1372.90 1390.47 1430.03 1519.21 1660.63 1712.30 2236.36 2266.63 2981.14 3015.97 3163.24 3171.44
	D1 Diagnostic B3LYP/aug-cc-1 43.30 84.23 185.64 244.10 260.13 345.48 366.75 415.03 438.25 452.99 484.41 533.00 570.70 578.57 636.28	0.03713162 pVDZ Harmonic 1 755.52 781.60 865.35 899.03 948.60 955.51 958.93 972.35 978.76 991.57 1059.38 1114.29 1166.01 1187.14 1201.69	Frequencies 1289.43 1296.08 1372.90 1390.47 1430.03 1519.21 1660.63 1712.30 2236.36 2266.63 2981.14 3015.97 3163.24 3171.44 3184.94
	D1 Diagnostic B3LYP/aug-cc-1 43.30 84.23 185.64 244.10 260.13 345.48 366.75 415.03 438.25 452.99 484.41 533.00 570.70 578.57 636.28 654.14	0.03713162 pVDZ Harmonic 1 755.52 781.60 865.35 899.03 948.60 955.51 958.93 972.35 978.76 991.57 1059.38 1114.29 1166.01 1187.14 1201.69 1206.41	Frequencies 1289.43 1296.08 1372.90 1390.47 1430.03 1519.21 1660.63 1712.30 2236.36 2266.63 2981.14 3015.97 3163.24 3171.44 3184.94 3185.71
	$\begin{array}{c} {\rm D1\ Diagnostic}\\ {\rm B3LYP/aug-cc-}\\ {\rm 43.30}\\ {\rm 84.23}\\ {\rm 185.64}\\ {\rm 244.10}\\ {\rm 260.13}\\ {\rm 345.48}\\ {\rm 366.75}\\ {\rm 415.03}\\ {\rm 438.25}\\ {\rm 452.99}\\ {\rm 484.41}\\ {\rm 533.00}\\ {\rm 570.70}\\ {\rm 578.57}\\ {\rm 636.28}\\ {\rm 654.14}\\ {\rm 728.46}\\ \end{array}$	0.03713162 pVDZ Harmonic 1 755.52 781.60 865.35 899.03 948.60 955.51 958.93 972.35 978.76 991.57 1059.38 1114.29 1166.01 1187.14 1201.69 1206.41 1238.28	Frequencies 1289.43 1296.08 1372.90 1390.47 1430.03 1519.21 1660.63 1712.30 2236.36 2266.63 2981.14 3015.97 3163.24 3171.44 3184.94 3185.71 3193.31

Table S20: Optimized geometry for I9. Cartesian coordinates in Å.

\mathbf{C}	-0.6641662935	0.7341713144	2.5407058366
\mathbf{C}	-0.6641662935	-0.7341713144	2.5407058366
Η	-1.2713652040	1.2469862442	3.2888500525
Η	-1.2713652040	-1.2469862442	3.2888500525
\mathbf{C}	0.0538459646	1.4502721591	1.6560258602
\mathbf{C}	0.0538459646	-1.4502721591	1.6560258602
Η	0.0345304271	2.5416703024	1.6798249933
Η	0.0345304271	-2.5416703024	1.6798249933
\mathbf{C}	0.9065044526	0.7925468540	0.6054450622
\mathbf{C}	0.9065044526	-0.7925468540	0.6054450622
Η	1.9138332689	1.2371733333	0.5848343312
Η	1.9138332689	-1.2371733333	0.5848343312
\mathbf{C}	0.2801750618	0.6827798313	-0.7919073691
\mathbf{C}	0.2801750618	-0.6827798313	-0.7919073691
\mathbf{C}	-0.1264709561	1.6684533321	-1.7151294815
\mathbf{C}	-0.1264709561	-1.6684533321	-1.7151294815
\mathbf{C}	-0.4446207704	2.5476353871	-2.4941362925
\mathbf{C}	-0.4446207704	-2.5476353871	-2.4941362925
Η	-0.7397675563	3.3116671109	-3.1821920673
Η	-0.7397675563	-3.3116671109	-3.1821920673
	T1 Diagnostic	0.01340479	
	D1 Diagnostic	0.03759379	
	B3LYP/aug-cc-i	oVDZ Harmonic	Frequencies
	59.53	646.31	1247.03
	81.30	646.71	1324.97
	98.74	732.74	1325.57
	122.82	763.53	1381.47
	146.90	792.28	1429.84
	184.78	805.28	1634.07
	240.34	928.29	1646.89
	329.28	948.61	1699.41
	389.38	969.25	2179.20
	431.21	977.53	2195.64
	448.80	986.22	3020.26
	457.62	1051.60	3030.16
	529.87	1060.69	3156.01
	556.58	1130.54	3161.38
	585.79	1171.81	3176.24
	586.99	1185.02	3185.59
	597.23	1197.08	3473.55

Table S21: Optimized geometry for I10. Cartesian coordinates in Å.

С	0.4269479357	-1.1715853817	-0.7456352942
\mathbf{C}	1.4624568977	-0.4081922280	-1.4305389900
\mathbf{C}	2.3499973458	0.3483611008	-0.7306694536
\mathbf{C}	2.3567749609	0.3402228239	0.7154107668
Η	3.1222393047	0.9115551387	1.2416024628
\mathbf{C}	1.4756378028	-0.4239676139	1.4149613647
Η	1.5378450492	-0.4971525714	2.5007037220
\mathbf{C}	0.4331999440	-1.1793883510	0.7312344199
Η	-0.0182381632	-2.0210282339	1.2474837638
Η	3.1104502912	0.9257195552	-1.2575543678
Η	1.5145355600	-0.4691989532	-2.5175616357
\mathbf{C}	-0.7809122465	-0.3142975674	0.0041506363
\mathbf{C}	-1.9930922915	-1.0316994817	0.0039991832
\mathbf{C}	-3.2044031201	-0.3798968500	0.0105822575
\mathbf{C}	-4.3543161254	0.0647473956	0.0100409284
Η	-5.3457085499	0.4650744699	0.0115757644
\mathbf{C}	-0.6818321003	1.1167161969	0.0115043295
\mathbf{C}	-0.6851573572	2.3308972032	0.0193076697
Η	-0.6961642672	3.4000047124	0.0264073276
Η	-0.0302608706	-2.0068913644	-1.2670048554
	T1 Diagnostic	0.01721223	
	D1 Diagnostic	0.06474417	
	B3LYP/aug-cc-p	oVDZ Harmonic	Frequencies
	55.41	638.93	1200.92
	94.81	666.65	1343.00
	$94.81 \\ 122.01$	$666.65 \\ 696.08$	$1343.00 \\ 1353.37$
	$94.81 \\ 122.01 \\ 125.55$	666.65 696.08 720.38	$1343.00 \\ 1353.37 \\ 1398.77$
	$94.81 \\122.01 \\125.55 \\209.07$	666.65 696.08 720.38 742.93	$1343.00 \\1353.37 \\1398.77 \\1427.18$
	$94.81 \\122.01 \\125.55 \\209.07 \\212.53$	666.65 696.08 720.38 742.93 796.46	$1343.00 \\ 1353.37 \\ 1398.77 \\ 1427.18 \\ 1456.27$
	$94.81 \\ 122.01 \\ 125.55 \\ 209.07 \\ 212.53 \\ 232.44$	$\begin{array}{c} 666.65\\ 696.08\\ 720.38\\ 742.93\\ 796.46\\ 822.71 \end{array}$	$1343.00 \\ 1353.37 \\ 1398.77 \\ 1427.18 \\ 1456.27 \\ 1586.34$
	$94.81 \\ 122.01 \\ 125.55 \\ 209.07 \\ 212.53 \\ 232.44 \\ 264.54$	$\begin{array}{c} 666.65\\ 696.08\\ 720.38\\ 742.93\\ 796.46\\ 822.71\\ 922.00\\ \end{array}$	$1343.00\\1353.37\\1398.77\\1427.18\\1456.27\\1586.34\\1666.80$
	$\begin{array}{c} 94.81 \\ 122.01 \\ 125.55 \\ 209.07 \\ 212.53 \\ 232.44 \\ 264.54 \\ 315.64 \end{array}$	$\begin{array}{c} 666.65\\ 696.08\\ 720.38\\ 742.93\\ 796.46\\ 822.71\\ 922.00\\ 968.14 \end{array}$	$1343.00\\1353.37\\1398.77\\1427.18\\1456.27\\1586.34\\1666.80\\2045.86$
	$\begin{array}{c} 94.81 \\ 122.01 \\ 125.55 \\ 209.07 \\ 212.53 \\ 232.44 \\ 264.54 \\ 315.64 \\ 374.09 \end{array}$	$\begin{array}{c} 666.65\\ 696.08\\ 720.38\\ 742.93\\ 796.46\\ 822.71\\ 922.00\\ 968.14\\ 980.26\\ \end{array}$	$1343.00\\1353.37\\1398.77\\1427.18\\1456.27\\1586.34\\1666.80\\2045.86\\2194.98$
	$\begin{array}{c} 94.81\\ 122.01\\ 125.55\\ 209.07\\ 212.53\\ 232.44\\ 264.54\\ 315.64\\ 374.09\\ 382.26\end{array}$	$\begin{array}{c} 666.65\\ 696.08\\ 720.38\\ 742.93\\ 796.46\\ 822.71\\ 922.00\\ 968.14\\ 980.26\\ 980.37\\ \end{array}$	$\begin{array}{c} 1343.00\\ 1353.37\\ 1398.77\\ 1427.18\\ 1456.27\\ 1586.34\\ 1666.80\\ 2045.86\\ 2194.98\\ 3174.37\end{array}$
	$\begin{array}{c} 94.81\\ 122.01\\ 125.55\\ 209.07\\ 212.53\\ 232.44\\ 264.54\\ 315.64\\ 374.09\\ 382.26\\ 421.14 \end{array}$	$\begin{array}{c} 666.65\\ 696.08\\ 720.38\\ 742.93\\ 796.46\\ 822.71\\ 922.00\\ 968.14\\ 980.26\\ 980.37\\ 983.58\\ \end{array}$	$\begin{array}{c} 1343.00\\ 1353.37\\ 1398.77\\ 1427.18\\ 1456.27\\ 1586.34\\ 1666.80\\ 2045.86\\ 2194.98\\ 3174.37\\ 3182.74 \end{array}$
	$\begin{array}{c} 94.81\\ 122.01\\ 125.55\\ 209.07\\ 212.53\\ 232.44\\ 264.54\\ 315.64\\ 374.09\\ 382.26\\ 421.14\\ 459.96 \end{array}$	$\begin{array}{c} 666.65\\ 696.08\\ 720.38\\ 742.93\\ 796.46\\ 822.71\\ 922.00\\ 968.14\\ 980.26\\ 980.37\\ 983.58\\ 992.18\\ \end{array}$	$\begin{array}{c} 1343.00\\ 1353.37\\ 1398.77\\ 1427.18\\ 1456.27\\ 1586.34\\ 1666.80\\ 2045.86\\ 2194.98\\ 3174.37\\ 3182.74\\ 3193.99\end{array}$
	$\begin{array}{c} 94.81\\ 122.01\\ 125.55\\ 209.07\\ 212.53\\ 232.44\\ 264.54\\ 315.64\\ 374.09\\ 382.26\\ 421.14\\ 459.96\\ 490.90\\ \end{array}$	$\begin{array}{c} 666.65\\ 696.08\\ 720.38\\ 742.93\\ 796.46\\ 822.71\\ 922.00\\ 968.14\\ 980.26\\ 980.37\\ 983.58\\ 992.18\\ 1009.93\\ \end{array}$	$\begin{array}{c} 1343.00\\ 1353.37\\ 1398.77\\ 1427.18\\ 1456.27\\ 1586.34\\ 1666.80\\ 2045.86\\ 2194.98\\ 3174.37\\ 3182.74\\ 3193.99\\ 3200.46\\ \end{array}$
	$\begin{array}{c} 94.81\\ 122.01\\ 125.55\\ 209.07\\ 212.53\\ 232.44\\ 264.54\\ 315.64\\ 374.09\\ 382.26\\ 421.14\\ 459.96\\ 490.90\\ 509.92\\ \end{array}$	$\begin{array}{c} 666.65\\ 696.08\\ 720.38\\ 742.93\\ 796.46\\ 822.71\\ 922.00\\ 968.14\\ 980.26\\ 980.37\\ 983.58\\ 992.18\\ 1009.93\\ 1095.55\\ \end{array}$	$\begin{array}{c} 1343.00\\ 1353.37\\ 1398.77\\ 1427.18\\ 1456.27\\ 1586.34\\ 1666.80\\ 2045.86\\ 2194.98\\ 3174.37\\ 3182.74\\ 3193.99\\ 3200.46\\ 3215.02\\ \end{array}$
	$\begin{array}{c} 94.81\\ 122.01\\ 125.55\\ 209.07\\ 212.53\\ 232.44\\ 264.54\\ 315.64\\ 374.09\\ 382.26\\ 421.14\\ 459.96\\ 490.90\\ 509.92\\ 582.50\\ \end{array}$	$\begin{array}{c} 666.65\\ 696.08\\ 720.38\\ 742.93\\ 796.46\\ 822.71\\ 922.00\\ 968.14\\ 980.26\\ 980.37\\ 983.58\\ 992.18\\ 1009.93\\ 1095.55\\ 1122.34\\ \end{array}$	$\begin{array}{c} 1343.00\\ 1353.37\\ 1398.77\\ 1427.18\\ 1456.27\\ 1586.34\\ 1666.80\\ 2045.86\\ 2194.98\\ 3174.37\\ 3182.74\\ 3193.99\\ 3200.46\\ 3215.02\\ 3219.09\\ \end{array}$
	$\begin{array}{c} 94.81\\ 122.01\\ 125.55\\ 209.07\\ 212.53\\ 232.44\\ 264.54\\ 315.64\\ 374.09\\ 382.26\\ 421.14\\ 459.96\\ 490.90\\ 509.92\\ 582.50\\ 589.11\\ \end{array}$	$\begin{array}{c} 666.65\\ 696.08\\ 720.38\\ 742.93\\ 796.46\\ 822.71\\ 922.00\\ 968.14\\ 980.26\\ 980.37\\ 983.58\\ 992.18\\ 1009.93\\ 1095.55\\ 1122.34\\ 1176.17\\ \end{array}$	$\begin{array}{c} 1343.00\\ 1353.37\\ 1398.77\\ 1427.18\\ 1456.27\\ 1586.34\\ 1666.80\\ 2045.86\\ 2194.98\\ 3174.37\\ 3182.74\\ 3193.99\\ 3200.46\\ 3215.02\\ 3219.09\\ 3474.49\end{array}$

Table S22: Optimized geometry for I11. Cartesian coordinates in Å.

2.4 Transition States

\mathbf{C}	0.0009363646	0.0010430485	-0.0019065142
\mathbf{C}	0.0013465005	-0.0007387981	1.3822491152
\mathbf{C}	1.1107356888	-0.0022125799	2.2017645755
\mathbf{C}	2.3652615643	-0.0019965158	1.5661395714
\mathbf{C}	2.4377146651	-0.0005867283	0.1689140125
\mathbf{C}	1.2745896332	0.0004998465	-0.6084660482
Η	1.3418903261	-0.0019577955	-1.697755471
Η	3.4111183608	-0.0015173632	-0.3223002347
Η	3.276774886	-0.0035744275	2.16598254
Η	1.0299841516	-0.0040004813	3.2893332556
\mathbf{C}	-1.2575707355	0.009223229	-0.8113558586
\mathbf{C}	-1.8975325009	-1.150562948	-1.2128953541
\mathbf{C}	-3.0526956444	-1.2322207926	-1.9620834747
\mathbf{C}	-3.6370210967	-0.0152084555	-2.3561634991
\mathbf{C}	-3.042208231	1.1952801661	-1.9841342185
\mathbf{C}	-1.8691043423	1.2123171949	-1.2220859481
Η	-1.414890641	2.1619576043	-0.9340583904
Η	-3.4971042252	2.137930932	-2.2895621233
Η	-4.5524274592	-0.0206995781	-2.9500251703
Η	-3.4990212868	-2.1877167445	-2.2398433594
	T1 Diagnostic	0.01442271	
	D1 Diagnostic	0.04289699	
	B3LYP/aug-cc-	pVDZ Harmonic	Frequencies
	58.1463i	846.7557	1325.7918
	91.0380	847.1368	1326.5011
	91.1515	937.9520	1425.6950
	292.3186	938.2400	1426.3236
	293.9068	976.0193	1452.1951
	298.6726	982.0879	1483.9235
	409.8485	982.2999	1566.9811
	413.6263	983.1416	1571.6606
	541.0649	1022.9203	1631.9141
	541.3517	1040.0840	1638.8906
	599.0538	1063.9886	3166.5028
	621.8843	1114.8976	3166.5399
	624.9599	1116.1950	3173.1922
	704.8986	1163.9482	3173.2588
	705.6357	1165.0909	3184.2439
	741.3208	1229.7712	3184.3103
	744.2791	1236.3875	3195.7889
	744.3565	1295.4714	3195.9302

Table S23: Optimized geometry for TS1. Cartesian coordinates in Å.

\mathbf{C}	-0.0058636309	-0.0040490812	0.0637294643
\mathbf{C}	-1.4961658327	-0.0349705087	0.0252531027
\mathbf{C}	-1.5048902595	-1.4544710345	0.0018703658
\mathbf{C}	0.0266500381	-1.4815013096	0.0728525523
\mathbf{C}	1.1553176234	-2.3284068139	-0.1558929888
\mathbf{C}	2.3559726907	-1.4726827822	-0.1632923803
\mathbf{C}	2.3521705584	-0.0937166101	-0.1416577305
\mathbf{C}	1.1478178	0.7038045499	-0.0546153043
Η	1.1984094255	1.7909050108	-0.1177106834
Η	3.3052515966	0.4369669436	-0.2106213829
Η	3.3232363994	-1.9733291988	-0.2502438472
\mathbf{C}	-2.6700976153	-2.1872688539	-0.1008481494
\mathbf{C}	-3.8654486488	-1.4324771776	-0.1590936977
\mathbf{C}	-3.8619481173	-0.0326780695	-0.129976869
\mathbf{C}	-2.6638183854	0.7095702176	-0.0441855681
Η	-2.6786262471	1.7989890553	-0.0379198893
Η	-4.8135992735	0.4974037226	-0.1806212961
Η	-4.8202516965	-1.9547151999	-0.2297881732
Η	-2.687065546	-3.2757249666	-0.1347667923
Η	0.4762181209	-2.0301838932	1.0699672671
	T1 Diagnostic	0.01392361	
	D1 Diagnostic	0.04990677	
	D9LVD /	VD7 Herminie	D
	DoLIF/aug-cc-j	212 7272	1206 2422
	104 7550	870 0443	1290.3433
	127 0896	000 2610	1412 0422
	212 8622	909.3010	1412.0432
	212.0022	921.9251	14427.0040
	345 5203	956.7050	1401.2004
	308 3373	008 0770	151/ 0037
	419 7991	1007 2944	1627 4865
	460 8540	1011 4331	1631 3257
	563 2094	1014 5963	1699 3553
	567 0386	1037 5345	2236 2804
	602 0299	1067 3271	$3145\ 2964$
	613 9818	1100 2572	3162 7587
	709.5232	1129.5139	3173.9918
	739 0471	1160 0838	3184 3374
	749 9506	1178 4598	3185 3645
	763 9616	1216 0131	3105.8087
	783 6320	1275 5682	3202 2001
	100.0040	1210.0002	0202.2001

Table S24: Optimized geometry for TS2. Cartesian coordinates in Å.

С	-3.2189970497	0.5025213894	-0.119913535
Η	-4.2046007481	0.871100986	-0.4008987857
\mathbf{C}	-2.9578135987	-0.7642715947	0.2785026844
Η	-3.6875990621	-1.5709445683	0.3244856931
\mathbf{C}	-2.0104147935	1.3121384573	-0.234160077
Η	-2.0142230239	2.3935807443	-0.3671840976
\mathbf{C}	-0.8766455742	0.5716406929	-0.1705304549
\mathbf{C}	-1.5111084187	-1.0076637655	0.5787653652
Η	-1.2197232204	-1.1488492828	1.635488202
\mathbf{C}	-0.648552152	-1.1058135753	-0.5102714484
\mathbf{C}	0.7853893185	-0.8141058382	-0.2291607842
\mathbf{C}	2.9337355229	0.8997151778	0.1976031718
\mathbf{C}	2.057749245	-1.3647349621	-0.2048345661
\mathbf{C}	0.5876012711	0.578982666	-0.0435886244
\mathbf{C}	1.6390895881	1.4560546877	0.182717808
\mathbf{C}	3.1314216187	-0.4741960049	0.0100719778
Η	2.23790845	-2.4287352245	-0.3560044713
Η	1.4823549855	2.5223066481	0.3474515822
Η	4.1491485703	-0.8669694687	0.0256505251
Η	3.7954240711	1.5481418356	0.3559328353
	T1 Diagnostic	0.01684149	
	D1 Diagnostic	0.08582496	
	B3LYP/aug-cc-p	oVDZ Harmonic	Frequencies
	534.7087i	835.3875	1292.4197
	113.0865	846.8417	1367.3486
	161.6253	860.8119	1385.0803
	217.9411	892.8741	1431.8162
	333.2438	922.3753	1455.8447
	363.2179	925.2457	1477.6232
	382.4176	954.8583	1568.0094
	436.3473	977.4556	1612.5626
	451.3980	1004.1735	1627.8845
	515.8435	1019.3108	1684.4135
	541.7761	1025.5765	2999.6742
	586.9722	1074.8777	3170.0860
	597.4258	1110.9011	3178.1346
	641.7469	1126.2492	3188.6039
	715.7519	1145.9453	3193.4414
	740.9605	1172.4922	3198.2782
	749.1511	1243.0995	3202.7501
	765.6092	1260.5459	3219.6177

Table S25: Optimized geometry for TS3. Cartesian coordinates in Å.

\mathbf{C}	-0.0078966781	0.0175093493	-0.0236838267
\mathbf{C}	-0.0009695122	-0.019699564	1.5515894176
\mathbf{C}	1.4646951222	-0.0396735343	1.5358953157
\mathbf{C}	1.5222044176	-0.0020537844	0.1273091299
\mathbf{C}	2.6997250907	-0.0751054677	-0.5840973331
\mathbf{C}	3.8815837816	-0.1265719059	0.1936558858
\mathbf{C}	3.8364039813	-0.145038629	1.594127292
\mathbf{C}	2.6220081725	-0.1245504838	2.3090890125
Η	2.6111001741	-0.1509687554	3.3980328587
Η	4.775780838	-0.180584379	2.1477983587
Η	4.8499047629	-0.1492566901	-0.3068355136
Η	2.7412713371	-0.0755849132	-1.6731566412
\mathbf{C}	-0.9961220886	-0.5048067616	2.463743888
\mathbf{C}	-1.7828168588	-1.5416046482	2.0554616531
\mathbf{C}	-1.4776359874	-2.0342671065	0.6938400573
\mathbf{C}	-0.6677727924	-1.2537809905	-0.0069701165
Η	-1.9970992013	-2.8986100085	0.2745530864
Η	-2.6586901341	-1.897459175	2.6017169482
Η	-1.0690303422	-0.0826446285	3.4673951889
Η	-0.4758536959	0.8042109324	-0.6298333509
	T1 Diagnostic	0.01722609	
	0		
	D1 Diagnostic	0.08606647	
	D1 Diagnostic B3LYP/aug-cc-p	0.08606647 oVDZ Harmonic 1	Frequencies
	D1 Diagnostic B3LYP/aug-cc-I 333.5226 <i>i</i>	0.08606647 oVDZ Harmonic 1 838.4987	Frequencies 1284.6267
	D1 Diagnostic B3LYP/aug-cc-p 333.5226 <i>i</i> 93.1797	0.08606647 oVDZ Harmonic 1 838.4987 847.0832	Frequencies 1284.6267 1293.9200
	D1 Diagnostic B3LYP/aug-cc-p 333.5226 <i>i</i> 93.1797 136.8523	0.08606647 DVDZ Harmonic 1 838.4987 847.0832 858.9768	Frequencies 1284.6267 1293.9200 1373.4720
	D1 Diagnostic B3LYP/aug-cc-p 333.5226 <i>i</i> 93.1797 136.8523 198.3796	0.08606647 DVDZ Harmonic 1 838.4987 847.0832 858.9768 877.0367	Frequencies 1284.6267 1293.9200 1373.4720 1434.9984
	D1 Diagnostic B3LYP/aug-cc-1 333.5226 <i>i</i> 93.1797 136.8523 198.3796 286.6542	0.08606647 DVDZ Harmonic I 838.4987 847.0832 858.9768 877.0367 917.8191	Frequencies 1284.6267 1293.9200 1373.4720 1434.9984 1456.3198
	D1 Diagnostic B3LYP/aug-cc-1 333.5226 <i>i</i> 93.1797 136.8523 198.3796 286.6542 384.9497	0.08606647 oVDZ Harmonic I 838.4987 847.0832 858.9768 877.0367 917.8191 926.0359	Frequencies 1284.6267 1293.9200 1373.4720 1434.9984 1456.3198 1474.3241
	D1 Diagnostic B3LYP/aug-cc-r 333.5226 <i>i</i> 93.1797 136.8523 198.3796 286.6542 384.9497 406.2948	0.08606647 oVDZ Harmonic I 838.4987 847.0832 858.9768 877.0367 917.8191 926.0359 977.7546	Frequencies 1284.6267 1293.9200 1373.4720 1434.9984 1456.3198 1474.3241 1556.4410
	D1 Diagnostic B3LYP/aug-cc-r 333.5226 <i>i</i> 93.1797 136.8523 198.3796 286.6542 384.9497 406.2948 445.6295	0.08606647 oVDZ Harmonic I 838.4987 847.0832 858.9768 877.0367 917.8191 926.0359 977.7546 980.7528	Frequencies 1284.6267 1293.9200 1373.4720 1434.9984 1456.3198 1474.3241 1556.4410 1616.9112
	D1 Diagnostic B3LYP/aug-cc-r 333.5226 <i>i</i> 93.1797 136.8523 198.3796 286.6542 384.9497 406.2948 445.6295 475.2738	0.08606647 oVDZ Harmonic 1 838.4987 847.0832 858.9768 877.0367 917.8191 926.0359 977.7546 980.7528 1010.0991	Frequencies 1284.6267 1293.9200 1373.4720 1434.9984 1456.3198 1474.3241 1556.4410 1616.9112 1654.8738
	D1 Diagnostic B3LYP/aug-cc-I 333.5226 <i>i</i> 93.1797 136.8523 198.3796 286.6542 384.9497 406.2948 445.6295 475.2738 557.4884	0.08606647 oVDZ Harmonic 1 838.4987 847.0832 858.9768 877.0367 917.8191 926.0359 977.7546 980.7528 1010.0991 1015.3639	Frequencies 1284.6267 1293.9200 1373.4720 1434.9984 1456.3198 1474.3241 1556.4410 1616.9112 1654.8738 1734.4492
	D1 Diagnostic B3LYP/aug-cc-I 333.5226 <i>i</i> 93.1797 136.8523 198.3796 286.6542 384.9497 406.2948 445.6295 475.2738 557.4884 567.5949	0.08606647 oVDZ Harmonic 1 838.4987 847.0832 858.9768 877.0367 917.8191 926.0359 977.7546 980.7528 1010.0991 1015.3639 1071.0733	Frequencies 1284.6267 1293.9200 1373.4720 1434.9984 1456.3198 1474.3241 1556.4410 1616.9112 1654.8738 1734.4492 3062.5615
	D1 Diagnostic B3LYP/aug-cc-I 333.5226 <i>i</i> 93.1797 136.8523 198.3796 286.6542 384.9497 406.2948 445.6295 475.2738 557.4884 567.5949 598.4565	0.08606647 oVDZ Harmonic 1 838.4987 847.0832 858.9768 877.0367 917.8191 926.0359 977.7546 980.7528 1010.0991 1015.3639 1071.0733 1091.7900	$\begin{array}{c} \text{Frequencies} \\ 1284.6267 \\ 1293.9200 \\ 1373.4720 \\ 1434.9984 \\ 1456.3198 \\ 1474.3241 \\ 1556.4410 \\ 1616.9112 \\ 1654.8738 \\ 1734.4492 \\ 3062.5615 \\ 3155.1881 \end{array}$
	D1 Diagnostic B3LYP/aug-cc-I 333.5226 <i>i</i> 93.1797 136.8523 198.3796 286.6542 384.9497 406.2948 445.6295 475.2738 557.4884 567.5949 598.4565 622.5646	0.08606647 bVDZ Harmonic 1 838.4987 847.0832 858.9768 877.0367 917.8191 926.0359 977.7546 980.7528 1010.0991 1015.3639 1071.0733 1091.7900 1109.4314	$\begin{array}{c} \text{Frequencies} \\ 1284.6267 \\ 1293.9200 \\ 1373.4720 \\ 1434.9984 \\ 1456.3198 \\ 1474.3241 \\ 1556.4410 \\ 1616.9112 \\ 1654.8738 \\ 1734.4492 \\ 3062.5615 \\ 3155.1881 \\ 3166.7327 \end{array}$
	D1 Diagnostic B3LYP/aug-cc-I 333.5226 <i>i</i> 93.1797 136.8523 198.3796 286.6542 384.9497 406.2948 445.6295 475.2738 557.4884 567.5949 598.4565 622.5646 657.5133	0.08606647 oVDZ Harmonic 1 838.4987 847.0832 858.9768 877.0367 917.8191 926.0359 977.7546 980.7528 1010.0991 1015.3639 1071.0733 1091.7900 1109.4314 1137.3512	$\begin{array}{c} \text{Frequencies} \\ 1284.6267 \\ 1293.9200 \\ 1373.4720 \\ 1434.9984 \\ 1456.3198 \\ 1474.3241 \\ 1556.4410 \\ 1616.9112 \\ 1654.8738 \\ 1734.4492 \\ 3062.5615 \\ 3155.1881 \\ 3166.7327 \\ 3170.5061 \end{array}$
	D1 Diagnostic B3LYP/aug-cc-I 333.5226 <i>i</i> 93.1797 136.8523 198.3796 286.6542 384.9497 406.2948 445.6295 475.2738 557.4884 567.5949 598.4565 622.5646 657.5133 713.5345	0.08606647 avDZ Harmonic 1 838.4987 847.0832 858.9768 877.0367 917.8191 926.0359 977.7546 980.7528 1010.0991 1015.3639 1071.0733 1091.7900 1109.4314 1137.3512 1145.8012	Frequencies 1284.6267 1293.9200 1373.4720 1434.9984 1456.3198 1474.3241 1556.4410 1616.9112 1654.8738 1734.4492 3062.5615 3155.1881 3166.7327 3170.5061 3181.4330
	D1 Diagnostic B3LYP/aug-cc-I 333.5226 <i>i</i> 93.1797 136.8523 198.3796 286.6542 384.9497 406.2948 445.6295 475.2738 557.4884 567.5949 598.4565 622.5646 657.5133 713.5345 737.6502	0.08606647 avDZ Harmonic 1 838.4987 847.0832 858.9768 877.0367 917.8191 926.0359 977.7546 980.7528 1010.0991 1015.3639 1071.0733 1091.7900 1109.4314 1137.3512 1145.8012 1175.7012	Frequencies 1284.6267 1293.9200 1373.4720 1434.9984 1456.3198 1474.3241 1556.4410 1616.9112 1654.8738 1734.4492 3062.5615 3155.1881 3166.7327 3170.5061 3181.4330 3185.1965
	D1 Diagnostic B3LYP/aug-cc-I 333.5226i 93.1797 136.8523 198.3796 286.6542 384.9497 406.2948 445.6295 475.2738 557.4884 567.5949 598.4565 622.5646 657.5133 713.5345 737.6502 758.0953	0.08606647 pVDZ Harmonic I 838.4987 847.0832 858.9768 877.0367 917.8191 926.0359 977.7546 980.7528 1010.0991 1015.3639 1071.0733 1091.7900 1109.4314 1137.3512 1145.8012 1175.7012 1234.2171	Frequencies 1284.6267 1293.9200 1373.4720 1434.9984 1456.3198 1474.3241 1556.4410 1616.9112 1654.8738 1734.4492 3062.5615 3155.1881 3166.7327 3170.5061 3181.4330 3185.1965 3191.7977

Table S26: Optimized geometry for TS4. Cartesian coordinates in Å.

С	-3.2678767787	0.536103057	-0.09239488
Н	-4.2785640518	0.92750483	-0.1964443554
\mathbf{C}	-2.9309661966	-0.7743548269	-0.0171432113
Η	-3.5934552855	-1.6348550989	-0.030577918
\mathbf{C}	-2.0472047865	1.4001535511	-0.0425706109
Η	-2.0691684921	2.4840159156	-0.146068428
\mathbf{C}	-0.9649374071	0.5948856012	0.083966801
\mathbf{C}	-1.4418125888	-0.8196737804	0.0850288395
Η	-1.1310090227	-1.5719027248	1.0581091735
\mathbf{C}	-0.3916581154	-1.7749748713	-0.0715044768
\mathbf{C}	0.8188526017	-0.8780260432	-0.0159005854
\mathbf{C}	2.8399182308	1.050625862	0.0068901724
\mathbf{C}	2.1490393212	-1.2824390244	-0.0648718027
\mathbf{C}	0.4942962369	0.5152751332	0.0444595115
\mathbf{C}	1.5000508117	1.4774065636	0.0613972082
\mathbf{C}	3.1636925199	-0.3069981459	-0.0572075729
Η	2.3916985024	-2.3437712239	-0.1178658491
Η	1.2658014586	2.5408321094	0.1188663608
Η	4.2098448171	-0.6106749597	-0.1027220279
Η	3.6384702251	1.7936940762	0.0145026514
	T1 Diagnostic	0.01413069	
	D1 Diagnostic	0.05112215	
	B3LYP/aug-cc-r	oVDZ Harmonic	Frequencies
	1063.8327i	812.1656	1298.4053
	115.6702	846.0109	1315.9075
	147.0696	865.0401	1366.3519
	250.2437	890.5825	1379.8322
	261.3357	919.4800	1451.5532
	336.4456	943.1184	1473.3643
	435.7422	956.6608	1567.3977
	460.6478	969.1555	1609.3851
	530.0300	998.7009	1634.9907
	531.9241	1036.5153	1670.5844
	563.6797	1059.4034	2125.2519
	563.6797 583.5288	$\begin{array}{c} 1059.4034 \\ 1077.9860 \end{array}$	2125.2519 3169.3239
	563.6797 583.5288 672.5052	$1059.4034 \\ 1077.9860 \\ 1097.5565$	2125.2519 3169.3239 3179.4521
	563.6797 583.5288 672.5052 679.0296	$\begin{array}{c} 1059.4034 \\ 1077.9860 \\ 1097.5565 \\ 1140.3128 \end{array}$	$\begin{array}{c} 2125.2519\\ 3169.3239\\ 3179.4521\\ 3189.1491 \end{array}$
	563.6797 583.5288 672.5052 679.0296 744.6631	$\begin{array}{c} 1059.4034\\ 1077.9860\\ 1097.5565\\ 1140.3128\\ 1165.6476\end{array}$	$\begin{array}{c} 2125.2519\\ 3169.3239\\ 3179.4521\\ 3189.1491\\ 3199.1692 \end{array}$
	563.6797 583.5288 672.5052 679.0296 744.6631 758.8815	$\begin{array}{c} 1059.4034\\ 1077.9860\\ 1097.5565\\ 1140.3128\\ 1165.6476\\ 1173.1484 \end{array}$	$\begin{array}{c} 2125.2519\\ 3169.3239\\ 3179.4521\\ 3189.1491\\ 3199.1692\\ 3200.0329 \end{array}$
	563.6797 583.5288 672.5052 679.0296 744.6631 758.8815 768.0374	$\begin{array}{c} 1059.4034\\ 1077.9860\\ 1097.5565\\ 1140.3128\\ 1165.6476\\ 1173.1484\\ 1218.4874 \end{array}$	$\begin{array}{c} 2125.2519\\ 3169.3239\\ 3179.4521\\ 3189.1491\\ 3199.1692\\ 3200.0329\\ 3213.8338 \end{array}$

Table S27: Optimized geometry for TS5. Cartesian coordinates in Å.

612141
997404
294292
471904
9741076
0270108
520527
383901
7084697
2543272
9263889
9047184
985252
302550
261451
956568
786702
1987004
914611
449927
7766
7766 9374
7766 9374 4140
7766 9374 4140 7674
7766 9374 4140 7674 8151
7766 9374 4140 7674 8151 0612
7766 9374 4140 7674 8151 0612 0947
7766 9374 4140 7674 8151 0612 0947 3111
7766 9374 4140 7674 8151 0612 0947 3111 1787
7766 9374 4140 7674 8151 0612 0947 3111 1787 1572
7766 9374 4140 7674 8151 0612 0947 3111 1787 1572 5370
7766 9374 4140 7674 8151 0612 0947 3111 1787 1572 5370 7577
7766 9374 4140 7674 8151 0612 0947 3111 1787 1572 5370 7577 5356
7766 9374 4140 7674 8151 0612 0947 3111 1787 1572 5370 7577 5356 9655
7766 9374 4140 7674 8151 0612 0947 3111 1787 1572 5370 7577 5356 9655 3721
7766 9374 4140 7674 8151 0612 0947 3111 1787 1572 5370 7577 5356 9655 3721 4488
7766 9374 4140 7674 8151 0612 0947 3111 1787 1572 5370 7577 5356 90555 3721 4488 6371

Table S28: Optimized geometry for TS6. Cartesian coordinates in Å.

С	0.005645937	-0.0374594699	0.2129692331
\mathbf{C}	1.2377462047	0.5095689744	0.390404741
\mathbf{C}	2.5302056803	0.7613469383	0.5019190974
\mathbf{C}	3.6903724121	-0.02133213	0.0453286368
\mathbf{C}	3.6821571131	-1.3998050496	-0.0985836448
\mathbf{C}	2.4352351753	-2.040885403	-0.0221721122
\mathbf{C}	1.1711114091	-2.097179819	0.1555786634
\mathbf{C}	-0.096702811	-1.4994252279	0.4059689053
\mathbf{C}	-1.3583920779	-2.1351660761	0.4298257739
\mathbf{C}	-2.5068475879	-1.4043587194	0.2004320063
\mathbf{C}	-2.4069273066	-0.0249414207	-0.1542239887
\mathbf{C}	-1.2030685034	0.6374081962	-0.1901469379
Η	-1.1542057598	1.6930911988	-0.4553865151
Η	-3.3171344633	0.5233320241	-0.402341376
Η	-3.4840559205	-1.8824029152	0.2516164672
Η	-1.4089002163	-3.2079568591	0.6218021562
Η	1.4348934854	-2.1314494229	-1.022748682
Η	4.6029011644	-1.9663326805	-0.2217918979
Η	4.665074119	0.461915783	0.1317335675
Η	2.8477239464	1.4998610785	1.2551799066
	T1 Diagnostic	0.03396611	
	D1 Diagnostic	0.21997410	
	B3LYP/aug-cc-	oVDZ Harmonic	Frequencies
	1132.2699i	706.6714	1301.4333
	63.1516	724.5292	1329.5021
	135.1268	774.3775	1384.9141
	197.7064	783.2234	1439.2900
	205.3305	807.7514	1466.6400
	254.2246	814.0835	1474.7966
	332.7727	893.8084	1519.2693
	369.9674	921.9989	1626.7111
	392.6085	930.6328	1843.4392
	435.3792	964.0744	2018.4618
	473.8813	1010.8400	2408.4685
	500.6130	1017.7445	3042.7841
	523.3037	1112.3351	3168.7673
	554.9603	1135.6055	3173.4345
	563.0673	1172.8611	3174.7688
	613.5958	1187.8766	3191.0072
	684.7192	1210.6760	3202.7173
		1960 9177	2206 2210

Table S29: Optimized geometry for TS7. Cartesian coordinates in Å.

С	0.021562677452	0.043761621539	-0.346625906352
\mathbf{C}	-1.432865024645	0.056638674776	-0.439635167755
\mathbf{C}	-2.598662330670	0.717847448057	-0.379064458821
\mathbf{C}	-3.808424071827	-0.112432114967	-0.293845092849
\mathbf{C}	-3.679746525550	-1.453832690523	-0.012611023528
С	-2.392475007529	-1.952718798403	0.376170668298
\mathbf{C}	-1.375811852455	-1.574082049030	-0.584606265242
\mathbf{C}	0.120912220661	-1.364031506980	-0.353954832159
С	1.341010307474	-2.015497263885	-0.260029515744
\mathbf{C}	2.475854128796	-1.192643753152	-0.135317753415
С	2.377719940061	0.211394357303	-0.122936438934
\mathbf{C}	1.145214908217	0.869172209957	-0.233313479237
Η	1.082311998985	1.956707925099	-0.216580032700
Η	3.290064980109	0.800576710400	-0.022864922529
Η	3.461411215709	-1.650782896941	-0.044100564430
Η	1.434315876324	-3.101358038841	-0.267103294083
Η	-1.616188365203	-1.814794513032	-1.637337767859
Η	-4.569634484813	-2.065516234902	0.152873222789
Η	-4.791274711770	0.357888040429	-0.327039301088
Η	-2.666537879323	1.806561873100	-0.353771074363
	T1 Diagnostic	0.01731862	
	D1 Diagnostic	0.08041929	
	B3LYP/aug-cc	-pVDZ Harmonic F	requencies
	441.2088i	844.9777	1291.1056
	106.9438	859.5005	1329.2591
	159.4315	872.9580	1376.3014
	216.7841	896.5663	1386.9773
	316.1337	929.5785	1455.7004
	357.2293	943.5675	1463.2612
	393.9398	977.6515	1482.5705
	428.0872	993.6168	1610.5251
	472.2384	1000.5058	1629.5568
	527.4575	1005.7807	1716.0687
	564.4052	1019.9726	2973.0807
	585.5106	1095.4807	3160.6971
	622.8367	1126.5382	3171.6313
	666.6545	1154.6787	3171.8809
	700.1991	1163.6320	3181.7614
	745.7990	1174.0722	3191.8778
	758.6746	1198.9080	3194.5392
	763.9492	1273.4221	3198.9913

Table S30: Optimized geometry for TS8. Cartesian coordinates in Å.

С	0.00107744	0.1556973278	-0.0311789777
\mathbf{C}	-0.0475030143	0.1214978049	1.3636848788
\mathbf{C}	1.1405759392	0.0064594504	2.0978947654
\mathbf{C}	2.3757605549	-0.1199935855	1.4599255666
\mathbf{C}	2.4127737185	-0.0848856541	0.0265928788
\mathbf{C}	1.2280959306	0.0759124008	-0.6992268774
Η	1.263978539	0.1443386985	-1.7864769615
\mathbf{C}	3.7843140886	-0.085007714	-0.5125403984
\mathbf{C}	4.5771551383	-1.1415142313	-0.5735244523
\mathbf{C}	5.3886057536	-2.065812744	-0.0421769877
\mathbf{C}	5.2418943778	-2.0825246805	1.4443810219
\mathbf{C}	4.5826248242	-1.1143981575	2.064801248
\mathbf{C}	3.6938563976	-0.1443401565	2.1924256015
Η	3.9564684898	0.7709537977	2.7344733088
Η	5.5267842619	-3.0077018058	1.9499473793
Η	5.8683151276	-2.876510564	-0.5790470635
Η	4.2657309459	-0.5228917389	-1.6930701262
Η	1.1085281565	-0.0014092502	3.1884045815
Η	-1.0034697199	0.193428732	1.882252033
Η	-0.9182472461	0.2618622796	-0.6079959111
	T1 Diagnostic	0.01637891	
	D1 Diagnostic	0.06330282	
	B3LYP/aug-cc-p	oVDZ Harmonic	Frequencies
	1257.1414i	743.9126	1286.6002
	76.2503	755.8522	1302.4215
	125.5786	786.4329	1355.8769
	193.1147	812.3166	1406.4034
	245.0623	841.3742	1465.1629
	277.8964	868.7992	1477.0225
	307.8902	887.2648	1594.3029
	381.3329	936.9019	1628.6197
	415.5382	944.6340	1827.3122
	432.9315	984.9497	1948.7045
	463.0596	1050.4349	2155.0432
	479.0517	1064.0641	3105.2252
	541.0974	1108.5338	3160.3370
	581.0506	1115.6129	3170.3873
	632.9583	1172.6884	3176.2183
	648.0233	1189.6592	3187.3991
	694.9476	1227.8341	3199.2225
	730.4533	1258.7374	3252.9632

Table S31: Optimized geometry for TS9. Cartesian coordinates in Å.

\mathbf{C}	-0.0012396634	0.0256283956	-0.0117321268
\mathbf{C}	-0.0001362271	0.005942969	1.5296654623
\mathbf{C}	1.4071923807	-0.0046367856	1.8988342388
\mathbf{C}	2.2220325622	0.1262824857	0.7086026776
\mathbf{C}	1.39660144	0.0968400134	-0.3897036229
\mathbf{C}	1.3899331502	0.2270273427	-1.863918767
\mathbf{C}	0.0804697188	0.2854708875	-2.251082414
\mathbf{C}	-0.8312873184	0.4319273576	-1.0722617256
Η	-0.2665951351	0.3428232925	-3.2818771816
Η	2.2717774446	0.2541606616	-2.5023661188
Η	3.3002112961	0.2742466001	0.7205209429
\mathbf{C}	1.7611421	-0.1961921017	3.2400113758
\mathbf{C}	0.7605260798	-0.4277178677	4.1860642822
\mathbf{C}	-0.6028522075	-0.4789393757	3.8169470057
\mathbf{C}	-1.0001559442	-0.2833366045	2.5024581935
Η	-2.0505492087	-0.3095587924	2.2160688984
Η	-1.3553464884	-0.6764999494	4.5805446859
Η	1.0343407081	-0.5888096463	5.2289290769
Η	2.8101761965	-0.1950792667	3.537285421
Η	-0.2324257441	1.0473412849	0.9693660119
	T1 Diagnostic	0.01818231	
	D1 Diagnostic	0.09428567	
	B3LYP/aug-cc-i	oVDZ Harmonic	Frequencies
	858.6020 <i>i</i>	823.2218	1289.1193
	112.2446	842.0631	1322.3138
	182.4284	848.1515	1328.1140
	235.8860	878.4323	1384.4526
	272.3390	911.5345	1445.3701
	326.9973	943.8298	1478.2603
	426.4130	964.8481	1501.2793
	461.0129	984.0689	1560.8954
	493.6660	989.5848	1595.0417
	511.9204	1028.0613	1625.6053
	549.9525	1043.4851	2305.0698
	576.1180	1077.7792	3175.2682
	643.0403	1101.3698	3184.4846
	674.0450	1130.5144	3193.9421
	714.6338	1155.4154	3196.5056
	737.8898	1171.9502	3205.9246
	759.7087	1220.1294	3207.2910
	772.5201	1267.0847	3215.7396

Table S32: Optimized geometry for TS10. Cartesian coordinates in Å.

-			
\mathbf{C}	-0.0626142975	-0.0251405793	-0.0371832271
\mathbf{C}	-0.0890161043	0.0619850177	1.3689351844
\mathbf{C}	1.0793192492	0.0835349687	2.1018638636
\mathbf{C}	2.3742325454	0.0336498445	1.4498184379
\mathbf{C}	2.3862778324	-0.1008257103	-0.0214083643
\mathbf{C}	1.1674412179	-0.0771362911	-0.6999946564
Η	1.1866835389	-0.1315068502	-1.7901667997
\mathbf{C}	3.6692209859	-0.0142980623	-0.7574372605
\mathbf{C}	4.8412298054	-0.5076892665	-0.4016866206
\mathbf{C}	5.9741065626	-0.8118282916	0.2247554025
\mathbf{C}	6.1200624316	-0.3016009761	1.5987968305
\mathbf{C}	4.8937748966	-0.0639747079	2.1322052539
\mathbf{C}	3.6406418879	-0.2452925491	2.196431562
Η	2.9662585241	1.0314907238	1.691483726
Η	7.073391597	-0.2584840406	2.1194209153
Η	6.6735010134	-1.5619266793	-0.1527081509
Η	3.6471811665	0.6771434091	-1.6091092906
Η	1.0570251169	0.1612392178	3.1880573511
Η	-1.0451519652	0.1059565085	1.8918508034
Η	-0.9916467903	-0.066291071	-0.6041521795
	T1 Diagnostic	0.01611278	
	D1 Diagnostic	0.06095786	
	D2I VD /our oo y	VDZ Harmonia	Fraguencias
	665 0641 <i>i</i>	797 5453	1971.0654
	1117187	764 3575	1271.0004 1305 5014
	129 0006	779 4475	1303.5014 1374.5477
	185 1814	816 0102	1306 82/3
	249 5289	839 6423	1442 6118
	249.0209	863 1577	1466 4763
	337 0881	940 6974	1538 2108
	363 6066	957 6704	1625 2924
	416 9405	968 3181	1912 3689
	449.0080	979.0527	1997.8656
	469 0715	1033 2649	2407 2119
	485.3274	1043.6305	3094.8694
	515.0188	1067.9105	3155.2285
	527.6651	1116.9322	3165.1963
	632,9985	1167.4720	3176.8646
	642.0073	1191.6618	3196.1352
	676.1129	1207.3510	3204.2717
	717.2109	1224.5360	3220.0916
			5==0.0010

Table S33: Optimized geometry for TS11. Cartesian coordinates in Å.

\mathbf{C}	-0.0632349412	0.0539432901	0.0192239029
\mathbf{C}	-0.1103881651	0.207385117	1.5406640408
\mathbf{C}	1.3425211567	0.1042569784	2.0674254043
\mathbf{C}	2.2016479996	0.1890360062	0.9636433623
\mathbf{C}	1.450043643	0.17303647	-0.2429859563
\mathbf{C}	1.9223536305	0.6786737042	-1.531866682
\mathbf{C}	1.0475919739	1.3076991115	-2.3534554617
\mathbf{C}	-0.3583031727	1.4818907509	-1.9951115263
\mathbf{C}	-0.8843666579	0.9416573861	-0.8769178054
Η	-1.9407100459	1.0664809515	-0.6370215455
Η	-0.9904096741	2.0679618366	-2.6634044359
Η	1.4046079767	1.7504388093	-3.2839305541
Η	2.9875215174	0.6286079045	-1.7559626046
Η	2.2086263743	-0.8487301779	0.0624936131
\mathbf{C}	1.3834788675	-0.3156360479	3.4342647366
\mathbf{C}	0.057736737	-0.5129936632	3.8209403473
\mathbf{C}	-0.6357665356	-0.4095848356	2.5882010898
Η	-0.3542532269	-0.7107255265	4.8047603871
Η	2.284714555	-0.4254406517	4.0344387546
Η	-0.3965014521	-0.9786942002	-0.1866414255
	T1 Diagnostic	0.02942740	
	D1 Diagnostic	0.17596485	
	Darrib (
	B3LYP/aug-cc-I	oVDZ Harmonic	Frequencies
	1271.11451	764.2571	1279.3266
	100.3226	783.0973	1301.9336
	117.3369	822.6978	1344.6947
	223.0549	836.6883	1392.7090
	242.4801	873.0023	1407.9640
	327.9828	959.7013	1449.0471
	403.9302	962.4711	1491.9702
	424.6884	970.5101	1603.1376
	489.2541	983.8129	1651.0381
	497.5168	1011.9552	1681.9110
	527.6712	1039.6181	1989.5668
	559.9938	1046.8258	2995.5788
	598.6980	1085.9384	3171.1703
	646.9134	1147.3638	3181.3314
	661.7872	1158.1096	3193.0238
	665.2151	1160.8000	3200.8880
	685.9525	1195.6216	3210.3107
	719.6925	1242.5876	3255.2010

Table S34: Optimized geometry for TS12. Cartesian coordinates in Å.

\mathbf{C}	-0.1118614112	0.3284039964	0.0276891685
\mathbf{C}	-0.0865492451	0.1042405818	1.4610680842
\mathbf{C}	1.0546796149	-0.1912718105	2.1170389845
\mathbf{C}	2.404896208	-0.1898887802	1.4308482515
\mathbf{C}	2.2703215909	-0.1699064595	-0.1161478398
\mathbf{C}	1.0237313468	0.1947604673	-0.7199813296
Η	0.9846212235	0.2693580021	-1.8070302167
\mathbf{C}	3.4351400545	-0.5920392567	-0.8487327571
\mathbf{C}	4.5537138466	-1.1778988712	-0.7756170429
\mathbf{C}	5.6358677694	-1.927409165	-0.3345266957
\mathbf{C}	5.6921515361	-2.1431056655	1.041019734
\mathbf{C}	4.5780845545	-1.6239476061	1.7427412611
\mathbf{C}	3.4546185844	-1.1387708483	1.857377506
Η	2.8486888995	0.7890770184	1.7100462547
Η	6.527958775	-2.6551396523	1.5124331001
Η	6.397616418	-2.3137973407	-1.012023355
Η	3.3177123555	0.6290946188	-0.8527105676
Η	1.0619277443	-0.3582999277	3.1939328315
Η	-1.0245954128	0.1573324271	2.0152793101
Η	-1.0612194661	0.539121539	-0.4630216166
	T1 Diagnostic	0.02545600	
	D1 Diagnostic	0.14808700	
	Darwo /		n :
	B3LYP/aug-cc-p	OVDZ Harmonic	Frequencies
	1161.38861	699.3934	1246.2502
	49.2249	742.4863	1291.1423
	101.1596	782.5726	1380.0320
	171.5404	817.5874	1405.5889
	226.8992	826.0383	1441.1838
	309.1981	879.2268	1465.4896
	335.3656	941.5063	1569.7501
	355.6523	950.8663	1670.6170
	408.6439	969.4775	2008.3544
	425.7230	979.0771	2161.1457
	466.2791	1001.1728	2197.2286
	490.1007	1040.5228	2935.4326
	520.7896	1106.6025	3172.4268
	545.5530	1120.4271	3179.3045
	553.6347	1148.9853	3185.8908
	632.6919	1161.5642	3195.2121
	671.4719	1205.1617	3204.0407
	687.8554	1229.4731	3214.1949

Table S35: Optimized geometry for TS13. Cartesian coordinates in Å.

\mathbf{C}	-0.7582145536	-0.1331079919	0.7515957517
\mathbf{C}	0.6708238265	-0.009335173	0.5906645816
\mathbf{C}	-1.2984588583	-0.2326419562	2.0480204677
\mathbf{C}	1.4696411373	0.2583522654	1.7402390521
\mathbf{C}	-0.4806506544	-0.0516724127	3.1583197639
\mathbf{C}	0.8945656331	0.2338914559	2.9982994591
\mathbf{C}	-1.5426889252	-0.0324517353	-0.4209439512
\mathbf{C}	1.1781465453	-0.300207432	-0.664100174
\mathbf{C}	-2.0606176472	0.186126462	-1.510529977
\mathbf{C}	1.3757600043	-0.6490279093	-1.876502897
\mathbf{C}	-0.3199555932	0.1190604441	-3.5696414532
\mathbf{C}	0.8877235133	0.2060016177	-3.166227438
Η	-2.3712004643	-0.3819215122	2.1673650421
Η	-0.9108476135	-0.0918654642	4.1590336526
Η	1.5122680897	0.4151896528	3.8782983244
Η	2.5382768287	0.4297259232	1.6156098767
Η	1.8306883544	-1.5799211002	-2.2172725569
Η	1.7441034734	0.7456132664	-3.5825349208
Η	-1.0514301698	0.3331326999	-4.332245319
Η	-2.6864637635	0.5523218964	-2.2955269728
	T1 Diagnostic	0.02852655	
	D1 Diagnostic	0.18401851	
	D2I VD /our oo y	VD7 Harmonia	Frequencies
	235 2242 <i>i</i>	643 5506	1940 5139
	255.5245i 01 1738	664 4064	1249.0152 1970.7517
	120 8255	684 1531	1328 2500
	120.8255 160.4572	723 2515	1320.2309 1450.5407
	178 5696	743 8975	1463 6656
	202 1400	757 8640	1548 3611
	202.1400	762 8617	1619 4738
	287 1997	779 0098	1702 4235
	361 2491	826 2394	1959 6456
	371.3224	856.9963	2124.3229
	420.4284	946.6735	3114.8957
	450.9157	982.6296	3168.9644
	465.6753	1037.2248	3176.9210
	506.9590	1052.6117	3186.5798
	539.5071	1106.0835	3197.2553
	561.7098	1144.4631	3204,1639
	574.5861	1167.6199	3355.6990
	591.7635	1200.4386	3473.9086
	001.1000	1200.4000	0410.0000

Table S36: Optimized geometry for TS14. Cartesian coordinates in Å.

С	-0.131237351029	0.021509360056	-0.046086047945
\mathbf{C}	-1.573567988433	-0.040381009211	-0.464491982104
\mathbf{C}	-2.655837678138	-0.569940988223	-0.939227336905
\mathbf{C}	-3.777824214226	0.097888930369	-1.402248384870
\mathbf{C}	-3.778422785718	1.526275243972	-1.400683778945
\mathbf{C}	-2.657111863234	2.194001376170	-0.936495931603
\mathbf{C}	-1.574348015254	1.664514082214	-0.462964712321
\mathbf{C}	-0.131741371834	1.603452099802	-0.045312403250
\mathbf{C}	0.824560668038	2.261688079230	-1.009100862340
\mathbf{C}	1.621897047188	1.547742353574	-1.820867304202
\mathbf{C}	1.622958159363	0.079975126888	-1.820954763191
\mathbf{C}	0.826364265779	-0.635224965878	-1.009564761414
Η	0.838430152428	-1.725851092394	-1.025780764938
Η	2.299479000156	-0.433508893629	-2.505583996288
Η	2.297445335585	2.062262078859	-2.505674457954
Η	0.835048939345	3.352335225885	-1.025187381840
Η	0.002420087118	2.013207402148	0.967628744994
Η	-4.695740765542	2.022114736133	-1.715035076254
Η	-4.694553999961	-0.398391175972	-1.717404820888
Η	0.002420378370	-0.388830969995	0.966671022260
	T1 Diagnostic	0.01673429	
	D1 Diagnostic	0.07944648	
	B3LYP/aug-cc	-pVDZ Harmonic F	requencies
	360.6767i	785.8322	1300.2437
	52.9182	789.2890	1316.5012
	71.5990	863.1410	1322.4516
	193.8184	907.0478	1375.9169
	210.1330	917.4630	1403.4102
	380.1328	954.8463	1427.5314
	388.4281	956.1574	1654.1319
	431.8998	975.8233	1708.1356
	434.2073	988.0987	1748.4948
	472.9689	1026.8992	1855.5436
	551.6810	1067.1620	3022.2357
	555.0184	1083.1711	3033.3571
	600.3955	1151.1206	3166.3822
	606.4346	1188.6550	3173.2684
	647.2528	1197.4195	3187.0450
	684.2678	1222.2170	3194.1794
	692.0460	1237.3343	3197.5177
	799 0911	1242 0956	391/ 3019

Table S37: Optimized geometry for TS15. Cartesian coordinates in Å.
C = 0.002972368584 - 0.023877229844 = 0.081305962	043
C -1.160720795861 0.812378129587 -0.338327176	5216
C -1.783947792143 0.603840258492 -1.519865992	2167
C -1.397650841889 -0.498444965505 -2.378917705	5647
H -1.919840646467 -0.633338216010 -3.326897011	1089
C -0.454197396998 -1.410068697952 -1.990367638	3115
H -0.236589188981 -2.281012440561 -2.607841758	3686
C = 0.190875521344 - 1.284985703558 - 0.718472501	1813
H 0.636998107979 -2.152200960922 -0.249632171	1706
H -2.601922052577 1.251938069346 -1.834740952	2893
H -1.464479443249 1.630983003893 0.314378394	235
C = 1.341417565597 = 0.378028431633 = -0.577437650	0000
C = 2.343234128473 - 0.583567057762 - 0.425544472	2118
C = 3.513182135709 - 0.563183654101 - 1.167328793	3441
C = 4.585521472781 - 0.671244353888 - 1.758975007	7983
H 5.517551942218 -0.752575333925 -2.275012013	3911
C = 1.420330517798 = 1.499147730508 = -1.454399538	3193
C = 1.568843462474 = 2.428508185852 = -2.226953193	3438
H 1.710661649671 3.256028478218 -2.889020599	9297
H 0.104246285535 -0.150257673500 1.162397820	434
T1 Diagnostic 0.02065010	
D1 Diagnostic 0.10846305	
B3LYP/aug-cc-pVDZ Harmonic Frequencies	
321.5993i 637.9690 1208.7029	9
55.7746 649.8721 1344.7774	4
80.5480 087.8228 1554.1501	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 7 0
80.3480 087.8228 1334.1501 101.6013 707.4158 1415.557 127.8555 767.2610 1455.8220 201.2438 774.7744 1463.3875	1 7 0 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 7 0 7 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 7 0 7 2 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 7 0 7 2 2 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 7 7 2 2 1 8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 7 7 2 2 1 8 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 7 7 2 2 2 1 8 1 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 7 7 2 2 1 8 1 9 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 7 7 2 2 1 8 1 9 1 0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 7 7 2 2 2 1 8 1 9 1 0 9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 7 2 2 2 1 8 1 9 1 0 9 3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 7 7 2 2 1 8 1 9 1 0 9 3 1

Table S38: Optimized geometry for TS16. Cartesian coordinates in Å.

\mathbf{C}	0.007606766904	0.046393562039	-0.035999066862
\mathbf{C}	-0.005235089405	0.262263445973	1.431125885023
Н	0.650712759600	-0.339574543583	2.053646078953
\mathbf{C}	-1.222713970933	0.789919238345	2.032921983841
Н	-1.270276731094	0.865391493214	3.118734024645
\mathbf{C}	-2.275249795485	1.168453905701	1.259380916244
\mathbf{C}	-2.262792398413	0.958224643343	-0.170810463892
\mathbf{C}	-1.198260557844	0.375597166948	-0.784682845356
Η	-1.227224366880	0.135554459863	-1.846981502975
Η	-3.150320204227	1.217034538827	-0.748441816594
Η	-3.171934483244	1.579957370177	1.723020118566
Η	0.672338107645	-0.707804903289	-0.447536789148
\mathbf{C}	0.926094673185	1.302294602019	0.536507831509
\mathbf{C}	2.273484545859	1.024720157900	0.591410856300
\mathbf{C}	3.534637794319	0.871405496923	0.628534378493
\mathbf{C}	4.795957695276	0.495534181175	0.698716597652
Η	5.575373657823	1.263738515470	0.596639512644
\mathbf{C}	0.441757361462	2.637953002438	0.334388825180
\mathbf{C}	0.074888818417	3.781029093698	0.160238686628
Η	-0.233951582963	4.792853572817	0.006241789150
	T1 Diagnostic	0.01835618	
	D1 Diagnostic	0.06754873	
	B3LYP/aug-cc	-pVDZ Harmonic F	requencies
	56.8048 <i>i</i>	611.9508	1224.8971
	66.0967	645.9197	1347.1425
	123.2744	671.0172	1350.0174
	124.0447	713.9509	1426.4934
	195.7014	755.5365	1456.3420
	229.1394	817.1497	1531.5353
	267.0451	822.6437	1586.5211
	328.4226	916.4756	1667.3028
	361.8186	966.9241	1956.3958
	395.4377	977.8738	2207.6833
	414.0624	980.4606	3117.9948
	435.7259	984.1544	3178.4936
	441.0388	988.1294	3186.9853
	470.4645	1011.4338	3196.7288
	517.5650	1103.5710	3203.3670
	575.7751	1139.6492	3206.2920
	588.1775	1177.2448	3212.3418
	596.1405	1195.9549	3479.1275

Table S39: Optimized geometry for TS17. Cartesian coordinates in Å.

3 Frequencies

		0.005 Å			0.010 Å	
-	$\begin{array}{c} \text{Harm.} \\ (\text{cm}^{-1}) \end{array}$	Fund. (cm^{-1})	$\begin{array}{c} \text{Corr.} \\ (\text{cm}^{-1}) \end{array}$	$\begin{array}{c} \text{Harm.} \\ (\text{cm}^{-1}) \end{array}$	Fund. (cm^{-1})	
	3260.8	3118.8	3132.1	3261.0	3117.8	3131.1
	3250.2	3108.6	3121.3	3250.4	3108.4	3120.8
	3232.4	3094.9	3094.9	3232.6	3094.6	3094.6
	3218.9	3081.2	3081.2	3219.2	3081.6	3081.6
	1578.8	1540.5	1539.5	1579.1	1540.0	1538.8
	1546.8	1507.4	1510.3	1547.2	1505.8	1508.4
	1274.6	1249.5	1249.3	1273.9	1245.6	1245.3
	1194.2	1174.6	1174.6	1193.3	1173.9	1173.9
	1120.3	1095.6	1094.5	1119.8	1092.2	1090.8
	1052.1	1033.8	1031.6	1051.3	1032.6	1030.0
	948.8	928.2	928.0	948.6	927.3	927.1
	873.6	859.4	859.4	873.5	853.0	853.0
	847.5	850.7	850.7	847.8	845.0	845.0
	818.6	936.1	936.1	819.1	922.0	922.0
	727.4	715.9	715.9	727.4	713.4	713.4
	577.2	573.8	573.8	577.7	568.7	568.7
	563.3	606.1	606.1	563.9	594.8	594.8
	521.0	538.8	538.8	521.2	524.4	524.4

Table S40: QFF harmonic, fundamental, and corrected fundamental frequencies for C_4H_4 computed at the F12-DZ level of theory with the inclusion of core correlation.

	0.005 Å			0.010 Å	
Harm. (cm^{-1})	Fund. (cm^{-1})	$\begin{array}{c} \text{Corr.} \\ (\text{cm}^{-1}) \end{array}$	Harm. (cm^{-1})	Fund. (cm^{-1})	$\begin{array}{c} \text{Corr.} \\ (\text{cm}^{-1}) \end{array}$
3261.1	3117.0	3128.8	3261.4	3119.6	3134.3
3250.5	3109.6	3121.6	3250.8	3110.1	3123.8
3232.8	3093.0	3093.0	3233.0	3096.5	3096.5
3219.5	3080.0	3080.0	3219.7	3082.8	3082.8
1583.6	1533.8	1535.6	1583.9	1544.5	1543.0
1553.7	1509.6	1510.4	1554.1	1513.6	1516.5
1276.1	1232.5	1232.2	1275.4	1245.2	1245.0
1198.0	1155.1	1155.1	1197.1	1172.2	1172.2
1121.6	1083.3	1078.7	1121.1	1093.2	1082.7
1053.7	1012.5	1009.5	1052.9	1032.0	1029.1
952.5	912.1	911.4	952.3	930.8	930.5
873.4	843.1	843.1	873.3	852.3	852.3
857.3	822.1	822.1	857.6	834.3	834.3
844.4	816.6	816.6	844.7	840.8	840.8
731.1	687.4	687.4	731.1	716.6	716.6
580.3	533.7	533.7	580.8	565.4	565.4
576.3	583.6	583.6	576.8	579.9	579.9
525.5	476.6	476.6	525.6	513.2	513.2

Table S41: QFF harmonic, fundamental, and corrected fundamental frequencies for C_4H_4 computed at the F12-TZ level of theory with the inclusion of core correlation.

Harm. (cm^{-1})	Fund. (cm^{-1})	Corr. (cm^{-1})
2963.9	2928.3	2928.5
2963.8	2927.8	2929.7
2961.6	2925.6	2936.3
2961.3	2926.1	2924.8
2953.5	2918.9	2915.5
2953.5	2918.0	2919.0
2946.8	2910.7	2915.3
2946.4	2910.3	2915.8
1757.4	1725.8	1721.4
1692.2	1666.9	1665.9
1609.0	1586.7	1585.5
1574.2	1554.2	1559.7
1425.7	1387.1	1387.1
1338.1	1327.0	1325.0
1323.9	1312.5	1312.6
1295.2	1284.6	1288.8
1266.3	1255.7	1255.2
1249.8	1192.1	1190.4
1129.0	1118.6	1118.3
1107.8	1098.5	1097.3
1080.9	1065.0	1064.8
1059.0	1051.5	1051.5
1048.7	1042.7	1042.7
1045.0	1037.4	1037.4
1026.4	1018.7	1018.6
1001.9	996.1	996.2
1000.2	981.0	984.4
967.4	960.9	960.9
963.0	956.1	955.7
959.5	952.5	952.5
957.1	948.4	947.5
946.6	941.3	941.3
937.2	918.9	918.3
926.5	918.8	918.7
875.3	868.8	868.3
803.0	796.2	796.2
776.0	768.5	759.0
740.5	737.0	736.9
727.4	725.4	725.0
723.7	719.7	719.7
635.9	629.8	629.2
553.6	550.1	550.1
538.8	535.0	535.0
514.7	511.5	511.6
444.6	441.2	442.4
415.0	411.4	411.4
391.3	390.8	390.8
363.2	360.4	360.8
352.4	349.5	349.5
294.2	294.7	294.7
242.6	241.2	241.2
202.1	201.4	201.4
113.9	115.8	115.8
101.3	101.6	101.6

Table S42: Harmonic, fundamental, and corrected fundamental PM6-QFF frequencies for biphenylene generated with parameter set (a).

Harm. (cm^{-1})	Fund. (cm^{-1})	Corr. (cm^{-1})
3102.5	3070.5	3077.4
3097.5	3063.1	3066.2
3084.1	3055.8	3051.9
3081.9	3053.6	3055.7
3073.9	3044.6	3057.0
3072.6	3041.7	3062.9
3060.1	3031.3	3050.4
3059.9	3030.8	3050.3
1658.8	1630.0	1626.1
1594.8	1561.9	1558.5
1565.9	1540.6	1542.9
1560.1	1533.0	1534.9
1464.5	1446.5	1450.3
1463.4	1445.0	1447.5
1443.2	1422.3	1419.2
1403.0	1387.1	1383.3
1361.8	1344.7	1342.7
1346.3	1330.1	1330.3
1344.6	1330.6	1330.7
1283.9	1268.6	1268.2
1248.6	1225.6	1224.2
1150.8	1117.3	1116.8
1087.5	1077.5	1083.1
1068.9	1054.4	1054.4
1068.1	1053.5	1053.5
1060.7	1048.3	1050.2
1025.7	1013.3	1013.3
1012.3	1000 1	999 9
1007.4	996.5	996.5
989.0	976.3	976.3
976.2	965.0	964.8
974.8	963.2	961.9
958.5	950.6	950.6
904.3	893.1	893.2
868.9	858.3	858.3
820.7	812.0	812.7
804.1	796.5	796.5
789.6	780.7	780.7
787.0	782.0	782.0
736.4	728.3	730.4
679.4	671.1	671.4
660.9	651 7	651 7
585.5	579 1	579 1
576.2	569 7	569.8
525.8	518.6	518.6
510.6	504.3	506.9
425.8	420.3	420.3
422.0	419 3	419.3
383.0	377.4	378.0
361.0	357.5	357 5
298.9	294.8	294.8
230.9 915 4	234.0 919 7	204.0
410.4 135.7	13/1	13/1
107 7	105.8	105.8
101.1	100.0	100.0

Table S43: Harmonic, fundamental, and corrected fundamental PM6-QFF frequencies for biphenylene generated with parameter set (b).

Harm. (cm^{-1})	Fund. (cm^{-1})	Corr. (cm^{-1})
3202.6	3149.5	3149.3
3185.6	3135.4	3137.0
3143.5	3099.2	3099.8
3138.6	3090.5	3091.2
3111.6	3054.1	3052.8
3110.3	3052.8	3054.0
3095.2	3040.8	3041.1
3093.1	3037.3	3038.4
2114.5	2089.6	2092.9
1985.1	1954.8	1956.2
1904.3	1870.3	1881.4
1780.5	1743.7	1733.6
1608.9	1580.1	1578.8
1565.8	1535.2	1536.6
1563.3	1529.1	1529.4
1519.0	1485.4	1485.2
1500.8	1480.3	1479.9
1453.6	1422.1	1420.0
1400.1	1371.1	1374.2
1342.9	1319.2	1319.8
1301.7	1283.2	1279.8
1244.1	1225.9	1226.7
1237.7	1218.9	1221.1
1156.9	1138.6	1138.3
1155.0	1136.7	1141.2
1139.9	1120.9	1121.0
1135.5	1108.6	1105.1
1013.6	978.3	977.7
966.1	921.1	917.0
966.1	944.7	943.5
949.4	906.6	907.6
946.7	926.4	926.3
911.9	888.2	888.2
903.1	879.3	878.7
889.2	845.4	845.4
879.9	860.7	860.7
864.7	837.7	837.5
812.5	795.1	794.3
758.1	751.5	749.9
732.6	721.7	720.6
720.6	712.5	713.1
717.3	709.6	710.0
657.5	646.1	646.4
581.4	572.7	576.5
539.7	533.0	533.0
455.9	449.1	448.6
429.6	425.6	425.6
322.2	317.1	317.1
257.9	250.7	250.7
249.1	245.8	245.4
249.0	242.7	242.7
175.3	171.1	171.1
130.3	128.6	128.6
80.5	76.3	76.3

Table S44: Harmonic, fundamental, and corrected fundamental PM6-QFF frequencies for biphenylene generated with parameter set (c).

Harm. (cm^{-1})	Fund. (cm^{-1})	Corr. (cm^{-1})
3096.7	3073.9	3073.6
3092.9	3068.8	3064.5
3084.0	3060.5	3063.0
3081.3	3059.1	3052.7
3075.7	3053.3	3054.4
3074.1	3053.3	3050.5
3062.1	3037.5	3037.5
3060.9	3036.8	3047.9
1642.6	1602.6	1596.8
1604.5	1568.5	1570.9
1547.1	1514.2	1514.5
1543.8	1511.1	1511.4
1392.9	1347.8	1345.5
1375.5	1361.9	1358.4
1373.9	1362.0	1364.1
1332.0	1321.9	1322.2
1304.8	1292.2	1292.7
1242.4	1234.1	1232.4
1235.4	1223.5	1223.3
1222.4	1196.9	1196.7
1181.3	1163.7	1163.4
1136.2	1083.4	1082.8
1039.7	1036.7	1032.3
1016.3	1014 9	1015.8
979.6	974 1	972.9
961.4	954.4	946.5
945.2	939.6	943.4
033.0	925.9	925.9
932.7	924 7	924 7
906.1	899.4	901.8
886.4	882.0	882.0
877.9	869.8	869.8
849.6	833.6	832.7
845.2	839.2	839.2
823.2	816.2	816.3
787.1	772.5	771.0
797.9	725.4	736.2
717 5	717.8	717.8
704.0	717.8	717.8
694.8	603.0	603.0
646 D	642.2	649 4
5846	589 2	589.2
540.0	540 2	540 2
5941	539 0	522 0
004.1 468 1	000.0 468 1	000.0 471.9
400.1	400.1	411.4
400.9	409.0 276 1	409.0 276 1
260 C	264 0	070.1 265 7
302.0 250 F	304.8 256 F	303.7 256 F
500.5 20C 4	000.0 010-1	000.0 010.1
300.4	313.1	313.1
202.9	209.2	209.2
199.1	210.6	210.6
121.5	142.2	142.2
95.1	123.5	123.5

Table S45: Harmonic, fundamental, and corrected fundamental PM6-QFF frequencies for biphenylene generated with parameter set (d).

Harm. (cm^{-1})	Fund. (cm^{-1})	Corr. (cm^{-1})
3147.7	3107.1	3107.2
3138.4	3097.5	3098.0
3124.0	3083.6	3082.4
3120.6	3079.5	3079.4
3114.3	3073.7	3073.7
3113.0	3073.3	3081.3
3108.6	3066.8	3065.1
3108.4	3065.4	3065.5
1890.2	1860.9	1859.1
1842.5	1816.5	1812.6
1800.9	1772.4	1769.3
1683.7	1618.7	1618.4
1536.2	1509.1	1508.5
1513.8	1489.4	1489.6
1481.4	1457.2	1456.9
1443.6	1365.4	1365.2
1364.2	1337.7	1337.7
1358.0	1334.6	1334.4
1341.6	1321.0	1323.3
1301.5	1278.1	1274.3
1266.4	1248.3	1248.2
1215.7	1195.2	1195.2
1194.5	1179.9	1179.6
1179.9	1162.9	1163.0
1162.9	1147.9	1144.1
1136.2	1123.3	1123.3
1111.9	1097.0	1096.8
1110.3	1095.8	1095.8
1104.6	1088.8	1088.8
1085.2	1063.6	1063.7
1084.1	1069.2	1069.2
1076.9	1059.6	1057.3
1075.9	1060.8	1060.8
1036.3	1023.4	1024.1
1008.9	996.6	998.0
960.1	950.4	950.0
847.2	840.1	840.0
827.5	812.5	815.0
825.7	819.3	818.8
810.1	804.5	804.0
748.3	739.2	740.1
664.4	655.9	655.8
617.3	609.3	610.3
599.6	594.3	594.3
559.8	553.9	552.7
491.3	485.6	485.4
421.9	422.0	420.0
400.0	402.0 340.7	402.0
JJS.9 224 1	049.1 200 0	349.1 220 0
004.1 026 ⊑	ə∠9.8 234 ⊑	029.8 024 4
⊿ ວ0. ∂ ევე ე	204.0 920 4	204.4 220 4
ムシム.ウ 19月1	200.4 1947	200.4 194 7
120.1 101.7	124.1	124.7
101.1	101.0	101.0

Table S46: Harmonic, fundamental, and corrected fundamental PM6-QFF frequencies for biphenylene generated with parameter set (e).

Harm. (cm^{-1})	Fund. (cm^{-1})	Corr. (cm^{-1})
3120.0	3096.0	3096.0
3117.4	3093.2	3091.9
3110.4	3083.8	3085.0
3108.2	3082.2	3081.0
3101.2	3078.4	3084.7
3100.4	3076.1	3080.6
3088.9	3063.4	3063.4
3087.2	3062.4	3078.2
1685.2	1648.4	1656.6
1633.7	1601.6	1613.2
1593.1	1563.7	1564.7
1574.7	1539.9	1538.5
1411.5	1397.1	1396.5
1409.2	1394.2	1398.8
1407.0	1373.7	1372.0
1377.3	1364.3	1361.9
1336.0	1320.0	1321.0
1273.5	1261.5	1021.0 1261 5
1272.3	1261.6	1260.5
1229.9	1212.6	1200.0 1212.7
1223.3	1195.8	1195.8
1160.7	1113.6	1114.6
1088.2	1080.8	1075.2
1058.5	1051.6	1052.5
1018 7	1001.0	1002.0
1010.7	080.2	080.2
999.0	987 3	987.3
997.9	987.1	985.0
990.9	982.2	984.8
964.3	954.0	954.3
944.6	935.5	935.5
038 3	935.5 926 0	935.5
800.0	888.0	888.0
887.0	876.0	873 3
885.1	875.0	875.0
809.1	812.6	010.0
023.1 762.8	760 5	760 5
752.0	746.9	738.3
700.4 746 0	140.2 7/2 0	100.0 7/2 0
740.9	730 F	730 5
679 1	139.0 670 7	139.0 670.0
627 4	620.0	620.0
037.4	029.9 569 7	029.9 569.7
0/4.4 EC1 7	008.7 EEC 9	008.7 EEC 9
501.7	000.3 400.0	000.3 400.0
000.2 480 F	493.3	493.3
489.5	484.4	480.8 200.1
403.0	399.1	399.1
383.9	382.1	382.1
377.7	3/3.1	373.7
330.5	328.0	328.0
280.9	277.7	277.7
208.7	207.6	207.6
129.5	128.6	128.6
102.4	103.0	103.0

Table S47: Harmonic, fundamental, and corrected fundamental PM6-QFF frequencies for biphenylene generated with parameter set (f).

Harm. (cm^{-1})	Fund. (cm^{-1})	Corr. (cm^{-1})
2981.0	2945.9	2945.9
2975.3	2940.7	2942.7
2975.0	2940.3	2938.3
2970.3	2939.6	2940.0
2961.3	2926.7	2927.3
2956.9	2920.5	2924.1
2952.3	2921.1	2920.9
2947.6	2911.1	2920.7
1674.7	1659.1	1658.5
1634.5	1607.9	1607.8
1585.6	1559.2	1559.0
1555.6	1529.3	1528.2
1484.2	1459.4	1460.6
1367.0	1352.2	1351.9
1364.3	1351.4	1350.2
1290.3	1341.9	1340.7
1251.9	1227.1	1227.0
1229.6	1209.3	1209.3
1148.4	1136.9	1136.8
1111.6	1096.3	1096.3
1085.5	1070.5	1071.6
1062.8	1055.0	1055.0
1055.2	1047.8	1047.8
1041.5	1032.9	1035.0
1041.5	1023.0	1023.0
1005.3	1000 1	1000 3
989.5	971.1	971.1
986.9	979.6	979.6
980.6	974.3	974 3
974.3	974.5	979.5
9/4.5	970.5	910.0
030.7	025 4	025 4
939.1	031.5	031.5
937.9	901.0 808 4	901.0 808 1
904.3 870.6	862 0	862.0
706.0	702.6	702.2
790.9	792.0	792.3
700.0	100.1 739 K	100.1 739 K
101.4 799 0	718 0	7100
140.0	(10.U 600 9	(10.U 600 9
094.0	090.8	090.8
030.0 602.7	024.3 507.0	024.4 507.0
002.7 ECC F	097.9 EGO 1	097.9 EGO 0
000.0 500.7	002.1 502.4	002.2 502.4
506.7	503.4	503.4
430.7	433.8	433.3
423.6	420.7	420.7
408.5	404.2	404.2
399.0	395.7	395.7
355.3	355.1	355.1
252.4	250.1	250.1
234.3	233.3	233.3
223.6	222.1	222.1
116.8	118.0	118.0
99.4	98.8	98.8

Table S48: Harmonic, fundamental, and corrected fundamental PM6-QFF frequencies for benzopentalene generated with parameter set (a).

Harm (cm ⁻¹)	Fund (cm^{-1})	$Corr (cm^{-1})$
3113.5	3089.2	3089.2
3099.7	3068.8	3068.8
3093.5	3066.5	3065.8
3091.1	3068.2	3069.4
3081.9	3051.8	3055.5
3078.8	3047.8	3047.1
3068.6	3038.9	3046.5
3060.1	3030.4	3047.8
1619.5	1592.2	1592.0
1607.4	1578.7	1578.6
1548.5	1522.0	1520.8
1541.3	1514.7	1511.5
1498.6	1472.2	1472.3
1477.5	1458.3	1456.6
1423.6	1406.4	1405.2
1397.5	1275.9	1275.6
1351.1	1337.2	1337.5
1318.8	1306.4	1307.1
1313.5	1294.5	1294.5
1281.3	1266.5	1266.5
1216.8	1213.3	1213.4
1186.2	1163.1	1161.3
1130.6	1118.3	1119.4
1072.8	1058.7	1058.7
1056.8	1043.7	1043.9
1055.5	1039.7	1039.7
1030.1	1016.3	1016.3
1025.4	1013.4	1013.2
1012.2	999.1	996.6
1004.1	992.0	992.0
982.7	972.3	972.3
949.7	938.6	938.5
921.9	911.7	912.5
901.0	890.8	890.9
871.2	867.4	867.5
805.0	799.6	799.6
802.0	796.0	796.0
778.5	771.3	771.4
759.9	753.5	755.0
748.2	739.2	739.2
687.4	679.9	679.9
658.6	651.4	651.4
616.7	609.4	609.4
558.2	551.7	551.8
511.6	505.0	505.0
490.1	485.1	485.1
475.6	471.4	471.2
421.8	417.5	417.5
414.8	410.2	410.2
305.3	301.3	301.3
265.5	262.8	262.8
241.1	237.3	237.3
133.6	132.4	132.4
109.7	109.3	109.3

Table S49: Harmonic, fundamental, and corrected fundamental PM6-QFF frequencies for benzopentalene generated with parameter set (b).

Harm. (cm^{-1})	Fund. (cm^{-1})	Corr. (cm^{-1})
3231.1	3178.4	3177.6
3182.4	3139.8	3139.3
3160.4	3109.6	3117.9
3139.1	3091.1	3087.5
3127.2	3077.3	3086.1
3100.7	3042.8	3042.6
3084.9	3028.4	3027.0
3066.4	3007.7	3009.3
2009.3	1968.9	1968.2
1926.1	1894.1	1892.7
1828.6	1794.4	1792.6
1701.7	1663.4	1667.0
1643.7	1612.6	1613.8
1616.2	1584.7	1584.1
1523.5	1491.7	1489.8
1485.9	1456.5	1456.4
1431.4	1389.0	1389.0
1403.2	1378.6	1376.7
1384.0	1356.6	1356.3
1327.7	1299.8	1299.6
1250.9	1222.3	1221.8
1249.4	1227.3	1226.8
1187.1	1162.1	1162.6
1171.7	1150.9	1143.6
1159.5	1142.1	1134.3
1121.8	1100.0	1098.1
1069.1	1047.8	1049.1
1054.7	1043.2	1043.2
1009.6	989.3	988.1
986.3	963.0	963.0
960.1	921.0	921.0
913.3	889.9	889.9
901.2	862.9	862.9
892.0	868.1	868.1
887.1	871.2	871.2
853.9	824.7	824.8
853.0	835.9	836.0
769.6	746.4	750.6
758.3	752.2	751.7
727.4	719.7	719.5
693.4	684.0	683.9
646.0	635.3	635.5
594.9	587.9	587.9
571.0	557.7	557.8
546.5	544.9	549.1
460.6	455.7	454.2
448.9	443.7	443.7
375.3	369.6	369.6
284.9	281.2	281.1
272.2	268.8	266.8
259.4	254.4	254.4
171.8	171.0	171.0
110.0	110.7	110.7
96.9	96.9	96.9

Table S50: Harmonic, fundamental, and corrected fundamental PM6-QFF frequencies for benzopentalene generated with parameter set (c).

Harm. (cm^{-1})	Fund. (cm^{-1})	Corr. (cm^{-1})
3103.5	3077.8	3077.8
3094.8	3070.8	3068.5
3086.1	3064.3	3069.1
3078.5	3053.2	3052.8
3076.4	3056.7	3056.6
3075.5	3054.7	3055.7
3069.4	3046.3	3049.3
3061.6	3033.7	3048.0
1613.1	1585.1	1583.5
1609.8	1578.8	1579.1
1535.6	1501.0	1500.5
1528.5	1487.3	1486.7
1496.9	1468.2	1469.3
1391.8	1378.6	1379.6
1351.4	1340.5	1339.2
1313.7	1298.0	1298.2
1259.7	1241.7	1241.6
1244.5	1227.3	1227.2
1227.6	1214.5	1214.7
1208.3	1196.4	1196.6
1163.2	1074.1	1073.6
1128.8	1119.7	1119.8
1092.5	1081.6	1080.0
1051.2	1036.8	1036.7
1011.3	998.9	999.1
985.7	974 7	973.4
938.0	928.0	928.0
934.0	924.1	924 1
927.9	924.0	924.2
914.5	906.4	906.3
897.4	888.2	888.2
890.2	875.6	875.8
877.9	869.9	869.9
848.2	838.5	838.3
807.2	783.8	783.6
736.4	731.2	731 4
725.4	731.2	731.4
716 3	719.0	719.0
694.1	602.0	692.0
661 2	656.2	656.2
649 7	636.2	636.2
581.6	575.2	575 1
580.7	576.8	576.8
518 9	513.4	513 /
448.8	442.2	442.2
440.0	440.0	497.2
441.0	401.1	401.0 190.0
492.0	429.0 303.0	429.0 202 8
361 9	350.7 250.7	350.7
001.0 071.0	009.1 060 0	009.1 060 0
211.3 226 7	209.3 225.4	209.3 225.4
220.1 222 C	220.4	220.4
444.0 100 F	221.1 120 7	221.1 120.7
120.0	120.7	120.7
90.0	95.7	95.(

Table S51: Harmonic, fundamental, and corrected fundamental PM6-QFF frequencies for benzopentalene generated with parameter set (d).

Harm. (cm^{-1})	Fund. (cm^{-1})	Corr. (cm^{-1})
3161.6	3122.6	3122.1
3139.1	3098.9	3098.8
3133.4	3094.2	3094.3
3125.5	3073.5	3077.1
3112.6	3081.9	3081.9
3109.0	3066.7	3067.3
3104.2	3061.9	3065.6
3103.4	3061.5	3061.6
1791.4	1764.7	1763.1
1759.3	1730.2	1729.6
1709.0	1683.3	1682.2
1613.5	1587.7	1587.0
1556.1	1530.7	1531.4
1480.5	1453.8	1453.6
1441.2	1419.7	1419.6
1406.7	1384.6	1382.9
1366.6	1343.9	1344.0
1339.6	1314 1	1314.5
1291.0	1270.0	1270.0
1262.3	1244 7	1243.8
1252.0 1257.0	1237.3	1240.0 1237.6
1201.0	1187.5	1187 7
1181.0	1161.8	1160.7
1161.0	1141.4	1141 4
1151.2	1137.0	1137.0
1136.6	1114 4	1113 7
1118.0	1114.4	1110.7
1115.5	1100.2	1100.2
1066.7	1054.1	1054.1
1058.4	10/3.6	10/3.6
1050.4 1050.4	1045.0	1045.0
1035.0	1017.4	1017.4
1030.0	1017.4	1017.4
074.6	061.2	061.2
028 7	901.2 020.1	901.2 020 1
920.1 885 5	920.1 872.0	920.1 871.6
866 7	850.4	850.4
842 1	809.4 820 1	821.0
043.1 816.0	002.1 910.6	031.9 910.4
776.0	810.0 768 5	768 5
770.9	708.0	708.0
655.0	120.U 640.8	640.8
000.2	049.8 691.9	049.8
029.1	021.3	024.3
004.0 512.1	011.1 504 9	077.7 508.4
1010	004.8 475 0	008.4 475 0
481.9	470.9	410.9
470.3	404.1	402.0
412.2	407.8	407.8
382.1	377.9	377.9
259.6	256.9	256.7
258.2	256.0	256.0
239.5	237.9	237.9
123.9	123.2	123.2
103.9	101.6	101.6

Table S52: Harmonic, fundamental, and corrected fundamental PM6-QFF frequencies for benzopentalene generated with parameter set (e).

Harm. (cm^{-1})	Fund. (cm^{-1})	Corr. (cm^{-1})
3128.9	3104.0	3107.9
3117.9	3093.4	3093.2
3115.0	3098.7	3098.4
3112.2	3085.5	3086.5
3104.5	3083.7	3085.4
3104.4	3078.0	3078.6
3096.8	3074.4	3088.9
3089.0	3061.2	3079.6
1650.0	1623.5	1622.4
1638.3	1612.1	1610.8
1566.8	1537.0	1536.9
1557.1	1526.9	1525.9
1525.1	1493.1	1493.4
1428.3	1411.6	1415.3
1393.3	1380.6	1382.9
1346.8	1333.2	1333.5
1285.9	1272.6	1272.6
1285.2	1272.8	1272.9
1261.6	1248.5	1248.8
1227.5	1210.8	1211.2
1194.7	1171.7	1169.8
1161.6	1153.5	1153.5
1141.1	1130.5	1130.3
1089.0	1080.5	1080.4
1047.8	1036.1	1035.7
1021.5	1601.8	1601.9
1002.6	992.0	992.0
994.4	983.1	983.1
971.6	961.7	961.7
955.5	950.0	950.3
952.4	941.5	941.5
931.6	924.5	924.5
922.9	914.2	914.6
895.7	884.6	884.6
851.9	852.7	852.3
774.0	758.1	758.5
769.3	768.0	767.9
759.5	754.2	754.2
751.4	746.5	746.5
715.0	708.4	708.4
674.5	665.7	665.7
629.8	624.4	624.4
607.4	602.0	601.9
543.7	539.3	539.3
485.6	479.2	479.2
463.9	459.5	459.5
462.4	458.7	458.4
414.0	408.8	408.8
386.7	384.3	384.3
289.1	285.7	285.7
247.1	245.3	245.3
232.7	242.9	242.9
128.6	128.9	128.9
103.8	106.7	106.7

Table S53: Harmonic, fundamental, and corrected fundamental PM6-QFF frequencies for benzopentalene generated with parameter set (f).

4 Parameters

	(f)	-13.07499687	0.9601081811	-14.74259751	10.27401911	-50.55218045	-36.21926573	1.103663522	1.698493108	-14.67161171	-9.86607095	13.00772185	15.89067939	9.847830034	10.25068184	1.276514355	0.05624142398
	(e)	-10.54740849	1.156914908	-10.15652675	14.30014613	-51.22193781	-39.03473656	1.363058869	1.696330363	-15.14946218	-8.78069328	14.78882229	10.4034427	9.388305095	9.567303279	3.689747683	0.09254031567
ner Det	(q)	-13.10412803	1.004165987	-14.79240561	9.852551171	-50.81362974	-36.26937902	1.170333749	1.710583289	-14.51058256	-8.659170187	13.9570122	16.34933065	9.953932612	10.03842449	0.1887688752	0.03232578889
L al allie	(c)	-7.481284187	1.233229717	-12.85983021	21.49924844	-53.45777372	-34.94132153	2.040303158	1.544949905	-20.619989	-8.411633354	15.9546568	10.13999083	6.561874699	9.365156701	0.7124654175	0.08268633774
	(q)	-12.29020873	0.988528116	-14.87978102	10.40573841	-49.08000601	-37.41883835	1.132441093	1.566990739	-14.67759231	-8.956318028	11.74851741	17.64251981	10.78814306	11.65287048	2.316089752	0.1012986548
	(a)	-10.62417845	0.9343456413	-9.13449619	14.87388987	-50.80835869	-40.02817535	1.286277777	1.683540171	-15.61978375	-7.780154413	14.55486162	10.1755911	11.81135762	10.88197111	2.370417524	0.07575873211
	Parameter	U_{ss} [H] (eV)	ξ_s [H] (bohr ⁻¹)	β_s [H] (eV)	Gss [H] (eV)	U_{ss} [C] (eV)	U_{pp} [C] (eV)	ξ_s [C] (bohr ⁻¹)	ξ_p [C] (bohr ⁻¹)	β_s [C] (eV)	β_p [C] (eV)	Gss [C] (eV)	Gpp[C](eV)	Gpp [C] (eV)	Gp2 [C] (eV)	Hsp $[C]$ (eV)	FN11 [C]

The FN11 parameter is equivalent	
parameterization detailed in Table 3 of the main text	
Table S54: Semiempirical parameters generated from each r	to the $PM6$ Gaussian multiplier parameter a .

			Parame	ter Set		
Constant	(a)	(b)	(c)	(d)	(e)	(f)
A_e (MHz)	2376.8	2549.7	2781.8	2627.6	2508.7	2580.5
B_e (MHz)	585.6	612.7	685.3	639.2	627.1	626.8
C_e (MHz)	469.8	494.0	549.8	514.1	501.7	504.3
A_0 (MHz)	2371.8	2536.3	2767.4	2616.3	2496.8	2569.1
B_0 (MHz)	584.3	610.0	682.9	636.8	624.9	624.6
C_0 (MHz)	469.0	491.8	548.1	512.3	500.0	502.6
Δ_J (Hz)	3.837	4.407	3.957	5.366	3.598	4.707
Δ_K (Hz)	117.549	129.271	136.525	160.239	107.206	137.035
$\Delta_J K$ (Hz)	-0.839	0.929	-3.208	-0.450	0.060	0.060
δ_J (Hz)	0.959	1.019	0.989	1.289	0.869	1.109
δ_K (Hz)	16.968	16.489	15.619	21.105	13.880	18.317
$\Phi_J \ (\mu \text{Hz})$	0.086	0.054	0.038	0.115	0.046	0.084
$\Phi_K (\mu \text{Hz})$	17.845	14.555	1.855	23.359	14.457	17.888
$\Phi_J K \ (\mu \text{Hz})$	0.449	0.618	0.994	0.689	0.484	0.599
$\Phi_K J \ (\mu \text{Hz})$	-3.133	-3.773	-10.592	-5.498	-3.621	-4.650
$\phi_J \ (\mu \text{Hz})$	0.037	0.025	0.018	0.050	0.021	0.036
$\phi_K \ (\mu \text{Hz})$	18.236	16.192	13.363	25.978	11.151	19.925
$\phi_J K \ (\mu \text{Hz})$	0.705	0.542	0.533	0.935	0.454	0.694

5 Rotational Constants

Table S55: PM6-QFF-computed rotational constants for $(C_6H_4)_2$ with each parameter set (see Table 3 of the main text).

			Parame	eter Set		
Constant	(a)	(b)	(c)	(d)	(e)	(f)
A_e (MHz)	2301.5	2453.6	2587.3	2539.9	2391.0	2491.1
B_e (MHz)	619.6	643.9	727.3	672.6	658.9	660.1
C_e (MHz)	488.2	510.0	567.7	531.8	516.6	521.8
A_0 (MHz)	2296.5	2441.7	2570.8	2529.8	2380.0	2480.8
B_0 (MHz)	618.3	641.2	725.1	670.3	656.7	657.9
C_0 (MHz)	487.3	507.9	565.9	530.1	514.9	520.1
Δ_J (Hz)	4.527	4.887	5.007	6.146	4.317	5.366
Δ_K (Hz)	119.257	124.594	140.663	157.991	113.322	134.877
$\Delta_J K$ (Hz)	-3.837	0.540	-0.150	-1.679	-1.709	-1.289
δ_J (Hz)	1.229	1.199	1.379	1.559	1.139	1.349
δ_K (Hz)	17.478	17.238	20.656	22.245	15.919	19.247
$\Phi_J \ (\mu \text{Hz})$	0.127	0.078	0.149	0.159	0.096	0.118
$\Phi_K (\mu \text{Hz})$	19.971	16.232	18.507	27.734	13.005	20.235
$\Phi_J K \ (\mu \text{Hz})$	0.451	0.488	0.276	0.734	0.244	0.552
$\Phi_K J \ (\mu \text{Hz})$	-4.821	-4.370	-3.424	-7.158	-2.687	-5.197
$\phi_J \ (\mu \text{Hz})$	0.055	0.036	0.067	0.070	0.043	0.052
$\phi_K \ (\mu \text{Hz})$	20.174	17.439	24.760	28.920	16.003	21.850
$\phi_J K \ (\mu \text{Hz})$	0.892	0.587	1.003	1.134	0.639	0.837

Table S56: PM6-QFF-computed rotational constants for $\rm C_{12}H_8$ with each parameter set (see Table 3 of the main text).

	F12-DZ	+ core	F12-TZ	+ core
Constant	0.005 Å	0.010 Å	0.005 Å	0.010 Å
A_e (GHz)	16.911	16.911	16.947	16.947
B_e (GHz)	12.943	12.943	12.966	12.966
C_e (GHz)	7.332	7.332	7.346	7.346
A_0 (GHz)	16.790	16.790	16.827	16.826
B_0 (GHz)	12.864	12.864	12.885	12.885
C_0 (GHz)	7.278	7.278	7.292	7.292
Δ_J (kHz)	5.567	5.566	5.546	5.545
$\Delta_K (\text{kHz})$	2.479	2.476	2.274	2.271
$\Delta_J K$ (kHz)	3.564	3.567	3.776	3.779
$\delta_J \ (kHz)$	2.171	2.171	2.161	2.160
$\delta_K (\text{kHz})$	8.165	8.166	8.229	8.230
$\Phi_J (mHz)$	2.631	2.638	2.554	2.554
$\Phi_K (mHz)$	61.208	61.208	61.916	62.121
$\Phi_J K (mHz)$	47.334	47.291	48.270	48.286
$\Phi_K J (mHz)$	-101.053	-100.989	-102.342	-102.582
$\phi_J \ (mHz)$	1.350	1.353	1.310	1.311
$\phi_K \text{ (mHz)}$	51.801	51.819	51.710	51.657
$\phi_J K \text{ (mHz)}$	22.842	22.834	23.218	23.239

Table S57: Rotational constants for four QFFs computed for C_4H_4 .

	F12	-DZ	F12-DZ	$+ \operatorname{core}$
Constant	0.010 Å	0.015 Å	0.010 Å	0.015 Å
A_e (GHz)	7.084	7.108	7.084	7.108
B_e (GHz)	5.654	5.675	5.654	5.675
C_e (GHz)	3.144	3.155	3.144	3.155
A_0 (GHz)	7.041	7.065	7.041	7.065
B_0 (GHz)	5.615	5.636	5.615	5.636
C_0 (GHz)	3.122	3.133	3.122	3.133
Δ_J (kHz)	0.660	0.663	0.660	0.663
Δ_K (kHz)	1.419	1.443	1.416	1.440
$\Delta_J K$ (kHz)	0.487	0.465	0.491	0.469
δ_J (kHz)	0.267	0.268	0.267	0.268
$\delta_K (\text{kHz})$	1.030	1.022	1.033	1.024
$\Phi_J (mHz)$	0.285	0.286	0.286	0.287
$\Phi_K (mHz)$	11.965	11.783	11.999	11.813
$\Phi_J K \text{ (mHz)}$	3.986	3.880	4.001	3.894
$\Phi_K J \ (mHz)$	-14.197	-13.917	-14.244	-13.958
$\phi_J \ (mHz)$	0.142	0.143	0.142	0.143
$\phi_K \ (mHz)$	1.216	1.224	1.213	1.222
$\phi_J K \text{ (mHz)}$	2.342	2.291	2.351	2.299

Table S58: Rotational constants for four QFFs computed for $\mathrm{C}_{6}\mathrm{H}_{4}.$

11	10	\mathbf{C}
12	10	А
15	14	А
	Type 1 Fermi Resonances	3
4	0	
5	0	
11	5*	
12	5	
13	5	
14	5	
15	8	
16	8	
17	8	
17	10	
	Type 2 Fermi Resonance	3
5	4	1
13	12	4
14	11	4
15	12	6
16	13	6
16	15	9
17	13	5**

6 Resonances

Table S59: Coriolis and Type 1 and 2 Fermi resonances computed across the r = 0.005, 0.010 Å core-correlated F12-DZ and F12-TZ QFFs for C₄H₄. Resonances not present across all QFFs are indicated.

	Coriolis Resonances	
6	5	С
19	11	č
12	11	Č
14	11	Δ
20	11	D
20	19	D C
21	19	Č
21	20	A
22	21	А
T	ype 1 Fermi Resonance	ces
12	4	
18	8	
20	8	
20	12	
21	12	
21	13	
22	12	
22	13	
23	19	
Т	Type 2 Fermi Resonand	ces
7	4	3
8	4	2
10	4	2
11	4	3
13	10	4
13	12	4
16	14	4
17	9	4
17	11	4
18	16	5
10	13	6
20	14	6
20	14	5
20	5	5
21	5	4
21	19	4
21	10	9
21	17	8
21	19	9
22	14	0
22	15	7
22	15	9
22	16	8
22	18	9
22	18	11
22	20	10
22	20	12
22	20	13
23	14	5
23	14	7
23	15	6
23	15	8
23	16	7
20	18	. 8
20 03	10	10
∠ວ ດາ	10	10
∠0 02	10	12
23	20	11

Table S60: Coriolis and Type 1 and 2 Fermi resonances computed across the r = 0.010, 0.015 Å F12-DZ and core-correlated F12-DZ QFFs for o-C₆H₄. All resonances are present across all QFFs.

	Coriolis Resonances	
11	<u> </u>	C
11	9	C
14	10	C
14	12	C
10	13	C
10	14	C A
22	21	А
23	20	А
24	21	В
25	23	В
26	23	Α
27	26	В
29	27	В
30	28	\mathbf{C}
31	18	А
31	22	В
32	18	\mathbf{C}
32	31	B
33	22	A
55 20	22	R
22	24	
აა 24	32	A
34	25	Б
34	26	A
35	26	C
35	27	А
42	41	В
43	40	\mathbf{C}
45	43	А
46	42	Α
47	44	\mathbf{C}
52	51	В
53	51	А
	Type 1 Fermi Resonance	s
11	0	
11	5	
12	0	
12	5	
28	8	
29	8	
30	8	
31	8	
32	8	
37	12	
38	12	
40	12	
40	16	
41	10	
40	20	
45	29	
45	36	
46	36	
48	36	
49	36	
50	47	
53	47	
	Type 2 Fermi Resonance	s
12	11	1
	11	4
12	11	4
12 13	8	4 6

9	
10	
11	
12	
8	
10	
11	
12	
0	
9 10	
11	
8	
9	
10	
11	
10	
11	
8	
8	
9	
9	
8	
8	
9	
9	
8	
8	
8	
8	
8	
30	
25	
28	
29	
30	
20	
18	
25	
28	
35	
27	
33	
39	
39	
20	
26	
29	
30	
32	
35	
14	
28	
28	
29	
29	
32	
36	
15	
17	
21	

15 16

16 16

17 18

18 18

19 19

 $\begin{array}{c} 19\\ 20\\ 22\\ 24\\ 25\\ 32\\ 35\\ 35\\ 35\\ 35\\ 36\\ 36\\ 36 \end{array}$

 $\begin{array}{r}
 15 \\
 16 \\
 15 \\
 9 \\
 9 \\
 12 \\
 \end{array}$

34	17
37	28
39	26
41	30
30	18
30	24
39	24
39	28
41	19
45	28
12	8
13	9
14	10
17	11
32	15
21	11
21	15
23	12
23	16
20	10
31	10
33	15
33	17
34	12
38	28
39	32
41	29
41	36
42	37
45	30
21	14
23	13
20	10
25	13
33	33
37	30
37	32
38	26
39	19
40	34
41	24
41	28
46	43
21	13
23	14
	18
34	10
94 95	19
33	34
37	26
38	22
38	30
43	38
45	40
9	8
11	10
15	10
26	13
26	24
20	24
20	20
30	14
36	18
36	24
36	28
37	28
38	25

52	49	44
53	21	14
53	23	13
53	34	18
53	48	40
53	50	43

Table S61: PM6-QFF Coriolis and Fermi resonances for biphenylene generated using parameter set (a).

Coriolis Resonances				
13	11	С		
15	9	\mathbf{C}		
27	22	\mathbf{C}		
30	21	С		
30	27	С		
31	25	С		
33	26	А		
34	33	С		
35	28	В		
35	30	С		
37	30	В		
37	35	А		
40	37	В		
41	39	А		
42	39	С		
42	41	В		
43	40	С		
44	40	В		
44	43	А		
47	42	А		
48	45	С		
52	51	В		
53	51	А		
Type 1 Fermi Resonances				
Ту	pe 1 Fermi Resonanc	es		
	vpe 1 Fermi Resonanc	es		
9 9 9	vpe 1 Fermi Resonanc 0 4	es		
9 9 10	vpe 1 Fermi Resonanc 0 4 0	es		
9 9 10 10	vpe 1 Fermi Resonanc 0 4 0 4	es		
9 9 10 10 11	ype 1 Fermi Resonanc 0 4 0 4 0 0	es		
9 9 10 10 11 11	vpe 1 Fermi Resonanc 0 4 0 4 0 4 0 4	es		
9 9 10 10 11 11 12	vpe 1 Fermi Resonanc 0 4 0 4 0 4 0 4 0 4 0	es		
9 9 10 10 11 11 12 12	vpe 1 Fermi Resonanc 0 4 0 4 0 4 0 4 0 1	es		
Ty 9 9 10 10 11 12 12 12 12	vpe 1 Fermi Resonanc 0 4 0 4 0 4 0 4 0 1 4	25		
$\begin{array}{c} & & & T_3 \\ & 9 \\ & 9 \\ & 10 \\ & 10 \\ & 11 \\ & 11 \\ & 11 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \end{array}$	vpe 1 Fermi Resonance 0 4 0 4 0 4 0 4 0 1 4 5	25		
$\begin{array}{c} & & T_{3} \\ & 9 \\ & 9 \\ & 10 \\ & 10 \\ & 11 \\ & 11 \\ & 11 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 13 \end{array}$	vpe 1 Fermi Resonance 0 4 0 4 0 4 0 4 0 1 4 5 0	25		
$\begin{array}{c} & & & T_3 \\ & 9 \\ & 9 \\ & 10 \\ & 10 \\ & 11 \\ & 11 \\ & 11 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 13 \\ & 13 \end{array}$	vpe 1 Fermi Resonance 0 4 0 4 0 4 0 1 4 5 0 1	es		
$\begin{array}{c} & & Ty \\ & 9 \\ & 9 \\ & 10 \\ & 10 \\ & 11 \\ & 11 \\ & 11 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 13 \\ & 13 \\ & 13 \end{array}$	vpe 1 Fermi Resonance 0 4 0 4 0 4 0 1 4 5 0 1 4 4	es		
$\begin{array}{c} & & Ty \\ & 9 \\ & 9 \\ & 10 \\ & 10 \\ & 11 \\ & 11 \\ & 11 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 13 \\ & 13 \\ & 13 \\ & 35 \end{array}$	vpe 1 Fermi Resonance 0 4 0 4 0 4 0 4 0 1 4 5 0 1 4 8	es		
$\begin{array}{c} & & T_3 \\ & 9 \\ & 9 \\ & 10 \\ & 10 \\ & 11 \\ & 11 \\ & 11 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 13 \\ & 13 \\ & 13 \\ & 35 \\ & 35 \end{array}$	vpe 1 Fermi Resonanc 0 4 0 4 0 4 0 4 0 1 4 5 0 1 4 5 0 1 4 5 0 1 4 5 0 1 4 5 0 1 4 5 0 1 4 5 0 1 4 5 0 1 4 5 0 1 4 5 6 6 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1	25		
$\begin{array}{c} & & T_3 \\ & 9 \\ & 9 \\ & 10 \\ & 10 \\ & 11 \\ & 11 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 35 \\ & 35 \\ & 35 \\ & 39 \end{array}$	vpe 1 Fermi Resonanc 0 4 0 4 0 4 0 4 0 1 4 5 0 1 4 5 0 1 4 8 14 8	25		
$\begin{array}{c} & & T_3 \\ & 9 \\ & 9 \\ & 10 \\ & 10 \\ & 11 \\ & 11 \\ & 11 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 35 \\ & 35 \\ & 35 \\ & 39 \\ & 39 \\ & 39 \end{array}$	vpe 1 Fermi Resonanc 0 4 0 4 0 4 0 4 0 1 4 5 0 1 4 5 0 1 4 8 14 8 14	25		
$\begin{array}{c} & & T_3 \\ & 9 \\ & 9 \\ & 10 \\ & 10 \\ & 11 \\ & 11 \\ & 11 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 35 \\ & 35 \\ & 35 \\ & 39 \\ & 39 \\ & 40 \end{array}$	vpe 1 Fermi Resonanc 0 4 0 4 0 4 0 4 0 1 4 5 0 1 4 8 14 14	25		
$\begin{array}{c} & & T_3 \\ & 9 \\ & 9 \\ & 10 \\ & 10 \\ & 11 \\ & 11 \\ & 11 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 35 \\ & 35 \\ & 35 \\ & 39 \\ & 39 \\ & 39 \\ & 40 \\ & 40 \end{array}$	vpe 1 Fermi Resonanc 0 4 0 4 0 4 0 4 0 1 4 5 0 1 4 8 14 14 20	225		
$\begin{array}{c} & & T_3 \\ & 9 \\ & 9 \\ & 10 \\ & 10 \\ & 11 \\ & 11 \\ & 11 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 35 \\ & 35 \\ & 35 \\ & 39 \\ & 40 \\ & 40 \\ & 42 \end{array}$	vpe 1 Fermi Resonance 0 4 0 4 0 4 0 1 4 5 0 1 4 5 0 1 4 8 14 8 14 14 20 31	225		
$\begin{array}{c} & & T_3 \\ 9 \\ 9 \\ 10 \\ 10 \\ 11 \\ 11 \\ 11 \\ 12 \\ 12 \\ 12$	vpe 1 Fermi Resonanc 0 4 0 4 0 4 0 4 0 1 4 5 0 1 4 5 0 1 4 8 14 8 14 8 14 14 20 31 31	25		
$\begin{array}{c} & & T_3 \\ 9 \\ 9 \\ 10 \\ 10 \\ 11 \\ 11 \\ 12 \\ 12 \\ 12 \\ 12$	vpe 1 Fermi Resonanc 0 4 0 4 0 4 0 4 0 1 4 5 0 1 4 5 0 1 4 8 14 8 14 8 14 14 20 31 31 20	25		

45	31	
46	31	
46	34	
46	39	
47	39	
48	39	
49	39	
50	39	
53	48	
1	ype 2 Fermi Resonanc	es
9	8	2
10	8	3
10	9	1
10	9	5
11	8	1
11	9	3
11	10	2
12	8	7
12	9	5
12	10	4
12	11	2
12	11	6
13	8	6
13	9	4
13	10	5
13	11	3
13	11	5
10	11	1
10	12	1
13	12	5
14	8	0
14	9	2
14	10	3
14	11	1
14	12	3
14	12	7
14	13	2
14	13	6
15	8	1
15	8	5
15	9	3
15	9	7
15	10	2
15	10	6
15	11	0
15	11	4
15	12	6
15	13	7
16	8	4
16	9	2
16	9	6
16	10	3
16	10	7
16	11	1
16	11	5
17	8	3
17	0	1
17	9	5
17	9	0
17	10	4
17	10	4
11	11	2
18	8	2

9	
9	
10	
11	
8	
8	
9	
8	
31	
27	
27	
30	
34	
35	
22	
31	
34	
31	
34	
34	
35	
21	
25	
34	
34	
35	
35	
39	
28	
29	
32	
38	
41	
17	
19	
21	
25	
34	
40	
23	
24	
26	
20	
28	
29	
32	
38	
41	
44	
44	
44	
26	
37	
44 14	
16	
17	

 $\begin{array}{c} 0 \\ 4 \\ 1 \\ 5 \\ 3 \\ 1 \\ 5 \\ 7 \\ 0 \\ 8 \\ 8 \\ 11 \\ 9 \\ 8 \\ 14 \\ 15 \\ 8 \\ 9 \\ 9 \\ 12 \\ 10 \\ 12 \\ 13 \\ 8 \\ 9 \\ 10 \\ 15 \\ 19 \end{array}$

 $\begin{array}{c} 21 \\ 27 \\ 8 \\ 9 \\ 9 \\ 8 \\ 10 \\ 19 \\ 11 \\ 14 \\ 10 \\ 17 \\ 9 \\ 18 \\ 15 \\ 16 \\ 18 \\ 31 \\ 27 \\ 35 \\ 14 \\ 18 \\ 30 \\ 8 \\ 8 \\ 10 \end{array}$

 $45 \\ 45$

 $\frac{48}{48}$

S64

		_
48	18	9
48	20	8
48	21	11
48	22	9
48	22	18
48	34	20
48	35	21
48	40	22
48	40	30
49	23	12
49	24	13
49	35	26
49	36	19
49	36	21
49	37	17
49	41	30
49	44	25
49	47	35
50	23	13
50	24	12
50	28	15
50	29	18
50	32	17
50	38	19
50	38	21
50	41	25
50	46	33
50	49	35
51	9	8
51	14	9
51	34	22
51	35	25
51	39	22
51	39	30
51	40	34
51	40	39
51	45	35
52	23	16
52	32	21
52	49	45
53	35	26
53	46	40
53	50	43

Table S62: $\rm P\overline{M6}\text{-}QFF$ Coriolis and Fermi resonances for biphenylene generated using parameter set (b).

Coriolis Resonances			
12	11	С	
15	14	С	
17	13	\mathbf{C}	
18	14	\mathbf{C}	
19	17	С	
21	18	\mathbf{C}	
21	20	\mathbf{C}	
22	19	\mathbf{C}	
29	28	А	
29	28	В	
30	25	А	

31	27	В	
31	30	В	
32	28	А	
34	29	А	
34	32	А	
34	32	В	
35	30	А	
35	30	В	
35	33	А	
36	35	А	
36	35	В	
39	33	В	
40	34	В	
42	37	С	
44	41	В	
44	43	В	
45	43	C	
52	49	A	
52	49	В	
53	49	A	
Ту	vpe 1 Fermi Resonanc	es	
12	0		
12	2		
12	3		
12	7		
13	0		
13	4		
13	7		
14	0		
14	7		
15	0		
15	3		
15	4		
15	7		
16	3 7		
10	7		
17	1		
20	8		
21	0		
3U 34	10		
36	10		
30	15		
39	15		
30	18		
44	27		
44	30		
44	33		
45	36		
46	27		
46	30		
46	33		
46	41		
47	43		
48	45		
49	45		
50	43		
50	45		
51	45		
Type 2 Fermi Resonances			

12
12
12
12
12
13
11
11
11
12
12
13
13
14
14
14
11
11
12
12
13
14
14
14
14
15
15
9
10
11
12
12
12
12
12
13
14
14
14
10
11
11
11
12
12 12
9
11
11
11
9
9
11
11
11
11
9
11
11 11
11 11 11
11 11 11 8
11 11 11 8 8

 $\begin{smallmatrix} 0 & 3 & 1 & 2 \\ 2 & 6 & 2 & 1 & 2 \\ 5 & 1 & 6 & 2 & 6 \\ 0 & 3 & 7 & 0 & 3 & 0 \\ 7 & 3 & 1 & 2 & 3 & 6 & 6 \\ 2 & 5 & 1 & 0 & 1 & 1 & 2 \\ 3 & 5 & 6 & 5 & 2 & 3 & 7 & 1 \\ 0 & 3 & 7 & 2 & 3 & 7 & 2 \\ 1 & 2 & 3 & 1 & 2 & 3 \\ 1 & 2 & 3 & 5 & 3 & 0 & 2 \\ 3 & 0 & 1 & 1 & 2 & 3 \\ 1 & 2 & 3 & 1 & 2 \\ 1 & 2 & 3 & 1 & 2 \\ 1$

9	
9	
10	
8	
0	
9	
9	
8	
8	
9	
9	
10	
10	
8	
10	
10	
8	
8	
26	
27	
28	
28	
8	
18	
30	
8	
8	
8	
23	
26	
26	
27	
30	
33	
32	
8	
18	
26	
27	
28	
30	
34	
34	
34	
17	
22	
27	
30	
36	
36	
15	
17	
18	
∠U 21	
21 27	
34	
37	
22	
27	
21	

 $\begin{array}{c} 0 \\ 1 \\ 3 \\ 0 \\ 1 \\ 1 \\ 2 \\ 5 \\ 0 \\ 3 \\ 1 \\ 5 \\ 4 \\ 4 \\ 7 \\ 5 \\ 7 \\ 9 \\ 8 \\ 9 \\ 111 \\ 4 \\ 8 \\ 10 \\ 2 \\ 5 \\ 6 \\ 10 \\ 8 \\ 101 \\ 111 \\ 111 \end{array}$

 $\begin{array}{c} 11\\ 12\\ 7\\ 8\\ 9\\ 10\\ 9\\ 10\\ 11\\ 12\\ 13\\ 8\\ 10\\ 9\\ 12\\ 11\\ 12\\ 8\\ 9\\ 8\\ 10\\ 13\\ 10\\ 13\\ 10\\ 11\\ \end{array}$

 $\begin{array}{c} 23\\ 23\\ 23\\ 24\\ 24\\ 24\\ 24\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 26\\ 27\\ 27\\ 27\\ 28\\ 30\\ \end{array}$

S68

33	13
26	10
30	12
36	13
13	9
19	9
30	14
27	19
37	15
16	9
26	16
38	17
38	26
30	
39	21
40	19
12	9
15	8
15	10
19	12
10	12
22	11
26	11
30	15
36	15
36	18
36	20
30	20
32	17
32	22
34	16
35	21
30	
39	21
40	19
43	25
21	16
25	17
29	18
20	21
29	21
29	23
29	24
31	26
32	21
35	19
35	10
35	23
35	26
38	21
39	22
45	38
46	37
46	49
40	42
18	16
25	13
25	19
25	22
	18
25	10
29	23
31	22
32	20
32	21
32	23
20	20
32	24
35	23
35	24
37	31
38	27
30	 28
	28

 $\frac{48}{48}$

:	39	37
	40	27
	40	33
	42	39
	43	38
	43	40
	44	42
	45	40
	47	43
	9	8
	10	9
	11	10
	12	10
	14	11
	18	13
	20	12
	22	14
	30 37	19
	37	36
	41	26
	43	42
	45	37
	16	12
:	25	14
:	25	15
:	25	18
:	26	16
:	29	22
:	29	23
:	29	24
:	31	20
:	31	21
:	32	23
:	32	24
	35	20
	35	21
	35	23
	35	24
	00 00	20
	10	26
	40	38
	43	39
	44	36
	46	41
	47	42
	48	42
	16	13
:	25	18
:	29	22
:	29	26
:	31	20
:	31	21
:	31	27
:	32	22
:	35	21
	37	29
	38	28
	39	27
:	39 40	30
	40	28

 $49 \\ 49$

51	40	37
51	42	40
51	43	39
51	45	39
51	46	45
51	47	42
52	35	23
52	51	49
53	16	14
53	29	21
53	31	26
53	35	26
53	38	27
53	39	28
53	41	38
53	44	37
53	46	42
53	47	45

Table S63: PM6-QFF Coriolis and Fermi resonances for biphenylene generated using parameter set (c).

	Coriolis Resonances	
14	11	С
22	21	\mathbf{C}
24	22	\mathbf{C}
25	23	\mathbf{C}
26	21	\mathbf{C}
26	24	\mathbf{C}
34	29	А
34	32	\mathbf{C}
35	26	\mathbf{C}
39	35	А
40	39	В
42	36	\mathbf{C}
42	41	В
43	40	\mathbf{C}
45	40	В
45	43	А
47	44	\mathbf{C}
48	42	А
52	51	В
53	51	А
Ту	pe 1 Fermi Resonanc	ces
8	0	
9	0	
9	4	
10	0	
10	4	
10	5	
11	0	
11	4	
29	8	
31	8	
32	8	
35	8	
35	12	
36	0	

26	10	
30	12	
36	16	
37	12	
38	12	
40	12	
40	20	
41	16	
45	25	
45	32	
45	36	
46	32	
46	36	
47	36	
48	32	
48	36	
49	36	
50	47	
53	47	
Ту	pe 2 Fermi Resonan	ces
9	8	2
10	8	3
10	9	1
10	9	4
10	9	5
11	8	1
11	9	3
11	10	2
12	8	0
12	8	4
12	11	1
12	11	1
12	11	4
12	11	5
15	0	0
13	8	í _
13	9	5
13	10	0
13	10	4
13	11	2
13	11	6
13	11	7
14	8	6
14	8	7
14	9	4
14	10	5
14	11	3
14	11	6
14	11	7
15	8	1
15	8	4
15	8	5
15	9	3
15	9	6
15	9	7
15	10	6
15	10	7
15	11	4
15	11	5
16	8	0
16	8	4
16	8	5
16	a	2
10	Э	4
9		
----------	--	
9		
9		
8		
8		
25		
23		
24		
23		
24		
26		
32		
26		
32		
35		
35		
31		
22		
23		
34		
30 20		
39		
39 24		
24		
24		
25		
20		
32		
35		
21		
23		
25		
25		
26		
32		
35		
35		
36		
36		
19		
21		
26		
28		
29		
30		
33		
39		
41		
41		
41		
27		
28		
29		
30		
31		
31		
33		
38		
39		
41		

 $egin{array}{cccc} 3 & 6 \ 7 & 2 \ 3 & 8 \ 9 & 9 \ 8 & 10 \ 111 \ 9 & 8 \ 111 \ 155 \ 122 \ 8 \ 111 \ 15 \ 112 \ 8 \ 111 \ 112 \ 112 \ 112 \ 112 \ 111 \ 112 \ 112 \ 112 \ 112 \ 112 \ 112 \ 112 \ 112 \ 112 \ 112 \ 112 \ 111 \ 112 \ 112 \ 112 \ 111 \ 112 \ 112 \ 111 \ 112 \ 112 \ 111 \ 112 \ 112 \ 111 \ 112 \$

 $\begin{array}{c} 11\\ 13\\ 19\\ 21\\ 9\\ 14\\ 10\\ 13\\ 10\\ 13\\ 14\\ 8\\ 9\\ 11\\ 15\\ 10\\ \end{array}$

 $\begin{array}{c} 15\\ 16\\ 20\\ 15\\ 19\\ 9\\ 9\\ 11\\ 12\\ 17\\ 18\\ 16\\ 15\\ 25\\ 19\\ 21\\ 12\\ 12\\ 12\\ 12\\ 12\\ 12\\ 15\\ 21\\ 16\\ 26\\ 24\\ 25\\ \end{array}$

46	45	24
46	45	35
47	12	8
47	17	9
47	18	10
47	19	11
47	21	11
47	21	17
47	22	18
47	20	16
47	35	15
47	25	10
47	20	21
47	30	20
41	40	20
40	29	12
40	30	21
40	30 20	10
40	39	22
48	39	26
48	45	26
49	27	13
49	27	14
49	28	13
49	28	14
49	35	29
49	37	19
49	37	21
49	38	20
49	38	32
49	41	26
49	48	35
49	48	43
50	27	13
50	27	14
50	28	13
50	28	14
50	29	16
50	30	15
50	31	17
50	33	18
50	37	32
50	38	35
50	41	23
50	45	40
50	46	34
51	9	8
51	11	10
51	19	10
51	26	25
51	32	22
51	34	21
51	35	23
51	36	22
51	36	26
51	40	32
51	44	35
52	27	19
52	49	44
53	35	29
53	46	40
53	50	43
-		

Coriolis Resonances		
11	9	С
12	11	С
14	12	С
15	13	С
16	12	B
17	12	C
18	12	C
10	17	C
19	17	C
22	17	0
23	21	A
28	23	В
30	24	A
31	23	С
31	28	А
32	22	A
32	24	В
33	30	В
33	32	В
35	27	А
37	35	А
42	40	С
43	41	В
44	43	B
45	41	A
46	44	C
52	50	B
52	50	B
	50	A
T	ype 1 Fermi Resonanc	es
12	0	
12	3	
13	0	
13	4	
13	6	
14	0	
14	3	
14	4	
14	6	
33	8	
34	8	
40	15	
49	31	
42	21	
40	0.0	
40	20	
40	54	
/15	07	
40	37	
47	37 34	
43 47 47	37 34 37	
40 47 47 48	37 34 37 37	
47 47 48 49	37 34 37 37 37 37	
47 47 48 49 50	37 34 37 37 37 46	
47 47 48 49 50 51	37 34 37 37 37 46 46	

Table S64: PM6-QFF Coriolis and Fermi resonances for biphenylene generated using parameter set (d).

_

 $13 \\ 13$

8	
9	
10	
10	
8	
9	
9	
10	
10	
8	
8	
9	
9	
10	
8	
9	
8	
8	
8	
31	
23	
34	
01	
25	
25	
21	
29	
31	
04 17	
17	
18	
25	
27	
34	
23	
27	
29	
34	
36	
13	
14	
17	
18	
34	
36	
36	
43	
12	
15	
15	
29	
36	
38	
39	
42	
43	
44	
28	
35	
36	
38	
39	
41	
71	

 $\begin{array}{c} 41\\ 42\\ 42\\ 42\\ 43\\ 44\\ 44\\ 44\\ 44\\ 45\\ 45\\ 45\\ 46\\ 46\\ 46\\ 46\\ 46\\ 47\\ 47\\ 47\\ 47\\ 47\\ 48\\ 48\\ 48\\ 48\\ 48\\ 48\end{array}$

48	43	34
48	44	38
48	45	41
49	16	10
49	16	13
49	35	19
49	36	31
49	38	17
49	38	24
49	40	35
49	42	38
49	43	26
49	46	39
49	47	44
50	9	8
50	10	9
50	11	10
50	15	9
50	18	12
50	25	12
50	27	12
50	29	13
50	34	19
50	41	29
51	16	12
51	21	13
51	30	19
51	35	20
51	35	31
51	38	23
51	39	24
51	40	36
51	42	39
51	46	45
51	47	40
51	48	44
51	49	42
52	21	14
52	38	26
52	49	44
0∠ 53	30	00 18
00 53	30	10
53	36	31
53	43	40
53	45	42
53	40	46
55	40	40

 45
 46

 Table S65: PM6-QFF Coriolis and Fermi resonances for biphenylene generated using parameter set (e).

	Coriolis Resonances	
11	9	С
13	11	С
22	21	\mathbf{C}
24	22	С
27	23	С
28	21	\mathbf{C}
28	24	С

30	24	В
34	29	А
34	33	\mathbf{C}
35	28	\mathbf{C}
35	30	В
39	35	Α
40	39	В
42	37	\mathbf{C}
42	41	В
43	40	\mathbf{C}
44	40	В
44	43	А
47	42	А
48	45	С
52	51	В
53	51	A
1	Type 1 Fermi Resonance	es
9	0	
9	4	
9	5	
10	0	
10	4	
10	5	
11	0	
11	4	
31	8	
33	8	
35	8	
37	8	
37	16	
40	14	
40	20	
41	14	
41	16	
44	27	
44	33	
46	27	
46	33	
46	37	
47	33	
47	37	
48	37	
49	37	
50	37	
50 53	48	
	Type 2 Fermi Resonance	8
		2
10	8	2
10	8	3
10	9	1
10	8	อ 1
11	o Q	2
11	9	2
11	9 10	2
11	10	2
12	10	6
12	8	7
12	9	5
12	10	õ
		-

10	
11	
11	
8	
8	
9	
9	
10	
11	
11	
8	
8	
9	
10	
11	
11	
11	
8	
8	
9	
9	
9	
9	
10	
10	
10	
10	
11	
11	
11	
8	
8	
9	
9	
9	
9	
10	
10	
10	
10	
11	
11	
8	
9	
8	
9	
8	
8	
27	
24	
33 24	
24 32	
3K 90	
9K 9	
30 99	
23	
34	
35	
27	

 $\begin{array}{c} 12\\ 12\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 13\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14\\ 15\\ 15\\ 15\\ 15\\ 15\\ \end{array}$

16 16 16

16 16 16

 $\begin{array}{c} 16\\ 16\\ 17\\ 17\\ 18\\ 18\\ 19\\ 19\\ 33\\ 35\\ 35\\ 35\\ 37\\ 37\\ 37\\ 40\\ 40\\ 40\\ 40\\ 40\\ 42 \end{array}$

 $\begin{smallmatrix} 4 & 6 & 7 & 6 & 7 & 4 & 5 & 5 & 3 & 6 & 7 & 0 & 4 & 2 & 3 & 1 & 4 & 5 & 1 & 5 & 2 & 3 & 6 & 7 & 0 & 4 & 5 & 2 & 3 & 6 & 7 & 2 & 3 & 6 & 7 & 4 & 5 & 3 & 5 & 2 & 4 & 4 & 5 & 8 & 8 & 111 & 1 & 8 & 111 & 12 & 10 \\ \end{split}$

97	19
21	12
33	10
33	12
35	13
21	8
23	9
20	15
21	15
28	10
33	15
34	9
35	16
37	15
25	14
20	11
20	11
29	18
31	16
32	15
41	21
41	24
19	9
15	5
21	9
25	11
25	15
26	14
29	17
30	18
31	15
21	10
31	21
32	16
38	28
39	24
41	27
44	24
44	25
44	14
29	14
30	21
39	22
39	28
44	28
14	8
17	10
11	10
18	9
21	11
22	18
33	16
35	15
35	21
37	27
40	21
40	20
25	12
26	13
35	29
36	19
36	21
38	20
30	20
30	1-
39	17
41	28
47	35
47	43
25	12
25	19
20	10

 $\begin{array}{c} 46 \\ 46 \\ 46 \end{array}$

 $\frac{46}{46}$

50	26	12
50	26	13
50	30	15
50	31	18
50	32	17
50	36	20
50	36	33
50	38	21
50	41	23
50	44	40
51	9	8
51	11	10
51	33	22
51	35	23
51	37	22
51	37	28
51	40	33
51	45	35
52	26	19
52	32	21
52	49	45
53	35	29
53	46	40
53	50	43

 Table S66: PM6-QFF Coriolis and Fermi resonances for biphenylene generated using parameter set (f).

	Coriolis Resonances	
11	8	С
11	10	C
13	11	C
14	13	C
15	13	C
22	21	A
24	17	E
27	24	A
28	23	E
28	26	E
28	27	E
30	28	E
32	19	E
32	20	E
32	26	E
33	31	Е
34	30	А
42	40	C
43	40	C
45	43	А
46	42	А
47	43	C
47	44	C
49	44	А
52	51	А
52	51	Е
53	51	А
53	51	Е

11	4	
11	6	
12	0	
12	1	
35	10	
35	11	
36	12	
37	15	
38	9	
38	16	
41	18	
41	23	
45	23	
45	20	
45	20	
45	25	
45	38	
46	26	
40	20	
40	4 <i>3</i> 35	
40	00 25	
40	99 40	
40	40	
48	42	
49	47	
50	40	
50	42	
52	47	
Т	ype 2 Fermi Resonance	es
11	10	C
11	10	0 F
13	10	5
13	11	4 7
13	11	
14	10	5
14	10	
14	11	5
14	11	7
15	9	2
15	10	5
15	10	7
15	11	4
16	9	2
16	10	5
16		
10	11	4
16	11 11	$\frac{4}{6}$
16 16	11 11 11	4 6 7
16 16 17	11 11 11 8	4 6 7 0
16 16 17 17	11 11 11 8 8	4 6 7 0 1
16 16 17 17 17	11 11 11 8 8 8 8	4 6 7 0 1 3
16 16 17 17 17 17	11 11 11 8 8 8 8 9	$\begin{array}{c} 4\\ 6\\ 7\\ 0\\ 1\\ 3\\ 1\end{array}$
16 16 17 17 17 17 17	$ \begin{array}{c} 11 \\ 11 \\ 11 \\ 8 \\ 8 \\ 8 \\ 9 \\ 11 \\ \end{array} $	$\begin{array}{c} 4\\ 6\\ 7\\ 0\\ 1\\ 3\\ 1\\ 1\\ 1\end{array}$
16 16 17 17 17 17 17 17	$ \begin{array}{c} 11 \\ 11 \\ 11 \\ 8 \\ 8 \\ 8 \\ 9 \\ 11 \\ $	$\begin{array}{c} 4\\ 6\\ 7\\ 0\\ 1\\ 3\\ 1\\ 1\\ 3\\ 3\end{array}$
16 16 17 17 17 17 17 17 17 18	$ \begin{array}{c} 11 \\ 11 \\ 11 \\ 8 \\ 8 \\ 8 \\ 9 \\ 11 \\ 11 \\ 8 \\ \end{array} $	$\begin{array}{c} 4\\ 6\\ 7\\ 0\\ 1\\ 3\\ 1\\ 1\\ 3\\ 1\\ 3\\ 1\end{array}$
16 16 17 17 17 17 17 17 17 18 18	$ \begin{array}{c} 11 \\ 11 \\ 11 \\ 8 \\ 8 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 11 \\ 11 \\ 8 \\ 11 \\ 11 \\ 8 \\ 11 \\ 11 \\ 8 \\ 9 \\ 11 \\ 11 \\ 8 \\ 11 \\ 11 \\ 8 \\ 11 \\ 11 \\ 8 \\ 11 \\ 11 \\ 8 \\ 11 \\ 11 \\ 8 \\ 9 \\ 11 \\ 11 \\ 11 \\ 8 \\ 11 \\ 11 \\ 8 \\ 11 \\ 11 \\ 8 \\ 11 \\ 11 \\ 8 \\ 11 \\ 11 \\ 8 \\ 11 \\ 11 \\ 8 \\ 11 \\ 11 \\ 11 \\ 8 \\ 11 \\ 11 \\ 8 \\ 11 \\ 11 \\ 8 \\ 11 \\ 11 \\ 11 \\ 8 \\ 11 \\ 11 \\ 11 \\ 11 \\ 8 \\ 11 \\ 11 \\ 11 \\ 11 \\ 8 \\ 11 \\ $	$\begin{array}{c} 4\\ 6\\ 7\\ 0\\ 1\\ 3\\ 1\\ 1\\ 3\\ 1\\ 2\end{array}$
16 16 17 17 17 17 17 17 17 18 18 18 19	$ \begin{array}{c} 11 \\ 11 \\ 11 \\ 8 \\ 8 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 8 \\ 9 \\ 8 \end{array} $	4 6 7 0 1 3 1 3 1 2 1
16 16 17 17 17 17 17 17 18 18 18 19 19	$ \begin{array}{c} 11 \\ 11 \\ 11 \\ 8 \\ 8 \\ 8 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 8 \\ 8 \\ 8 \\ 9 \\ 8 \\ 8 \\ 8 \\ 9 \\ 8 \\ 8 \\ 8 \\ 9 \\ 8 \\ 8 \\ 8 \\ 9 \\ 8 \\ 8 \\ 8 \\ 9 \\ 8 \\ 8 \\ 8 \\ 9 \\ 8 \\ 8 \\ 8 \\ 9 \\ 8 \\ 8 \\ 8 \\ 9 \\ 8 \\ 8 \\ 8 \\ 8 \\ 9 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 9 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 9 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 9 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 8 \\ 9 \\ 8 \\$	$ \begin{array}{c} 4 \\ 6 \\ 7 \\ 0 \\ 1 \\ 3 \\ 1 \\ 1 \\ 3 \\ 1 \\ 2 \\ 1 \\ 2 \end{array} $
16 16 17 17 17 17 17 17 18 18 18 19 19 33	$ \begin{array}{c} 11 \\ 11 \\ 11 \\ 8 \\ 8 \\ 8 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 8 \\ 8 \\ 9 \\ 8 \\ 8 \\ 30 \\ 30 \\ \end{array} $	4 6 7 0 1 3 1 1 3 1 2 1 2 8
16 16 17 17 17 17 17 17 18 18 18 19 19 33 35	$ \begin{array}{c} 11 \\ 11 \\ 11 \\ 8 \\ 8 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 8 \\ 9 \\ 8 \\ 30 \\ 30 \\ 30 \end{array} $	$ \begin{array}{c} 4\\ 6\\ 7\\ 0\\ 1\\ 3\\ 1\\ 1\\ 2\\ 1\\ 2\\ 8\\ 11 \end{array} $
16 16 17 17 17 17 17 18 18 18 19 19 33 35 35	$ \begin{array}{c} 11 \\ 11 \\ 11 \\ 8 \\ 8 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 8 \\ 8 \\ 30 \\ 30 \\ 33 \end{array} $	$ \begin{array}{c} 4\\ 6\\ 7\\ 0\\ 1\\ 3\\ 1\\ 1\\ 2\\ 1\\ 2\\ 8\\ 11\\ 11\\ \end{array} $
16 16 17 17 17 17 17 17 18 18 18 19 19 33 35 35 35 38	$ \begin{array}{r} 11 \\ 11 \\ 11 \\ 8 \\ 8 \\ 9 \\ 11 \\ 11 \\ 8 \\ 9 \\ 8 \\ 9 \\ 8 \\ 30 \\ 30 \\ 33 \\ 25 \\ 5 \end{array} $	$ \begin{array}{c} 4\\ 6\\ 7\\ 0\\ 1\\ 3\\ 1\\ 2\\ 1\\ 2\\ 8\\ 11\\ 1\\ 11\\ 11\\ 11\\ 11\\ 11\\ 11\\ 11\\ $

41	36	12
42	29	11
42	29	14
42	35	15
43	15	9
43	29	13
43	30	13
44	14	8
44	18	11
44	30	11
45	24	12
45	30	12
45	30	20
45	41	20
46	30	20
40	30	33
40	45	26
40	45	20
40	12	25
47	15	10
47	35	10
40	24	12
40	20	10
40	39	18
40	39	19
40	39	20
48	41	18
48	41	20
48	46	35
49	22	13
49	22	14
49	32	18
49	37	29
49	37	30
49	37	33
49	41	25
50	34	30
50	45	35
50	48	43
50	49	40
51	18	14
51	29	13
51	35	18
52	28	15
52	36	23
52	46	38
52	48	44
52	50	43
53	34	18
53	37	25
53	52	47

Table S67: PM6-QFF Coriolis and Fermi resonances for benzopentalene generated using parameter set (a).

	Coriolis Resonances	
14	11	С
24	22	\mathbf{C}
25	20	А
27	21	\mathbf{C}

28	21	С
28	27	С
34	27	Ċ
34	28	Č
34	20	C
34	20	C
37	32	C
37	33	C
39	34	A
40	38	С
42	37	\mathbf{C}
42	38	\mathbf{C}
42	40	\mathbf{C}
43	40	\mathbf{C}
44	42	А
47	43	С
47	46	Ċ
49	46	Ă
52	51	Δ
52	51	D
52	51	
	51	А
Т	ype 1 Fermi Resonance	es
	v .	
8	0	
8	2	
8	3	
9	0	
9	1	
9	3	
10	0	
10	1	
10	- 3	
10	5	
10	7	
10	0	
11	0	
11	1	
11	5	
11	6	
11	7	
12	0	
12	1	
12	2	
12	4	
13	0	
13	1	
13	2	
13	3	
13	6	
13	7	
33	8	
33	9	
34	8	
34	10	
04 97	10	
37	9	
38	14	
44	21	
44	24	
44	27	
44	28	
45	32	
4.0		
40	24	

33

48	34	
48	38	
49	38	
49	47	
50	40	
50	42	
50	46	
50	47	
52	47	
	Type 2 Fermi Resonances	
9	8	2
9	8	3
10	8	0
10	8	1
10	8	2
10	9	1
10	9	3
11	8	0
11	8	5
11	9	5
11	10	5
11	10	0
11	10	(
12	8	0
12	8	4
12	9	0
12	9	2
12	9	4
12	10	0
12	10	1
12	10	6
12	10	7
12	11	0
12	11	1
12	11	0
12	11	
13	8	5
10	8	7
10	9	1
10	10	ə 7
10	10	1
13	11	1 7
10	11	1
10	12	1
10	12	5
10	12	2
14	8	3
14	8	4
14	8	0
14	9	1
14	9	о 4
14	9 0	- 1 6
14	9 10	1
14	10	1
14	10	4 5
14	10	6
14	11	4
14	11	4 5
14	11	7
14	11	1
14	12	4

	12
	12
-	12
	12
	13
	13
	8
	8
	8
	9
	9
	9
:	10
-	10
	11
:	11
:	11
	12
	12
:	12
	13
	8
	8
	8
	8
	8
	9
	10
	10
:	10
	10
	10
	10
	11
	11
	11
	11
	8
	8
	8
	8
	8
	9
	9
	9
	10
	8
	8
	8
	9
	9
	8
	8
	8
	55 9 7
	57
	54 24
1	24
-	28
	55
	54

 $\begin{smallmatrix} 4 & 5 & 6 & 7 & 5 & 7 & 0 & 2 & 3 & 4 & 0 & 3 & 4 & 4 & 6 & 4 & 5 & 7 & 2 & 4 & 5 & 7 & 2 & 3 & 4 & 5 & 6 & 3 & 2 & 3 & 4 & 5 & 6 & 7 & 3 & 5 & 6 & 7 & 0 & 1 & 2 & 3 & 4 & 1 & 2 & 3 & 7 & 0 & 2 & 3 & 2 & 3 & 1 & 3 & 6 & 8 & 14 & 10 & 10 & 9 & 14 \\ \end{split}$

24	9
34	13
23	10
26	11
26	16
31	14
36	13
21	11
24	11
27	10
33	11
34	11
34	21
17	8
17	11
19	10
21	10
21	20
37	22
38	21
42	34
23	13
36	19
36	21
39	16
39	27
39	28
44	27
45	32
23	13
25	15
26	14
29	16
30	17
31	16
35	20
30	19
30	21
45	22
45	32
25	12
30	17
34	31
39	21
41	24
44	34
45	38
48	43
22	21
27	21
32	22
33	22
33	27
34	22
37	21
37	33
40	34 97
44 /8	37 76
40 50	40
00	40

53		52

=

						_
Table S68:	PM6-QFF	Coriolis and	l Fermi	resonances fo	r benzopentalene ge	nerated using
parameter	set (b) .					

Coriolis Resonances			
10	9	С	
14	13	С	
15	12	\mathbf{C}	
15	14	\mathbf{C}	
18	16	\mathbf{C}	
19	18	\mathbf{C}	
26	25	\mathbf{C}	
27	20	А	
29	28	В	
31	30	А	
32	31	А	
32	31	В	
34	32	В	
36	33	А	
36	35	А	
36	35	В	
37	36	А	
41	37	C	
45	41	$\tilde{\tilde{C}}$	
45	44	Č	
46	43	Ă	
40 52	49	A	
52	49	B	
53	49	A	
53	49	B	
	40	Б	
TT .	Long 1 Franci Deserves		
	Type 1 Fermi Resonance	28	
T	Type 1 Fermi Resonance	28	
T	Type 1 Fermi Resonance 0 0	25	
11 12 13	Type 1 Fermi Resonance 0 0 0		
11 12 13 13	ype 1 Fermi Resonance 0 0 0 1		
11 12 13 13 13	ype 1 Fermi Resonance 0 0 0 1 4 4		
11 12 13 13 13 13 13	ype 1 Fermi Resonance 0 0 1 4 5		
11 12 13 13 13 13 13 13	ype 1 Fermi Resonance 0 0 1 4 5 6		
11 12 13 13 13 13 13 13 13 14	ype 1 Fermi Resonance 0 0 1 4 5 6 0		
11 12 13 13 13 13 13 13 13 14 14 14	ype 1 Fermi Resonance 0 0 0 1 4 5 6 0 2 2		
11 12 13 13 13 13 13 13 13 14 14 14 14	ype 1 Fermi Resonance 0 0 0 1 4 5 6 0 2 3		
11 12 13 13 13 13 13 14 14 14 14 14 14	'ype 1 Fermi Resonance 0 0 0 1 4 5 6 0 2 3 4		
11 12 13 13 13 13 13 13 14 14 14 14 14 14 15	'ype 1 Fermi Resonance 0 0 0 1 4 5 6 0 2 3 4 2		
11 12 13 13 13 13 13 13 14 14 14 14 14 14 14 15 15	Ype 1 Fermi Resonance 0 0 0 1 4 5 6 0 2 3 4 2 6		
$\begin{array}{c c} & & & & 1 \\ & & 1 \\ & & 1 \\$	Ype 1 Fermi Resonance 0 0 0 1 4 5 6 9		
$\begin{array}{c} & & & 11 \\ & 12 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 15 \\ & 15 \\ & 15 \\ & 28 \\ & 31 \end{array}$	ype 1 Fermi Resonance 0 0 0 1 4 5 6 0 2 3 4 2 6 9 11		
$\begin{array}{c} & & & 11 \\ & 12 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 15 \\ & 15 \\ & 15 \\ & 28 \\ & 31 \\ & 32 \end{array}$	ype 1 Fermi Resonance 0 0 0 1 4 5 6 0 2 3 4 2 6 9 11 9	15	
$\begin{array}{c c} & & & 1 \\ & & 1 \\ & 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	ype 1 Fermi Resonance 0 0 0 1 4 5 6 0 2 3 4 2 6 9 11 9 12	15	
$\begin{array}{c c} & & & 1\\ & & 11\\ & & 12\\ & & 13\\ & 13\\ & 13\\ & 13\\ & 13\\ & 13\\ & 14\\ & 14\\ & 14\\ & 14\\ & 14\\ & 14\\ & 14\\ & 14\\ & 14\\ & 15\\ & 15\\ & 28\\ & 31\\ & 32\\ & 32\\ & 32\\ & 33\\ \end{array}$	ype 1 Fermi Resonance 0 0 1 4 5 6 0 2 3 4 2 6 9 11 9 12 13		
$\begin{array}{c} & & & 11 \\ & 12 \\ & 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 14 \\ 14 \\$	Yppe 1 Fermi Resonance 0 0 0 0 1 4 5 6 0 2 3 4 2 6 9 11 9 12 13 10		
$\begin{array}{c} & & & 11 \\ & 12 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 15 \\ & 15 \\ & 28 \\ & 31 \\ & 32 \\ & 32 \\ & 32 \\ & 33 \\ & 35 \\ & 35 \\ & 35 \end{array}$	ype 1 Fermi Resonance 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 5 6 9 11 9 12 13 10 11	15	
$\begin{array}{c c} & & & & 1 \\ & & & 1 \\$	ype 1 Fermi Resonance 0 0 0 1 4 5 6 0 2 3 4 2 6 9 11 9 12 13 10 11 13	15	
$\begin{array}{c} & & & 11 \\ & 12 \\ & 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 13 \\ 14 \\ 14 \\$	ype 1 Fermi Resonance 0 0 0 1 4 5 6 0 2 3 4 2 6 9 11 9 12 13 10 11 13 11	15	
$\begin{array}{c c} & & & & 1\\ & & & 11 \\ & & 12 \\ & & 13 \\ & & 13 \\ & & 13 \\ & & 13 \\ & & 13 \\ & & 13 \\ & & 14 \\ & & 14 \\ & & 14 \\ & & 14 \\ & & 14 \\ & & 14 \\ & & 14 \\ & & 14 \\ & & 14 \\ & & 14 \\ & & 15 \\ & & 28 \\ & & 31 \\ & & 32 \\ & & 32 \\ & & 33 \\ & & 35 \\ & & 35 \\ & & 36 \\ & & 37 \\ & & 37 \end{array}$	ype 1 Fermi Resonance 0 0 0 0 1 4 5 6 0 2 3 4 2 6 9 11 9 12 13 10 11 13 11 12	15	
$\begin{array}{c c} & & & & 1\\ & & & 11 \\ & & 12 \\ & & 13 \\ & & 13 \\ & & 13 \\ & & 13 \\ & & 13 \\ & & 14 \\ & & 13 \\ & & 32 \\ & & 32 \\ & & 33 \\ & & 35 \\ & & 35 \\ & & 35 \\ & & 36 \\ & & 37 \\ & & 37 \\ & & 37 \end{array}$	Yppe 1 Fermi Resonance 0 0 0 0 1 4 5 6 0 2 3 4 2 6 9 11 9 12 13 10 11 13 11 12 13	15	
$\begin{array}{c} & & & \\$	Yppe 1 Fermi Resonance 0 0 0 0 1 4 5 6 0 2 3 4 2 6 9 11 9 12 13 10 11 13 11 12 13 16	15	

40	15	
40	18	
40	19	
42	10	
42	15	
42	26	
43	21	
43	26	
46	26	
46	33	
16	27	
40	37	
47	33	
47	35	
47	37	
48	37	
50	41	
50	43	
50	43	
50	44	
51	45	
Ту	pe 2 Fermi Resonan	ces
19	11	0
13	11	U
13	11	1
13	11	4
13	12	3
13	12	4
14	11	0
14		1
14	11	1
14	11	2
14	11	6
14	12	0
14	12	2
14	13	0
14	13	2
14	10	2
14	15	4
15	11	0
15	11	1
15	11	5
15	12	3
15	12	4
15	13	0
15	10	1
15	13	1
15	13	2
15	13	3
15	13	5
15	13	6
15	14	1
15	14	2
15	14	2
15	14	3
15	14	4
15	14	6
16	10	1
16	11	4
16	11	6
16	19	1
16	10	1 2
10	12	ა _
16	12	7
16	13	1
16	13	3
16	13	4
16	14	3
16	14	4
10	14	4
16	14	5

 $\begin{array}{c} 16 \\ 16 \end{array}$

 $5\ 7\ 7\ 5\ 6\ 2\ 3\ 3\ 0\ 4\ 1\ 3\ 1\ 2\ 6\ 4\ 6\ 2\ 4\ 0\ 1\ 2\ 3\ 4\ 7\ 2\ 3\ 0\ 1\ 2\ 3\ 4\ 2\ 0\ 2\ 3\ 4\ 2\ 0\ 2\ 3\ 4\ 0\ 1\ 2\ 1\ 4\ 1\ 4\ 0\ 3\ 4\ 1\ 2\ 8\ 4\ 6\ 9\ 9$

25	9
25	10
28	10
20	10
10	8
20	8
20	9
20	8
22	11
22	12
19	10
10	0
18	
20	0
20	9 10
20	10
22	,
22	. 10
24	10
24	10
20	10
20	0
10	9
20	19
20	13
20) II) 11
32	11
33	9 14
əc 16	23
10	10
10	0 10
18	10
20	0
20	10
20	12
22	9
22	10
23	9
24	10
24	12
20	11
20	12
20	12
20	11
32 20	12
	14
37 25	10
37	21
37	22
37	23
10	9
16	9
20	13
21	
12	8
25	
26	13
33	20
43	26
36	25
38	23
40	21
42	23

 $32 \\ 32$

 $\begin{array}{c} 41 \\ 41 \end{array}$

S92

42	25
42	26
27	16
27	18
29	20
31	23
26	20
30	20
30	20
38	23
39	28
46	37
17	11
20	17
27	15
27	21
29	21
31	22
31	24
31	25
34	20
34	20
30	20
38	23
38	28
39	23
39	28
40	26
41	38
42	35
43	38
44	40
47	41
47	44
13	11
14	12
16	11
20	18
20	10
22	10
20	10
26	18
17	13
17	15
27	15
27	19
27	24
29	19
29	24
31	21
31	22
31	24
34	21
38	21
38	20 04
00 20	24
აგ 20	28
39	<u>01</u>
0.2	24
39	24 28
39 43	24 28 38
39 43 46	24 28 38 44
39 43 46 17	24 28 38 44 11
39 43 46 17 17	24 28 38 44 11 14
39 43 46 17 17 20	24 28 38 44 11 14 17
39 43 46 17 17 20 27	24 28 38 44 11 14 17 19

51	29	20
51	29	21
51	29	25
51	31	22
51	34	21
51	38	28
51	39	28
51	40	28
51	41	39
51	42	35
51	46	37
51	46	45
51	47	41
51	47	44
51	48	44
51	49	48
52	47	44
52	51	49
53	17	12
53	36	26
53	38	28
53	43	36
53	46	41
53	47	45
53	48	43
59	50	40

 $\begin{array}{cccccccc} & 48 & & 43 \\ 53 & 50 & & 49 \end{array}$ Table S69: PM6-QFF Coriolis and Fermi resonances for benzopentalene generated using parameter set (c).

	Coriolis Resonances		
13	11	С	
14	10	С	
25	24	С	
34	25	\mathbf{C}	
34	31	\mathbf{C}	
35	28	\mathbf{C}	
35	31	\mathbf{C}	
36	34	\mathbf{C}	
39	34	Α	
41	36	\mathbf{C}	
41	40	С	
43	40	С	
44	41	Α	
47	43	С	
47	45	С	
49	45	Α	
52	51	Α	
52	51	В	
53	51	Α	
53	51	В	
	Type 1 Fermi Resonances		
8	0		
8	2		
8	4		
9	4		
9	5		
10	0		

10	1	
10	6	
10	7	
11	0	
11	1	
12	0	
12	2	
31	8	
31	9	
32	8	
34	8	
34	11	
35	12	
36	9	
36	14	
37 20	11	
30	12	
44	23	
44	24	
-1-1-1 [] / /	20	
46	28	
46	35	
48	31	
48	34	
48	35	
48	36	
48	41	
49	35	
49	36	
49	47	
50	40	
50	41	
50	45	
50	47	
52	47	
Ту	vpe 2 Fermi Resonan	ces
9	8	5
10	8	0
10	8	3
11	8	0
11	8	1
11	10	0
11	10	1
11	10	3
11	10	7
12	8	0
12	8	2
12	9	0
12	9	5
12	10	0
12	10	2
12	10	6
12	11	0
12	11	1
12	11	2
12	11	(
13	0	-
19	8	7
13	8 10	7 1 6
13 13 13	8 10 10	7 1 6 7

11
11
11
12
12
8
8
8
8
9
10
10
10
11
11
8
8
8
9
8
9
29
31
28
31
23
25
25
34
35
23
34
36
25
34
34
36
16
20
23
24
34
34
26
26
29
33
30 30
42
24
31
34
34
34
42
42

 $13 \\ 14$

 $\begin{array}{c} 46 \\ 46 \end{array}$

 $\begin{array}{c} 3 \\ 6 \\ 7 \\ 3 \\ 6 \\ 7 \\ 2 \\ 3 \\ 4 \\ 6 \\ 5 \\ 3 \\ 6 \\ 7 \\ 3 \\ 4 \\ 6 \\ 2 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 8 \\ 8 \\ 11 \\ 8 \\ 8 \\ 9 \\ 10 \\ 11 \\ 8 \\ 14 \\ 11 \\ 10 \end{array}$

 $\begin{array}{c} 14\\ 19\\ 9\\ 10\\ 9\\ 13\\ 14\\ 13\\ 20\\ 11\\ 14\\ 17\\ 14\\ 25\\ 25\\ 11\\ 17\\ 17\\ 20\\ 22\\ 23\\ 31 \end{array}$

S96

47	16	10
47	18	8
47	19	11
47	20	11
47	34	23
47	36	20
47	41	34
48	26	13
48	36	29
48	37	16
48	37	19
48	39	22
48	39	24
48	39	25
48	42	24
48	46	28
49	26	13
49	27	13
49	29	15
49	33	16
49	33	17
49	37	34
49	38	21
49	39	23
49	46	31
50	32	18
50	33	19
50	34	33
50	42	25
50	42	31
50	44	34
50	46	35
50	48	43
51	31	22
51	34	22
52	44	36
52	48	45
52	50	43
53	52	47

Table S70: PM6-QFF Coriolis and Fermi resonances for benzopentalene generated using parameter set (d).

Coriolis Resonances				
10	9	С		
11	9	С		
14	13	С		
15	12	С		
15	13	С		
16	12	С		
18	13	А		
22	16	С		
22	19	С		
23	19	А		
26	21	В		
26	22	В		
26	24	В		
29	24	А		
29	25	А		

32	21	В
33	32	В
42	40	Ē
43	40	č
45	40	<u>۸</u>
40	43	A C
40	43	C
46	44	С
47	43	В
52	49	Α
52	49	В
53	49	Α
'	Type I Fermi Resonanc	es
11	0	
11	2	
11	- 7	
12		
12	1	
12	1	
12	2	
12	3	
13	5	
13	6	
33	8	
33	9	
35	9	
35	10	
41	13	
45	33	
45	37	
47	25	
47	33	
47	37	
47	40	
48	37	
48	40	
50	43	
50	44	
50	46	
51	46	
	Гуре 2 Fermi Resonanc	es
11	10	1
11	10	1
12	9	4
12	9	3
12	10	3
12	10	4
12	10	7
12	11	4
12	11	7
13	8	4
13	8	6
13	9	1
13	9	4
13	9	7
13	10	5
13	11	4
13	11	5
13	12	2
13	12	4
19	19	7
10	2	0
14	0	1
14	8	1
14	8	3

 $\begin{array}{c} 14 \\ 14 \end{array}$

 $\begin{array}{c} 14 \\ 14 \end{array}$

9	1
9	4
9	6
8	1
8	4
8	6
31	8
33	8
30	10
31	10
33	9
33	10
33	11
19	8
21	12
31	11
33	8
33	13
19	9
30	12
31	14
33	12
33	14
33	15
16	9
17	9
22	10
22	11
25	10
39	21
39	22
41	19
41	20
41	21
41	33
19	10
38	27
39	16
39	20
43	38
45	35
39	17
41	22
47	40
10	8
11	12
17	12
19	12
19	15
22	17
31	17
23	15
32	13
32	19
34	22
39	21
41	33

 $40 \\ 40 \\ 40 \\ 42 \\ 42 \\ 42$

 $\frac{44}{44}$

 $45 \\ 45$

S100

50	45	37
50	47	37
50	47	40
51	18	12
51	34	25
51	36	19
51	48	42
51	50	42
52	18	12
52	29	16
52	32	17
52	38	27
52	45	42
52	48	44
52	50	49
53	34	21

Table S71: PM6-QFF Coriolis and Fermi resonances for benzopentalene generated using parameter set (e).

	Coriolis Resonances	
11	10	С
13	11	С
14	10	\mathbf{C}
24	20	\mathbf{C}
25	23	\mathbf{C}
27	21	А
34	24	\mathbf{C}
34	25	\mathbf{C}
34	32	\mathbf{C}
35	29	\mathbf{C}
35	32	\mathbf{C}
35	34	\mathbf{C}
36	34	\mathbf{C}
39	34	А
42	36	\mathbf{C}
42	40	\mathbf{C}
43	40	\mathbf{C}
44	42	А
47	43	\mathbf{C}
47	46	С
49	46	А
52	51	А
52	51	В
53	51	А
53	51	В
Т	ype 1 Fermi Resonanc	ces
8	0	
8	2	
9	3	
10	1	
10	6	
11	0	
11	1	
11	6	
12	0	
12	2	
30	-	

34	8	
34	9	
34	11	
35	9	
36	11	
36	14	
44	23	
44	24	
44	25	
44	34	
45	29	
45	35	
45	36	
48	32	
48	34	
48	35	
48	36	
48	42	
49	30	
49	47	
50	40	
00 E0	42 10	
50	40	
50	47	
	11	
]	Type 2 Fermi Resonance	es
9	8	3
11	8	0
11	8	1
11	10	5
11	10	7
12	8	0
12	8	2
12	8	4
12	9	0
12	10	0
12	10	1
12	10	6
12	11	0
12	11	1
12	11	2
12	11 °	0 7
13	0 10	1
13	10	6
13	10	5
13	11	7
13	12	5
13	12	7
14	8	2
14	9	3
14	10	4
14	10	5
14	10	7
14	11	1
14	11	6
14	12	4
14	12	5
15	8	2
15	8	4
15	9	0

9	
9	
10	
10	
11	
8	
8	
8	
9	
8	
8	
8	
8	
29	
32	
26	
34	
34	
36	
25	
34	
34	
36	
16	
20	
23	
25	
34	
26	
26	
28	
33	
37	
37	
39	
27	
41	
24	
32	
34	
34	
17	
18	
19	
20	
34	
34	
36	
26	
37	
37	
39	
39	
39	
41	
44	
45	
26	
27	
33	
37	
37	

 $\begin{array}{r}
 3 \\
 4 \\
 5 \\
 6 \\
 2 \\
 3 \\
 4 \\
 3 \\
 0 \\
 2 \\
 5 \\
 4 \\
 8 \\
 10 \\
 \end{array}$

 $11 \\ 14 \\ 17$

 $\begin{array}{c} 11\\ 20\\ 23\\ 20\\ 13\\ 16\\ 19\\ 17\\ 22\\ 24\\ 24\\ 24\\ 24\\ 13\\ 15\\ 17\\ \end{array}$

 $\begin{array}{c} 44 \\ 45 \\ 45 \\ 46 \\ 46 \\ 46 \end{array}$

S103

49	39	22
49	45	32
50	31	18
50	39	34
50	41	24
50	41	32
50	44	34
50	45	35
50	48	36
50	48	43
51	25	13
51	32	22
51	34	22
51	35	20
52	48	46
52	50	43
53	52	47

Table S72: PM6-QFF Coriolis and Fermi resonances for benzopentalene generated using parameter set (f).