Supporting Information

Electron/hole pinning effect, localization, and dielectric properties in (Nb, Cu)

co-doped SnO₂ ceramics

Yu Tan,^{a,b} Yushi Wang,^a Heng Wang,^{a*} Dinghui Xu,^a Yuanfang Yue,^a Xiaojun Zheng,^a Jiafeng Ma,^a Dandan Gao,^{b*} and Wanbiao Hu^b

*College of physics and electronic information engineering, Guilin University of Technology, Guilin 541008, P. R. China

^bSchool of Materials and Energy, Yunnan University, Kunming 650091, P. R. China

Figure S1 XRD refinement patterns of (Nb, Cu) co-doped SnO₂ samples. (a) N2C2SO, (b) N3C3SO; (c) N4C4SO; (d) N5C5SO, inset in (a) showed the lattice structure of SnO₂.

Table S1 The l	attice paran	neters and v	olumes of the	Nb _x Cu _y Sn _{1-x-y} O ₂	2 samples fron	n the XRD r	efinement.	
Composition	a(Å)	b(Å)	c(Å)	Volume(Å)	Bond length(Å)	R _p	R_{wp}	χ^{2}
SO	4.7388	4.7388	3.1868	71.563	2.0519	7.54%	11.16%	3.977
N2SO	4.7381	4.7381	3.1862	71.529	2.0515	6.68%	8.83%	3.474
C2SO	4.7413	4.7413	3.1890	71.688	2.0531	11.12%	15.54%	4.128
N1C1SO	4.7409	4.7409	3.1882	71.656	2.0527	10.04%	16.13%	3.601
N2C2SO	4.7422	4.7422	3.1886	71.708	2.0532	10.06%	14.02%	3.961
N3C3SO	4.7434	4.7434	3.18953	71.764	2.0537	9.71%	12.86%	3.966
N4C4SO	4.7420	4.7420	3.1881	71.689	2.0529	7.13%	10.10%	2.816
N5C5SO	4.7415	4.7415	3.1876	71.661	2.0526	8.40%	11.68%	3.468

Figure S2 XPS of Nb 3d in all compositions of (a)N1C1SO; (b)N3C3SO; (c)N4Z4SO; (d)N5Z5SO.

Figure S3 The XPS of Cu 2p for the $Cu_{0.02}Sn_{0.98}O_2$ sample.

Figure S4 The XPS of Cu 2p for the NCSO samples, (a) N1C1SO, (b) N3C3SO, (c) N4C4SO, and (d) N5C5SO.

Figure S5 XPS of O 1s in co-doped NCSO. (a) N1C1SO; (b) N3Z3SO; (c) N3C3SO; (d) N5C5SO.

Figure S6 SEM morphologies of (a) N2SO and (b) SO from previous work (ref ¹), insets give the size distribution.

Figure S7 Elemental mapping images of the N1C1SO ceramic.

Figure S8 Temperature coefficients of dielectric constant for NCSO ceramics, (a) 1 kHz, and (b) 10 kHz.

Figure S9 The iso-surface of electrons and holes of excitation state in (Nb, Cu) co-doped SnO_2 (3 × 2 × 4 supercell). (a) pure SnO_2 , and (b) co-doped SnO_2 , two Nb adjacent to one Cu (2-1 model).

Element-Number	HDI	EDI
Sn-35	0.00	0.11
O-83	0.36	0.13
O-92	0.36	0.13
O-102	0.36	0.13
O-107	0.36	0.13
O-116	0.36	0.13
O-117	0.36	0.13

Table S2 The Hole Delocalization Index (HDI) and Electron Delocalization Index (EDI) of partial atomic excitation state from pure SnO_2 (0-0 model).

Table S3 The HDI and EDI o	partial atomic excitation state	from Nb doped SnO ₂ (1-0 model).
----------------------------	---------------------------------	---

Element-Number	HDI	EDI
O-78	0.12	0.22
O-87	0.12	0.22
O-97	0.12	0.22
O-102	0.12	0.22
O-111	0.12	0.22
O-112	0.12	0.22
O-92 (Not near Nb)	0.47	0.13
O-116 (Not near Nb)	0.43	0.14
Nb-144	0.00	0.07

Table S4 The HDI and EDI of pa	partial atomic excitation state from	Cu doped SnO_2 (0-1 model).
--------------------------------	--------------------------------------	-------------------------------

Element-Number	HDI	EDI
Sn-46	0.00	0.17
O-82	3.41	1.30
O-91	3.31	0.18
O-101	1.31	0.29
O-106	0.59	0.22
O-115	1.62	0.29
Cu-143	0.04	3.61

Element-Number	HDI	EDI
Sn-34	0.61	0.07
O-81	0.23	0.42
O-90	0.32	1.06
O-100	0.20	0.52
O-105	0.32	0.64
O-111	0.47	0.09
O-112	0.45	0.09
O114	0.17	0.50
O-128	0.15	0.72
O-134	0.57	0.22
O-135	0.55	0.22
Cu-142	1.64	15.82
Nb-143	0.80	5.69

Table S6 The HDI and EDI of partial atomic excitation state from (Nb+Cu) co-doped SnO₂(2-2 model).

Elana ant Namela an		EDI
Element-Number	HDI	EDI
O-79	0.01	0.27
O-85	0.56	0.17
O-86	0.14	0.16
O-87	0.18	0.22
O-88	0.03	0.21
O-98	0.01	0.23
O-103	0.03	0.10
O-109	2.57	0.10
O-110	3.17	0.17
O-111	0.10	0.06
O-112	0.01	0.28
O-115	0.00	0.14
O-121	0.01	0.24
O-126	0.01	0.26
O-132	6.22	0.33
O-133	0.17	0.17
O-135	0.11	0.20
O-136	0.01	0.28
Cu-140	1.46	0.09
Cu-141	24.03	0.92
Nb-142	0.12	0.06
Nb-143	0.03	0.08

Element-Number	HDI	EDI
O-80	0.01	0.26
O-89	0.16	0.21
O-99	0.01	0.20
O-104	0.23	0.14
O-110	0.50	0.15
O-111	0.96	0.15
O-112	4.49	0.36
O113	0.40	0.03
O-114	0.00	0.25
O-123	0.01	0.20
O-128	0.01	0.26
O-130	0.01	0.13
O-134	1.02	0.15
O-135	0.45	0.15
O-137	0.16	0.21
O-138	0.00	0.25
Cu-142	31.51	0.20
Nb-143	0.90	0.06
Nb-144	0.90	0.06

References

1 Y. Tan, H. Wang, Y. Wang, Y. Ren, J. Wen, J. Ma, Y. Ma, D. Xu, Y. Yue and B. Wang, *Ceram. Int.*, 2023, **49**, 21402-21410.