First-Principles Investigation of a Two-Dimensional Magnesium Carbide Monolayer: Tunable Bandgap, Light Carriers, and Strain-Induced Topological and Semiconductor-to-Metal Transitions

Mosayeb Naseri^{1,2*}, Shahram Yalameha³, Sergey Gusarov¹

¹Digital Technologies Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ²Faculty of Physics, University of Isfahan, 81746-73441, Isfahan, Iran

(Supplementary)

Figure S1: Phonon dispersion curve of the 2D Mg_2C monolayer along the high-symmetry points (Γ -K-M- Γ) in the Brillouin zone. The absence of imaginary frequencies confirms the dynamical stability of the monolayer structure.

Figure S2. Polar plots illustrating the orientation-dependent (left) Young's modulus $E(\theta)$ (blue line) and (right) Poisson's ratio $v(\theta)$ (green line) for the 2D Mg₂C monolayer. The circular shape of both plots indicates in-plane isotropy for both Young's modulus and Poisson's ratio, signifying uniform mechanical properties in all directions within the monolayer plane.