Supplementary Information

Interplay Between Intrinsic Defects and Optoelectronic Properties of Semi-Heusler Gapped Metals

Muhammad Rizwan Khan^{1,2}, Jin Yang³, Jincheng Kong^{3†}, Xiaoguang Li¹⁺⁺, and Zheng Wang^{1, 3 #} ¹Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China ²College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China

³Kunming Institute of Physics, Kunming, 650223, China

***Email:** <u>chzwang@szu.edu.cn</u> ***Email:** <u>xgli@szu.edu.cn</u> ***Email:** kongjincheng@163.com

Calculations of the formation enthalpy and phase diagram:

The formation enthalpy of each compound was calculated using the following equation:

 $\Delta H_f \left(Nb_{n_1} Co_{n_2} Sb_{n_3} \right) = E \left(Nb_{n_1} Co_{n_2} Sb_{n_3} \right) - n_1 E(Nb) - n_2 E(Co) - n_3 E(Sb)$ $E \left(Nb_{n_1} Co_{n_2} Sb_{n_3} \right)$ is the total ground-state energy of the compound and $n_1 E(Nb)$, $n_2 E(Co)$, and $n_3 E(Sb)$ are the total energies of the pure elements in their stable phases. While

 n_i represent the number of atoms of the ith element in a single formula unit.

We obtained the phase diagram by calculating the formation enthalpies of all Nb-Co-Sb phases as given in Table S1, and plotting them in a composition ratio versus energy space using doped package. It should be noted that for ternary phases, the composition ratio has two degrees of freedom, resulting in a three-dimensional phase diagram. The phase diagram is used to evaluate phase stability: stable structures lie on the convex hull, while metastable structures are above it.

No.	Material ID	Compositions	H _f (eV/atom)	E _{hull} (eV/atom)
1	mp-31460	NbCoSb	-0.2158	0.021
2	icsd_062111	CoSb ₃	-0.1928	0.0
3	icsd_063553	CoSb ₂	-0.1805	0.012
4	icsd_153504	CoSb₃	-0.1928	0.001
5	mp-570557	NbCo ₃	-0.1723	0.0
6	mp-977426	NbCo ₃	-0.1575	0.015
8	icsd_076118	CoSb	-0.1657	0.0
9	icsd_076120	CoSb ₂	-0.1713	0.003
10	icsd_624900	CoSb	-0.1656	0.001
11	icsd_102548	NbCo ₂	-0.1596	0.014
12	mp-1018021	NbCo ₃	-0.1112	0.072
13	icsd_108305	Nb ₆ Co ₇	-0.1760	0.0
14	icsd_018144	NbSb ₂	-0.27691	0.0
15	icsd_057430	NbSb ₂	-0.27691	0.0
16	icsd_076573	Nb ₅ Sb ₄	-0.3121	0.0
17	icsd_077752	NbSb ₂	-0.27691	0.001
18	icsd_645351	Nb ₅ Sb ₄	-0.0501	0.262
19	icsd_645357	Nb ₃ Sb	-0.2838	0.0
20	mp-1220660	NbCo ₃	-0.0999	0.061

Table S1. List of experimentally reported Nb-Co-Sb used for the calculations of energy phase diagram shown in Fig 2b. E_{hull} is the energy above the convex hull and H_f is the formation enthalpy.

Figure S1: Calculated electronic band structure along the high-symmetry k-paths for NbCoSb using the GGA+U functional. Here, Fermi level is shown by dashed line, the internal band gap E_g^{int} is 1.03 eV, and the occupied width of the conduction band ΔE_{CB} is 0.63 eV.

Figure S2: Projected density of state for NbCoSb half Heusler compound, indicating the main contribution from Nb-d and Co-d orbital at the conduction band minimum and valance band maximum, respectively.

List of the lowest ground state non-stoichiometric compositions						
No.	Composition	E _{Form} (meV/ atom)	E _{hull} (meV/ atom)			
1	NbCoSb	- 216	184			
2	Nb _{0.95} CoSb	- 256	133			
3	Nb _{0.90} CoSb	- 297	82			
4	Nb _{0.85} CoSb	- 332	34			
5	Nb _{0.80} CoSb	- 357	0.0			

Figure S3: Summary of the lowest ground state non-stoichiometric composition with their formation energies per atom (E_{Form}) and energy above the convex hull (E_{hull}).

Figure S4: (a) Phase diagrams of Nb-Co-Sb systems using GGA+U functional (b) Phase diagram for Nb₁₋ $_{x}$ CoSb system using GGA+U functional calculated by accounting the non-stoichiometric phases.

Figure S5: (a) Calculated spin polarized partial electronic density of states using PBE-GGA for NbCoSb, Nb_{0.95}CoSb, Nb_{0.9}CoSb, Nb_{0.85}CoSb, and Nb_{0.80}CoSb (from left to right). (b) Calculated spin polarized partial electronic density of states using GGA+U for NbCoSb, Nb_{0.95}CoSb, Nb_{0.95}CoSb, Nb_{0.85}CoSb, and Nb_{0.80}CoSb (from left to right). Black dotted line corresponds to Fermi level.

Figure S6: Calculated electronic band structure of Nb_{0.8}CoSb non-stoichiometric composition. Here, black dotted line corresponds to Fermi level.