Supporting Information for

Enhancement mechanism of electron-phonon coupling in XB₃

(X = K, Rb) compounds with Kagome lattice

Xinwei Wang, Bohan Cao, Cheng Xing, Xiaoxuan Zhang

Haobo Li, Defang Duan^{*}, Liang Li^{*}, and Fubo Tian^{*}

State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China

^{*} Corresponding authors. *E-mail address*: <u>duandf@jlu.edu.cn</u> (D.F. Duan). *E-mail address*: <u>lliang@jlu.edu.cn</u> (L. Li). *E-mail address*: <u>tianfb@jlu.edu.cn</u> (F.B. Tian).

Fig. S1 Calculated phase transition pressures versus formation enthalpies for *Cmmm*, *I*4/*mmm*, *P*6/*mmm*, and $P6_3/mmc$ phases for LiB₃ and NaB₃ compounds in the range of 0-30 GPa, where (a)-(b) are LiB₃ compounds and (c)-(d) are NaB₃ compounds.

Fig. S2 Phonon dispersion curves of four structures *Cmmm*, *I*4/*mmm*, *P*6/*mmm*, and *P*6₃/*mmc* of KB₃ and RbB₃ compounds were calculated in the range of 0-30 GPa, where (a)-(e) are 30 GPa, (b)-(f) are 0 GPa, (c)-(g) are 0 GPa, and (d)-(h) are 0 GPa.

5

Fig. S3 Phonon dispersion curves of *P6/mmm* of KB₃ and RbB₃ compounds were calculated in the range of 10-40 GPa, where (a)-(c) are KB₃ compounds and (d)-(f) are RbB₃ compounds.

Fig. S4 Crystal structure of XB_3 (X = Li, Na) compounds along the (001) plane at 0 GPa with electron localization function (ELF). (a) *Cmmm*, (b) *I4/mmm*, (c) *P6/mmm*, and (d) *P6₃/mmc* phases.

Fig. S5 Variation of ELF values of XB_3 (X = K, Rb) compounds along the (001) crystallographic plane with respect to the distance between B-B atoms at 0 GPa.

Fig. S6 Energy bands of the LiB₃ and NaB₃ system at 0 GPa using VASP package, (a) LiB₃-*Cmmm*, (b) LiB₃-*P*6₃/*mmc*, (c) NaB₃-*Cmmm* and (d) NaB₃-*P*6₃/*mmc*.

Fig. S7 Energy bands of KB₃ and RbB₃ compounds at 0 GPa calculated using the HSE06 method for (a) RbB₃_*I*4/*mmm*, (b) RbB₃_*P*6/*mmm*, (c) RbB₃-*P*6₃/*mmc*, and (d) KB₃_*P*6/*mmm*.

Supporting Information

Fig. S8 Variation of the bandgap with pressure for the *Cmmm* and $P6_3/mmc$ phases in the XB_3 (X = Li, Na) systems calculated using VASP package in the range 0-30 GPa, and the curves represent the fitted data.

Fig. S9 Energy bands of the *P6/mmm* phase for KB₃ and RbB₃ compounds are calculated with and without SOC using HSE06 method. (a) KB₃ at 0 GPa, (b) KB₃ at 10 GPa, (c) RbB₃ at 0 GPa, (d) RbB₃ at 30 GPa.

Table S1. Lattice constants of the Cmmm, I4/mmm, and P6₃/mmc phases of the KB₃ and RbB₃ compounds using

Method	Lattice parameters (Å)	KB ₃			RbB ₃		
		I4/mmm	P6/mmm	P6 ₃ /mmc	I4/mmm	P6/mmm	P6 ₃ /mmc
PBE	а	4.356	3.454	4.956	4.374	3.467	5.087
	С	13.106	5.134	8.906	14.243	5.447	9.039
HSE	а	4.339	3.439	4.941	4.362	3.455	5.077
	С	13.075	5.130	8.870	14.235	5.447	9.013

the PBE and HSE06 approaches.

Compounds & Pressures	Lattice parameters (Å, °)	Wyckoff positions	x	У	Z
KB ₃	$a = 5.64720$ $\alpha = 90$	K1 (4j)	0.50000	0.83146	0.50000
Cmmm	$b = 7.30980 \beta = 90$	B1 (8p)	0.15696	0.86945	-0.00000
(0 GPa)	$c = 4.45340 \gamma = 90$	B2 (4k)	0.50000	0.50000	0.28383
KB ₃	$a = 4.35640$ $\alpha = 90$	K1 (4e)	0.50000	0.50000	0.65481
I4/mmm	$b = 4.35640 \beta = 90$	B1 (8j)	0.69533	-0.00000	0.50000
(0 GPa)	$c = 13.1061 \gamma = 90$	B2 (4e)	0.00000	0.00000	0.58164
KB ₃	$a = 3.45400$ $\alpha = 90$	K (1b)	0.00000	0.00000	0.50000
P6/mmm	$b = 3.45400 \beta = 90$	B (3f)	0.50000	0.00000	0.00000
(0 GPa)	$c = 5.13350 \gamma = 120$				
KB ₃	$a = 4.95570$ $\alpha = 90$	K1 (4f)	0.66667	0.33333	0.06771
<i>P</i> 6 ₃ / <i>mmc</i>	$b = 4.95570 \beta = 90$	B1 (2c)	0.66667	0.33333	0.75000
(0 GPa)	$c = 8.90760 \gamma = 120$	B2 (6h)	0.12738	0.25476	0.25000
		B3 (4e)	0.00000	0.00000	0.59817
RbB ₃	$a = 6.58440$ $\alpha = 90$	Rb1 (4j)	0.50000	0.82703	0.50000
Cmmm	$b = 9.64350 \beta = 90$	B1 (8p)	0.12783	0.91233	-0.00000
(0 GPa)	$c = 4.33410 \gamma = 90$	B2 (4k)	0.50000	0.50000	0.30509
RbB ₃	$a = 4.37410$ $\alpha = 90$	Rb1 (4e)	0.50000	0.50000	0.65468
I4/mmm	$b = 4.37410 \beta = 90$	B1 (8j)	0.69529	-0.00000	0.50000
(0 GPa)	$c = 14.2426 \gamma = 90$	B2 (4e)	0.00000	-0.00000	0.57477
RbB ₃	$a = 3.46690$ $\alpha = 90$	Rb (1b)	0.00000	0.00000	0.50000
P6/mmm	$b = 3.46690 \beta = 90$	B (3f)	0.50000	0.00000	0.00000
(0 GPa)	$c = 5.44670 \gamma = 120$				
RbB ₃	$a = 5.08660 \alpha = 90$	Rb1 (4f)	0.66667	0.33333	0.06748
$P6_3/mmc$	$b = 5.08660 \beta = 90$	B1 (2c)	0.66667	0.33333	0.75000
(0 GPa)	$c = 9.03880 \gamma = 120$	B2 (6h)	0.12624	0.25248	0.25000
		B3 (4e)	0.00000	0.00000	0.59977

Table S2. Lattice parameters, atomic coordinates, and equivalent isotropic displacement parameters of the predicted Na-Si phases as well as LiB₃, NaB₃, CsB₃, LiSi₃, LiGe₃, and NaGe₃ for *P6/mmm* phases.