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S1 Explicit equations for density-based correction

S1.1 db-MBE

For arbitrary orders, the density-based energy correction AE[(er appearing in Eq. (10)

is given by [cf. Eq. (11)],
AEM {piv, piri }
db-eb | WPi1y Pivigs -+ - -
_ (n) _ y/(n) (n)y _ 7(n) _ ()
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with the n-body nonadditive kinetic and exchange-correlation energy functionals defined

as
Tsnadd’(n) |:{pi1 1 Pivigy + - - }] = TS [pggt)} - Ts(n) (82)
E}?jdd’(n) |:{pl1 y Pivigy « - - }] = EXC [pggt)] - E)(:cl) (83>

Here, Vi) , JM, El(\Inl\)Iv Ts(n), and F" are the MBEs of the individual contributions to the

KS-DFT total energy functional, which are defined in analogy to Eq. (1), i.e.,

X0 =XM1y Axm, (S4)
m=2
with
N N N n—1 Nn—m
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Note that a correction due to the nuclear repulsion energy only appears at first order,

because Ef\ﬁ\)l = By for n > 2.
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At first order, the density-based correction is given by

1
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which is the interaction energy expression also appearing in subsystem DFT |[1].

At second order, the density-based correction is given by

2
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Here, the electron—nuclei interaction contribution is calculated as
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and the Coulomb interaction is calculated as

(1)
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and the second-order nonadditive kinetic and exchange—correlation functionals are given

by

= X[p)] - (Z > X[piin) — 1>ZX[piJ>. (S10)

i1=1i2=11+1 i1=1

S1.2 db-MFCC

For db-MFCC and eb-MFCC-MBE(2), the density-based correction can be evaluated
using Eq. , where for the many-body expansions of the individual energy terms, the

more general definition including the contributions of the cap is used.
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At first order (i.e., for db-MFCC), the density-based correction is given by
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The nonadditive exchange—correlation and kinetic energy functionals are now given by
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S1.3 db-MFCC-MBE(2)

At second order, the density-based correction is given by
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All terms in this expression can be evaluated in full analogy to those discussed above
for the case of the db-MBE, with the difference that in the many-body expansions of
the individual energy terms, the more general expansions including fragments and cap
molecules as well as fragment—fragment, fragment—cap, and cap—cap interactions need to

be accounted for.

A general implementation that covers both the conventional db-MBE case and the exten-
sion to the MFCC expansion can be achieved by assigning a prefactor of +1 to all frag-
ments and a prefactor of —1 to all cap molecules, and carrying these prefactors through

all the expressions.
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S2 Plot of total absolute errors for protein test set
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Figure S1: Comparison of the total absolute errors in the total energy (DFT/BP86/DZP)
with the energy-based and the density-based MFCC and MFCC-MBE(2) schemes for our
test set of small proteins. As reference, single-point calculations for the full proteins have

been performed.
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