Supplementary Information (SI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2025

Supporting Information

Near Zero Singlet–Triplet Gap Through Nonfullerene Core Modification with
Phenalene Derivatives Building Blocks

Leandro Benatto,^{a*} Marlus Koehler, ^a Rodrigo B. Capaz,^{b,c} Graziâni Candiotto^a

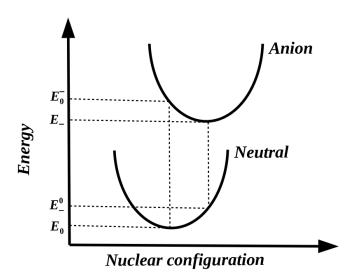
^a Institute of Physics, Federal University of Rio de Janeiro, 21941-909, Rio de Janeiro-RJ, Brazil

^b Department of Physics, Federal University of Paraná, 81531-980, Curitiba-PR, Brazil

b,c Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo, 13083-100, Brazil

*Corresponding author: lb08@fisica.ufpr.br

- S1. Complementary Computational Methods
- **S2. Complementary Results**


S3. References

Page S2

Pages S3-S10

Page S11

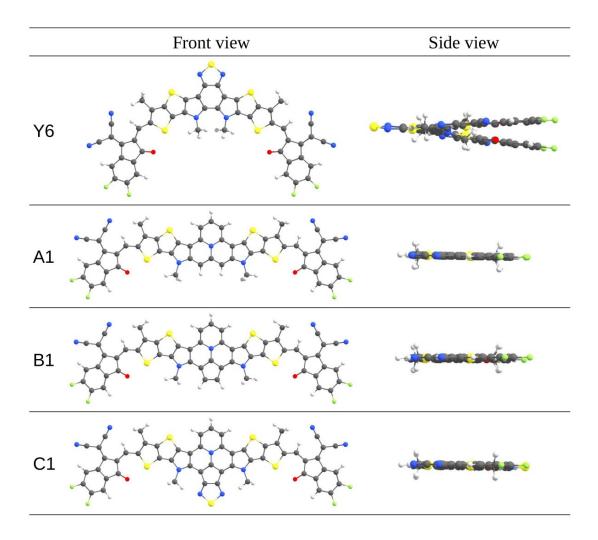
S1. Complementary Computational Methods

Figure S1: Schematic representation of the molecular potential energy surface as a function of the nuclear configuration in the neutral and charged state.

S2. Complementary Results

Table S1: Singlet and triplet vertical excitation energies [eV] calculated with different excited-state electronic structure methods, resulting singlet—triplet gaps, and the reference. Results for different phenalene derivatives and benzothiadiazole small molecules.

Molecule	Method	E _{S1}	E _{T1}	ΔE _{ST}	Reference
Phenalene derivative that constitutes the A1 molecule	ωB2PLYP'/def2-SVP	1.32	1.27	0.04	[1], This work
	ωB2PLYP'/def2-TZVP	1.29	1.24	0.05	This work
	ADC(2)/cc-pVDZ	1.04	1.20	-0.16	[1], [2]
	EOM-CCSD/cc-pVDZ	1.09	1.19	-0.10	[1], [2], This work
(cyc[3.3.3]azine)	EOM-CCSD/def2-SVP	1.04	1.17	-0.13	This work
	CIS(D)/cc-pVDZ	1.07	1.37	-0.30	[2], This work
	CIS(D)/def2-SVP	1.03	1.37	-0.34	This work
	ωB2PLYP'/def2-SVP	2.481	2.436	0.045	This work
	ωB2PLYP'/def2-TZVP	2.558	2.473	0.085	This work
5AP	ADC(2)/def2-TZVP	2.154	2.296	-0.142	[3]
(1,3,4,6,9b-	EOM-CCSD/cc-pVDZ	2.251	2.329	-0.078	[1], This work
pentaazaphenalene)	EOM-CCSD/def2-SVP	2.194	2.306	-0.112	This work
	CIS(D)/def2-SVP	2.086	2.623	-0.537	This work
	Experimental	1.957	2.003	-0.047	[4]
	ωB2PLYP'/def2-SVP	0.89	0.86	0.03	This work
Phenalene derivative that constitutes the A1-5F molecule	ωB2PLYP'/def2-TZVP	0.91	0.86	0.05	This work
	EOM-CCSD/def2-SVP	0.64	0.77	-0.13	This work
	CIS(D)/def2-SVP	0.61	0.95	-0.34	This work
	ωB2PLYP'/def2-SVP	2.33	2.23	0.1	This work
Phenalene derivative that constitutes the B1 molecule	ωB2PLYP'/def2-TZVP	2.27	2.17	0.1	This work
	EOM-CCSD/def2-SVP	2.13	2.17	-0.04	This work
	CIS(D)/def2-SVP	2.09	2.37	-0.28	This work
Benzothiadiazole that	ωB2PLYP'/def2-SVP	4.71	2.36	2.35	This work
	ωB2PLYP'/def2-TZVP	4.51	2.38	2.13	This work
constitutes the Y6 molecule	EOM-CCSD/def2-SVP	4.64	2.67	1.97	This work
	CIS(D)/def2-SVP	4.90	3.16	1.74	This work


Table S2: Excited-state energies calculated both in vacuum and with implicit solvent corrections using the conductor-like polarizable continuum model (C-PCM).

Method	Y6			A1			A1-5F		
	E_{S1}	E_{T1}	$\Delta E_{ ext{ST}}$	E_{S1}	E_{T1}	$\Delta E_{ ext{ST}}$	E_{S1}	E_{T1}	ΔE_{ST}
ωB2PLYP'/def2-SVP	2.451	1.66	0.791	1.635	1.325	0.31	1.22	1.195	0.025
ωB2PLYP'/def2- SVP/C-PCM ^a	2.413	1.689	0.727	1.534	1.23	0.295	1.236	1.189	0.047
ωB2PLYP'/def2- SVP/C-PCM-Chlo ^b	2.418	1.691	0.724	1.539	1.239	0.309	1.264	1.188	0.076

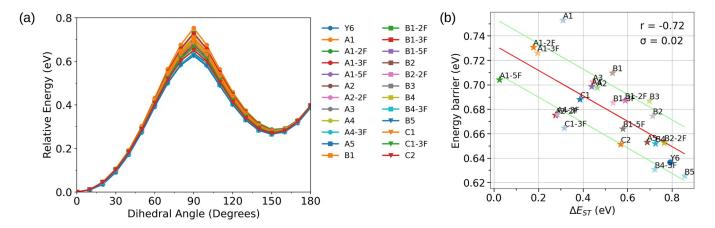
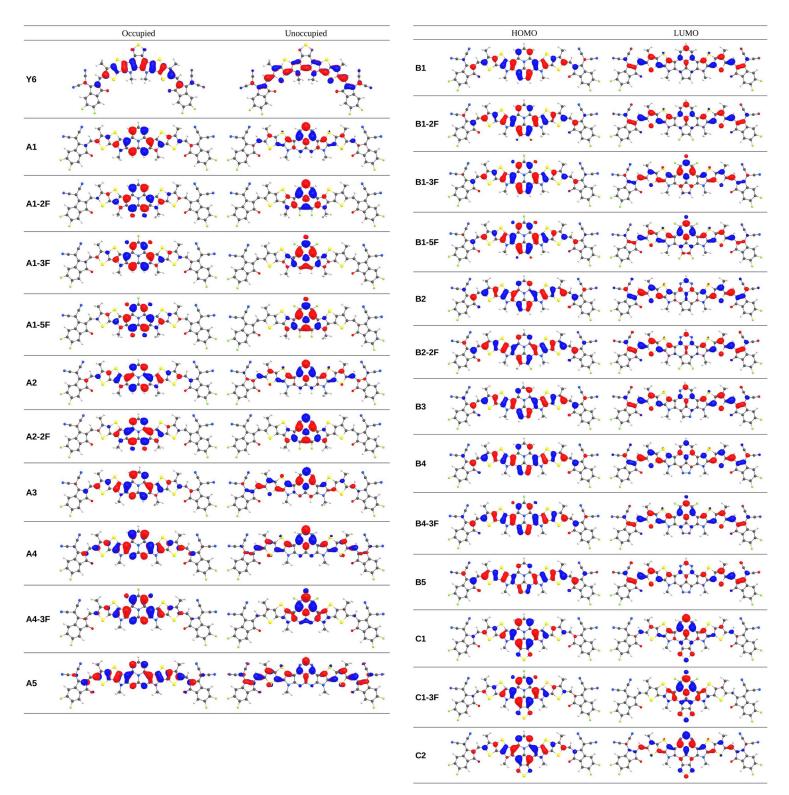
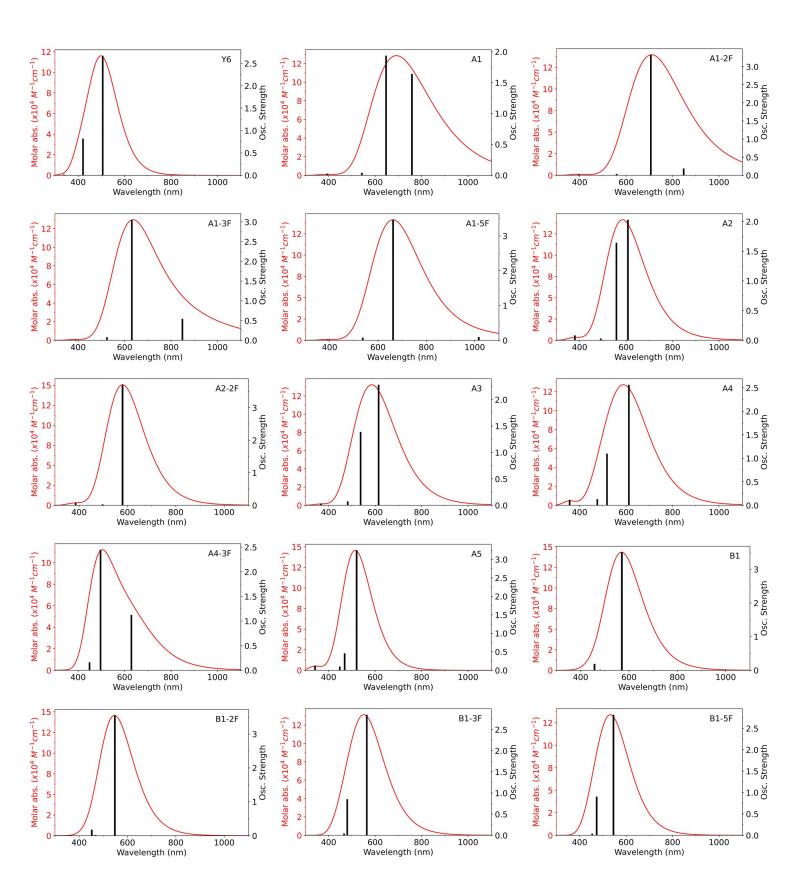

^a Results assuming a dielectric constant of 4.0, and a refractive index of 1.8. ^b Results in chloroform medium.

Table S3: Singlet and triplet vertical excitation energies [eV] calculated with different excited-state electronic structure methods, and resulting singlet—triplet gaps.


Molecules	ωΒ	32PLYP'/def2-S	SVP	CIS(D)/def2-SVP			
Molecules	E _{S1}	E _{T1}	ΔE _{ST}	E _{S1}	E _{T1}	ΔE _{ST}	
Y6	2.451	1.66	0.791	2.327	2.139	0.188	
A1	1.635	1.325	0.31	1.245	1.433	-0.188	
A1-2F	1.462	1.285	0.177	1.113	1.399	-0.286	
A1-3F	1.461	1.266	0.195	1.105	1.378	-0.273	
A1-5F	1.22	1.195	0.025	0.874	1.283	-0.409	
B1	2.173	1.641	0.532	1.822	1.908	-0.086	
B1-5F	2.273	1.694	0.579	2.003	2.031	-0.028	
C1	1.935	1.549	0.386	1.578	1.779	-0.201	
C1-3F	1.729	1.476	0.316	1.431	1.681	-0.25	


Figure S2: Optimized structure of molecules in front and side view.

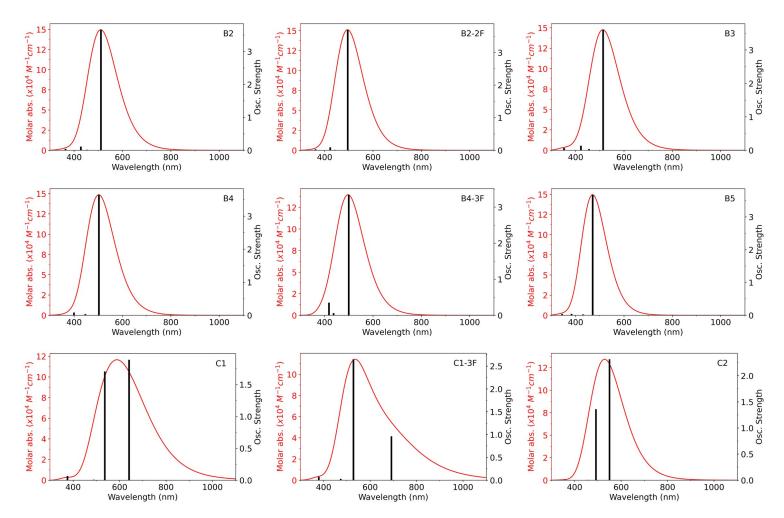


Figure S3: (a) Relative molecular energy vs the dihedral angle between central fused–ring core and acceptor end–group. (b) Correlation between $\Delta E_{\rm ST}$ and the rotation energy barrier. The linear regression line is in red, where r is the Pearson's correlation coefficient. The green lines are +/- one standard deviation (σ) around the linear regression.

Figure S4: Natural transition orbitals of the first excited singlet state (S_1) (isovalues 0.03).

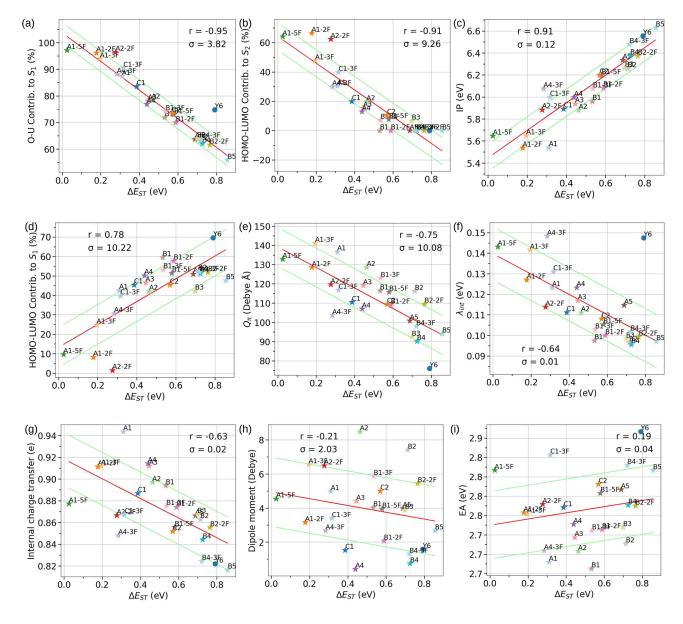


Figure S5: Absorption spectra and oscillator strength of the vertical electronic transitions.

Table S4: Summary of the correlation between $\Delta E_{\rm ST}$ and some molecular properties. The correlation strength classification was also presented.

Molecular property	Correlation coefficient (r)	Correlation strength
Singlet excited-state energy (E_{S1})	0.98	
Occupied–Unoccupied contribution to S_1	-0.95	
HOMO-LUMO gap	0.94	
Oscillator strength of the first lowest electronic transition (f_{S1})	0.91	Very Strong
Oscillator strength of the second lowest electronic transition (f_{S2})	-0.91	r > 0.9
HOMO–LUMO contribution to S_2	-0.91	
Ionization Potential (IP)	0.91	
Triplet excited-state energy (E_{T1})	0.87	
Integrated absorption spectrum	-0.87	
Occupied – Unoccupied overlap (η_{OU})	0.84	
Triplet exciton binding energy $(E_{b,T1})$	0.83	Strong
HOMO–LUMO contribution to S_1	0.78	0.89 > r > 0.7
Singlet exciton binding energy $(E_{b,S1})$	-0.77	
Quadrupole moment (Q_{π})	-0.75	
Rotation energy barrier	-0.72	
Intramolecular reorganization energy for electron transfer ($\lambda_{ m int}$)	-0.64	Moderate
Internal charge transfer (ICT)	-0.63	0.69 > r > 0.4
Dipole moment	-0.21	Weak
Electron Affinity (EA)	0.19	0.39 > r > 0.2

Figure S6: Correlation between $\Delta E_{\rm ST}$ and some molecular properties. (a) Contribution of the Occupied and Unoccupied NTOs to the S_1 transition. (c) Ionization potential. (d) Contribution of the HOMO and LUMO to the S_1 transition. (e) Quadrupole component along the π - π stacking direction. (f) Intramolecular reorganization energy. (g) Internal Charge Transfer. (h) Dipole moment. (i) Electron affinity. The linear regression line is in red, where r is the Pearson's correlation coefficient. The green lines are +/- one standard deviation (σ) around the linear regression.

S3. References

- [1] R. Pollice, P. Friederich, C. Lavigne, G. dos Passos Gomes, A. Aspuru-Guzik, Organic molecules with inverted gaps between first excited singlet and triplet states and appreciable fluorescence rates, Matter 4 (5) (2021) 1654–1682.
- [2] P. de Silva, Inverted singlet—triplet gaps and their relevance to thermally activated delayed fluorescence, The Journal of Physical Chemistry Letters 10 (18) (2019) 5674–5679.
- [3] L. Tučková, M. Straka, R. R. Valiev, D. Sundholm, On the origin of the inverted singlet–triplet gap of the 5th generation light-emitting molecules, Physical Chemistry Chemical Physics 24 (31) (2022) 18713–18721.
- [4] K. D. Wilson, W. H. Styers, S. A. Wood, R. C. Woods, R. J. McMahon, Z. Liu, Y. Yang, E. Garand, Spectroscopic quantification of the inverted singlet—triplet gap in pentaazaphenalene, Journal of the American Chemical Society.