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Table S1. Calculated highest optical phonon mode at the Γ point for pristine and 
functionalized graphene systems. 

System
Highest 

Optical Mode 
(Γ) (THz)

Energy (meV) Raman Shift 
(cm-1)

Shift vs. G 
1580 cm-1 

(cm-1)

Pristine 
Graphene 41.65 172.23 1388.8 -191.2

N-doped 
Graphene 44.47 183.84 1483.2 -96.8

Au-loaded 
Graphene 47.43 196.2 1582.2 +2.2

N-doped-Au-
loaded 

Graphene
45.33 187.41 1511.7 -68.3

The corresponding energy (in meV) and Raman shift (in cm-1) are provided, along 

with the relative shift compared to the typical G band position at 1580 cm-1, which 

originates from the in-plane E₂g mode of sp²-carbon2. The Raman shift values were 

obtained by converting the phonon frequency at the Γ point into wavenumber using the 

relation 1 THz ≈ 33.356 cm-1, and the deviation from 1580 cm-1 serves as a reference 

to assess the redshift or blueshift of the G band under different functionalizations3. 

Here, a “redshift” indicates that the Raman shift is lower than 1580 cm-1 (i.e., a shift 

toward lower frequencies), while a “blueshift” denotes a shift toward higher 

frequencies.
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Table S2. Calculated highest optical phonon mode at the K point for pristine and 
functionalized graphene systems

System Highest Optical 
Mode (K) (THz) Energy (meV) Raman Shift (cm-1)

Pristine 
Graphene 45.47 187.9 1516.4

N-doped 
Graphene 47.06 194.61 1570.1

Au-loaded 
Graphene 47.35 195.94 1579.2

N-doped-Au-
loaded Graphene 46.86 193.75 1563.1

Table S2 presents the calculated highest optical phonon mode at the K point for 

pristine and functionalized graphene systems. The values presented herein were derived 

by extracting the highest optical phonon mode at the K point from the phonon 

dispersion curves (refer to Figure 2). The corresponding Raman shift (cm-1) was 

computed using a conversion factor of 1 THz ≈ 33.356 cm-1. 3
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Figure S1. Representative vibrations in modified graphene. (a) N-doped graphene, (b) 
Au-loaded graphene, (c) N-doped-Au-loaded graphene.

Figure S1 shows representative phonon modes in various modified graphene systems. 

(a) shows a high-frequency vibration (~46.79 THz) at the M point in N-doped graphene, 

corresponding to in-plane stretching between N and C atoms. (b) shows a low-

frequency vibration (~0.95 THz) at the Γ point in Au-loaded graphene, characterized 

by an out-of-plane “breathing” vibration. (c) shows two distinct vibrations in N-doped–

Au-loaded graphene: the left shows a high-frequency vibration (~46.79 THz) at the M 

point, while the right displays a low-frequency vibration (~5.13 THz) at the Γ point. 

This comparison indicates that dual heteroatom modification induces diverse phonon 

characteristics. Arrows indicate the direction and relative amplitude of atomic 

displacements.
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Figure S2. Real-space isosurface plots of representative electronic states for modified 
graphene. (a) N-doped graphene, (b) Au-loaded graphene, (c) N doped-Au loaded 
graphene.

Figure S2 illustrates real-space isosurface plots of representative electronic states 

obtained from DFT calculations for modified Graphene. Figure S2a shows N-doped 

graphene at the Fermi level, which exhibits a strongly localized electronic density on 

the substitutional N atom and its nearest-neighbor C atoms, confirming that the new 

PDOS feature in Figure 3b originates from N 2p-C 2p hybridization. Figure S2b shows 

Au-loaded graphene, where the state at -1.5 eV displays a wavefunction confined to the 

Au adatom, indicating that the sharp PDOS peak in Figure 3c is dominated by Au 5d 

orbitals; this localization on a heavy element is consistent with the emergence and 

reinforcement of low-frequency out-of-plane vibrations. Figure S2c shows 

dual-modified (N-doped-Au-loaded) graphene in two views: the left side displays the 

Fermi level state with the same N-centered localization as in Figure S2a, whereas the 

right side at -2.5 eV highlights Au 5d; the coexistence of N- and Au-centered states on 

the same lattice suggests a synergistic effect on the surrounding C atoms, thereby 

rationalizing the coupling character and the frequency shift of the calculated phonon 
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modes. For better visualization of the spatial distribution, the upper panels are presented 

in a top view, while the lower panels are presented in a side view. 

Figure S3. (a) Phonon density in the frequency range of 0-4.837 THz (0-20 meV) of 
pristine graphene, (b) N-doped graphene, (c) Au-loaded graphene, (d) and N-doped-
Au-loaded graphene.

Figure S3 illustrates the phonon density within the frequency range of 0-4.837 THz 

(0-20 meV). The X-axis denotes the frequency (in THz), while the Y-axis represents 

the phonon density, defined as the number of modes within each frequency interval. As 

depicted in Figure S1, the number of phonon modes in the 0-20 meV range increases 

for N-doped graphene and Au-loaded graphene. The N-doped-Au-loaded graphene 

exhibits a notable increase in the number of modes within this range. 
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