Striking the Balance between the Capping Ligands for CsPbBr₃ Nanocrystal Synthesis via Emulsion LARP Approach

Govind B. Nair^{1*}, Sumedha Tamboli¹, Sanjay J. Dhoble², Hendrik C. Swart^{1#}

¹Department of Physics, University of the Free State, P. O. Box 339, Bloemfontein 9300, South Africa.

²Department of Physics, R.T.M. Nagpur University, Nagpur-440033, India *Corresponding author Email : : <u>govind1291@yahoo.com</u>; <u>Nair.GB@ufs.ac.za</u> #Corresponding author Email : : <u>swarthc@ufs.ac.za</u>

Supporting Information

Experimental Details:

Chemicals:

CsBr (99.9%, Sigma-Aldrich), PbBr₂ (\geq 98%, Sigma-Aldrich), Dimethyl sulfoxide (\geq 99.9%, Sigma Aldrich), Hexane fraction (ACE Ltd., South Africa), Oleic Acid (\geq 99%, Sigma-Aldrich), Oleylamine (Acros Organics), Acetone (ACE Ltd., South Africa) were used in this study. All the reagents were used as received without further purification.

Synthesis:

CsPbBr₃ nanocrystals were synthesized using emulsion ligand-assisted reprecipitation (Emulsion-LARP) method. In a 100 ml round-bottom three-necked flask, 10 ml hexane was introduced and kept on a magnetic stirrer. A specific quantity of oleic acid (OA) and oleylamine (OLA) were added to the flask and allowed to stir using a magnetic needle. Briefly, 3 mmol CsBr and 3 mmol PbBr₂ were dissolved in 3 ml doubled-distilled water and 3 ml dimethyl sulfoxide (DMSO), respectively, to produce Cs-precursors and Pb-precursor solutions. 0.3 ml Pb-precursor solution was then injected into the hexane solution and allowed to stir vigorously. The solution turned slightly turbid with this injection. This was followed by the gradual injection of 0.3 ml Cs-precursor solution. 6 ml acetone was added to the solution, which precipitated yellow nanocrystals from the solution. The nanocrystals from the solution was discarded. The nanocrystals were redispersed in 5 ml hexane and centrifuged

again for 5 mins at 6000 rpm. Bright green colloidal solution was obtained after the centrifugation, which was collected and used for further characterizations.

The synthesis was conducted in two phases. In the first phase, the quantity of OA was fixed at 0.5 ml, and the quantity of OLA was varied (0, 0.02, 0.05, 0.1, 0.2, 0.5, and 1 ml). In the second phase, the quantity of OLA was fixed at 0.1 ml and the quantity of OA was varied (0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1 and 2 ml). Apart from these, one sample was prepared without adding either OA or OLA.

Instrumentation:

A D8 Advance X-ray diffractometer (Bruker, Germany) was employed to acquire the X-ray diffraction (XRD) patterns using a Cu-anode, ceramic X-ray tube source and Lynx Eye detector. The diffractometer was operated at 40 mA current and 40 kV voltage. The XRD patterns were obtained in the diffracting angle ranging from 10°-60° with a step-size of 0.02° using the Cu-K_a radiations ($\lambda = 1.5406$ Å). The high-resolution transmission electron microscopy (HRTEM) images and elemental mapping using energy dispersive spectroscopy (EDS) were obtained on a JEOL JEM-F200. A PerkinElmer 950 lambda spectrophotometer was used for recording the absorption spectra in the ultraviolet (UV) and visible (Vis) regions. The X-ray photoelectron spectra (XPS) were recorded on a PHI Quantes Scanning Dual X-ray Photoelectron Microprobe and the peak fitting analysis of the XPS spectra was performed using XPS Peak 4.1 software. The XPS survey scans were recorded in energy steps of 1 eV/step and dwell time of 50 ms/step with a pass energy of 280 eV. The binding energy (BE) charge correction for C 1s was achieved by correcting the reference BE value to 284.8 eV. The Fourier Transform Infrared (FTIR) spectra were recorded on a Thermo Scientific Nicolet iS10 FTIR spectrophotometer using the Attenuated Total Reflectance (ATR) mode. The samples were analysed in their liquid form, wherein the NCs were dispersed in hexane. The background correction was performed for the hexane solvent. An Edinburgh FS5 spectrofluorometer attached with a xenon lamp source was used to record the photoluminescence (PL) spectra. Edinburgh FLS980 spectrofluorometer was used to record the PL decay curves and the PL quantum yield (PLQY). The temperature-dependent PL emission spectra were recorded using a 325 nm He-Cd laser via a Horiba iHR320 monochromator.

Fig. S1 UV-Visible absorbance and PL emission spectra of CsPbBr₃ NCs. (a) NCs prepared without using OA or OLA during the synthesis. (b-h) NCs prepared with a fixed amount of OA (0.5 ml) and varying amounts of OLA ranging from 0 to 1 ml: (b) OLA = 0 ml, (c) OLA = 0.02 ml, (d) OLA = 0.05 ml, (e) OLA = 0.1 ml, (f) OLA = 0.2 ml, (g) OLA = 0.5 ml, and (h) OLA = 1 ml.

Fig. S2 UV-Visible absorbance and PL emission spectra of CsPbBr₃ NCs. (a) NCs prepared without using OA or OLA during the synthesis. (b-i) NCs prepared with a fixed amount of OLA (0.1 ml) and varying amounts of OA ranging from 0 to 2 ml: (b) OA = 0 ml, (c) OA = 0.1 ml, (d) OA = 0.2 ml, (e) OA = 0.3 ml, (f) OA = 0.4 ml, (g) OA = 0.5 ml, (h) OA = 1 ml, and (i) OA = 2 ml.

Fig. S3 CIE 1931 chromaticity diagram showing the variation of color emission from CsPbBr₃ NCs under 365 nm excitation for fixed OA and varying OLA concentrations.

Table S1 CIE chromaticity coordinates for the color emission from CsPbBr3 NCs under 365nm excitation for fixed OA and varying OLA.

Sr. No.	Sample	X	У
(A)	OA = OLA = 0 ml	0.1576	0.0454
(B)	OLA = 0 ml	0.1576	0.0449
(C)	OLA = 0.02 ml	0.0828	0.7447
(D)	OLA = 0.05 ml	0.0852	0.7129
(E)	OLA = 0.1 ml	0.0838	0.7593
(F)	OLA = 0.2 ml	0.0748	0.6849
(G)	OLA = 0.5 ml	0.0897	0.6388

(H)	OLA = 1 ml	0.1669	0.1877

Fig. S4 CIE 1931 chromaticity diagram showing the variation of color emission from CsPbBr₃ NCs under 365 nm excitation for fixed OLA and varying OA concentrations.

Sr. No.	Sample	X	У
(A)	OA = OLA = 0 ml	0.1576	0.0454
(B)	OA = 0 ml	0.1114	0.2858
(C)	OA = 0.1 ml	0.0080	0.2858
(D)	OA = 0.2 ml	0.1103	0.3990
(E)	OA = 0.3 ml	0.1080	0.4302

Table S2 CIE chromaticity coordinates for the color emission from CsPbBr3 NCsunder 365 nm excitation for fixed OLA and varying OA.

(F)	OA = 0.4 ml	0.0660	0.7002
(G)	OA = 0.5 ml	0.0838	0.7593
(H)	OA = 1 ml	0.0498	0.5927
(I)	OA = 2 ml	0.1199	0.2487

Fig. S5 Emission spectra for the determination of PLQY for CsPbBr₃ NCs prepared using 0.5 ml OA and 0.1 ml OLA.

Table S3 Best	fit parameters of PL decay curves for the green emission of CsPbBr ₃ NCs
]	prepared with fixed OA and different OLA concentrations.

Sr. No.	OLA Concentration	Decay time Parameters	Decay time Values (ns)	Coefficients	Coefficient values	Average lifetime (ns)	Goodness of Fitting
		τ_1	6.26	A ₁	22002.87	22.5	
1.	0.02 ml	τ ₂	17.38	A ₂	24122.49		1.056
		τ ₃	44.44	A ₃	4513.42		
		τ_1	6.21	A ₁	22513.87	23.5	
2.	0.05 ml	τ ₂	17.14	A ₂	22902.01	23.3	1.150
		τ ₃	46	A ₃	4747.62	1	

		τ_1	6.16	A ₁	22958.56	30.4	
3.	0.1 ml	τ ₂	16.89	A ₂	22327.26	50.4	1.054
		τ ₃	56.23	A ₃	5847.75		
		τ_1	5.54	A ₁	26644.74	22.1	
4.	0.2 ml	τ ₂	15.5	A ₂	19537.82	22.1	1.120
		τ ₃	48.46	A ₃	3463.74		
		τ_1	5.88	A ₁	26261.86		
5.	0.5 ml	τ ₂	14.91	A ₂	19145.58	18.7	1.034
		τ ₃	41.88	A ₃	3190.4		
		τ_1	1.9	A ₁	38969.58		
6.	1 ml	τ ₂	9.66	A ₂	9644.48	18.7	1.183
		τ ₃	36.79	A ₃	3117.61		

Table S4 Best fit parameters of PL decay curves for the green emission of CsPbBr3 NCsprepared with fixed OLA and different OA concentrations.

			Decay				
Sr.	OA	Decay time	time	Coofficients	Coefficient	Average	Goodness
No.	Concentration	Parameters	Values	Coefficients	values	lifetime (ns)	of Fitting
			(ns)				
		τ_1	3.22	A ₁	14723.29		
1.	0 ml	τ ₂	10.44	A ₂	17813.98	17.0	1.109
		τ ₃	41.36	A ₃	1855.15		
		τ_1	5.22	A_1	25148.63		
2.	0.1 ml	τ ₂	12.97	A ₂	22748.46	20.9	1.144
		τ ₃	40.32	A ₃	5654.05		
		τ_1	6.26	A ₁	32191.85		
3.	0.2 ml	τ ₂	15.22	A ₂	16027.09	21.5	1.148
		τ ₃	44.14	A ₃	4634.83		
		τ_1	4.61	A ₁	29356.83		
4.	0.3 ml	τ ₂	13.45	A ₂	22599.79	21.7	0.962
		τ ₃	40.24	A ₃	6490.85		
		τ_1	5.31	A ₁	29583.95		
5.	0.4 ml	τ ₂	11.35	A ₂	15297.31	22.8	1.028
		τ ₃	41.25	A ₃	6227.09		
6	0.5 ml	τ ₁	6.24	A ₁	26404.61	20.2	1 089
0.	0.5 m	τ ₂	18.36	A ₂	18920.06	27.2	1.007

		τ ₃	54.26	A ₃	5559.99		
		τ	6.35	A ₁	33569.93		
7.	1 ml	τ ₂	17.58	A ₂	18996.38	26.4	1.126
		τ ₃	51.65	A ₃	5518.09		
		τ ₁	4.51	A ₁	24600.67		
8.	2 ml	τ ₂	12.4	A ₂	10675.18	9.7	1.210
		τ ₃	33.82	A ₃	272.78		

Fig. S6 PL decay curves for the blue emissions of CsPbBr₃ NCs excited at 365 nm showing the variation of the decay kinetics for fixed OA concentration and different OLA concentrations: (a) OLA = 0 ml for 402 nm, (b) OLA = 1 ml for 402 nm, and (c) OLA = 1 ml for 426 nm.

Fig. S7 PL decay curves for the blue emissions of CsPbBr₃ NCs excited at 365 nm showing the variation of the decay kinetics for fixed OLA concentration and different OA concentrations: (a) OA = 0 ml for 462 nm, (b) OA = 0.1 ml for 467 nm, (c) OA = 0.2 ml for

462 nm, (d) OA = 0.3 ml for 463 nm, (e) OA = 0.4 ml for 460 nm, and (f) OLA = 2 ml for 456 nm.

Table S5 Best fit parameters of PL decay curves for the blue emission of CsPbBr3 NCsprepared with fixed OA and different OLA concentrations.

Sr. No.	OLA Conc.	Emission Wavelength (nm)	Decay time Parameters	Decay time Values (ns)	Coefficients	Coefficient values	Average lifetime (ns)	Goodness of Fitting
1.	0 ml	402 nm		Fitting was	not possible		-	-
2.	1 ml	402 nm	τ_1	4.38	A ₁	3541.99	4.7	1.038
			τ_2	36.66	A ₂	22.99		
3	1 ml	426 nm	τ_1	4.90	A ₁	5508.58	6.6	0.985
5.	1 1111	420 IIII	τ_2	32.85	A ₂	52.09	0.0	0.965

Table S6 Best fit parameters of PL decay curves for the blue emission of CsPbBr3 NCsprepared with fixed OLA and different OA concentrations.

Sr. No.	OA Conc.	Emission Wavelength (nm)	Decay time Parameters	Decay time Values (ns)	Coefficients	Coefficient values	Average lifetime (ns)	Goodness of Fitting
1.	0 ml	462 nm	τ_1	8.08	A ₁	20207.20	13.7	0.997
	0 111	102 1111	τ_2	28.20	A ₂	2239.99		0.000
2	0.1 ml	467 nm	τ_1	7.88	A ₁	639.71	15.7	0 990
2.	0.1 111		τ ₂	28.23	A ₂	111.95		0.770
3	0.2 ml	462 nm	τ_1	10.15	A ₁	11375.14	14.1	0.985
5.	0.2 III	102 1111	τ ₂	52.27	A ₂	230.77		0.900
4	0.3 ml	463 nm	τ_1	7.43	A ₁	16994.76	12.8	1.052
			τ ₂	28.07	A ₂	1605.19	12.0	1.002
5	0.4 ml	460 nm	τ_1	8.08	A ₁	1379.94	12	1.086
5.			τ ₂	35.85	A ₂	51.86		1.000
6.	2 ml	456 nm	τ_1	5.66	A ₁	3895.59	9.3	0.933

τ_2 30.83 A_2 119.62

Fig. S8 Particle-size distribution of the CsPbBr₃ NCs prepared using the optimized quantities of both OA and OLA.

Fig. S9 Elemental map obtained from the EDS showing the distribution of the constituent elements in CsPbBr₃ NCs prepared using the optimized quantities of both OA and OLA.

Fig. S10 XRD patterns of CsPbBr₃ NCs prepared with a fixed OA and varying OLA concentration.

Fig. S11 XRD patterns of CsPbBr₃ NCs prepared with a fixed OLA and varying OA concentration.

Fig. S12 XPS full-survey scan for the CsPbBr₃ samples prepared without adding any ligands, prepared by adding either OA or OLA, and prepared using the optimized quantities of both OA and OLA.

Fig. S13 High-resolution XPS spectra for (a) Cs 3d, (b) Pb 4f, and (c) Br 3d, for the CsPbBr₃ samples prepared without adding any ligands, prepared by adding either OA or OLA, and prepared using the optimized quantities of both OA and OLA.

Table. S7 The chemical states and the corresponding binding energies for the different corelevels in the high resolution XPS scans performed for the CsPbBr₃ samples prepared without adding any ligands, prepared by adding either OA or OLA, and prepared using the optimized quantities of both OA and OLA.

Sr. No.	Core-Level	Peak	Spin- Orbit Slitting	Binding energy (eV)			
				For samples prepared with both OA and	For samples prepared with only OLA	For samples prepared with only OA	For samples prepared without any
				OLA			ligands
1.	Cs 3d	1	Cs 3d _{5/2}	724.2	724.7	724.5	723.1
			Cs 3d _{3/2}	738.3	738.7	738.4	737.2
		2	Cs 3d _{5/2}	-	-	-	724.1
			Cs 3d _{3/2}	-	-	-	738.2
2.	Pb 4f	1	Pb 4f _{7/2}	138.2	138.5	138.6	138.3
			Pb 4f5/2	143.1	143.4	143.5	143.1
		2	Pb 4f _{7/2}	-	136.7	136.9	137.0
			Pb 4f5/2	-	141.5	141.8	141.9
3.	Br 3d	1	Br 3d _{5/2}	68.7	68.6	68.8	67.0

		Br 3d _{3/2}	69.5	69.5	69.7	68.0
	2	Br 3d _{5/2}	-	-	-	68.2
		Br 3d _{3/2}	-	-	-	69.2

Fig. S14 FTIR spectra of the CsPbBr₃ NCs prepared: (a) without OA or OLA, (b) with only OA, (c) with only OLA, and (d) with both optimized quantities of OA and OLA.

Table. S8 The vibrational modes responsible for the absorption peaks in the FTIR spectrarecorded for the CsPbBr3 NCs prepared without OA or OLA, with only OA, with only OLA,and with both optimized quantities of OA and OLA.

		Peak Positi				
Sr. No.	Without OA or OLA (OA = 0 ml, OLA = 0 ml)	With only OA (OA = 0.5 ml, OLA = 0 ml)	With only OLA (OA = 0 ml, OLA = 0.1 ml)	With both OA and OLA (OA = 0.5 ml, OLA = 0.1 ml)	Vibrational Modes responsible for the absorption	
1.	-	-	3024	3031	N-H stretching vibrations	
2.	-	2925	2917	2918	Asymmetric C-H stretching vibrations	
3.	-	2862	2861	2865	Symmetric C-H stretching vibrations	
4.	-	-	2365	-	Asymmetric O=C=O stretching vibrations	
5.	-	-	1604	1604	C=C stretching vibrations	
6.	-	1460	1495	1495	Asymmetric stretching of O-C-O bond of the carboxylic (COO ⁻) group	
7.	-	-	-	1080	C-O-C stretching vibrations	
8.	-	-	-	1029	Out-of plane bending vibrations of methylene (-CH ₂ -) groups	
9.	-	-	-	724	In-plane rocking vibrations of methylene (-CH ₂ -) groups	
10.	-	-	-	692	In-plane bending of O-C- O bond of the carboxylic (COO ⁻) group	
11.	-	-	-	463	Pb-Br stretching	
12.	-	420	420	420	vibrations	

Fig. S15 Graphical representation showing: (a) Protonation of oleylamine by oleic acid in a non-polar organic solvent, (b) Dissociation of CsBr and PbBr₂ precursors in distilled water and DMSO media, respectively.