Electronic Supplementary Information: Excited State Proton Transfer in 2-(Oxazol-2-yl)-3-hydroxychromone

Dipangkali Sarma and Sai G. Ramesh*

Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India.

TABLE S-1. Ground state energies (in kcal/mol) of OHC-A, B, C and D and their populations (percentages in parentheses) estimated at 298 K. With each method, the most stable conformer defines the zero of the energy scale. In all cases, the aug-cc-pVDZ basis is used.

Method	OHC-A	OHC-B	OHC-C	OHC-D
MP2	0.906	0.0	0.354	4.503
D 31 V D	(12.3%)	(56.6%)	(31.1%)	(0.0%) 5 705
DOLLI	(12.2%)	(37.9%)	(49.9%)	(0.0%)
CAM-B3LYP	1.249	0.478	0.0	6.043
ω B97XD	(7.7%) 1.354 (7.0%)	(28.5%) 0.635 (23.7%)	(63.8%) 0.0 (69.3%)	$(0.0\%) \\ 6.125 \\ (0.0\%)$

TABLE S-2. Vertical excitation energies (VEE) of OHC-A, B and C at the TDA-B3LYP, TD-B3LYP, TD-CAM-B3LYP and TD- ω B97XD with the cc-pVDZ basis. All energies are in eV. In each case, the minima are optimized on the ground state with the respective functional. The state order is preserved across calculations. TD-B3LYP yields VEE values that are slightly lower than TDA-B3LYP; the $\pi\pi^*$ states are lower by 0.1-0.2 eV while the $n\pi^*$ states are less affected. TD-CAM-B3LYP and TD- ω B97XD overestimate the energies of all states by about 0.4-0.5 eV.

Conformer	State	TDA-B3LYP	TD-B3LYP	TD-CAM-B3LYP	$\mathrm{TD}\text{-}\omega\mathrm{B}97\mathrm{XD}$
OHC-A	$S_1 (\pi \pi^*)$	3.73	3.53	4.15	4.16
	$S_2 (n\pi^*)$	3.96	3.86	4.32	4.31
	$S_3 (\pi \pi^*)$	4.28	4.19	4.69	4.70
OHC-B	$S_1 \; (\pi \pi^*)$	3.76	3.56	4.17	4.19
	$S_2 (n\pi^*)$	3.98	3.97	4.34	4.34
	$S_3 (\pi \pi^*)$	4.27	4.17	4.66	4.68
OHC-C	$S_1 (n\pi^*)$	3.41	3.39	3.84	3.85
	$S_2 (\pi \pi^*)$	3.82	3.60	4.19	4.20
	$S_3 (\pi \pi^*)$	4.36	4.26	4.75	4.76

^{*} Corresponding author. Emails: (DS) dipangkalis@iisc.ac.in, (SGR) sairamesh@iisc.ac.in

OHC-A S _{0,min}				O	OHC-B $S_{0,min}$				OHC-C $S_{0,min}$				
С	-0.544182	2.180273	0.0	C	-0.370917	2.190365	0.0	C	-0.436502	2.152230	0.0		
Ν	0.094680	3.320601	0.0	Ν	-1.603632	2.674487	0.0	Ν	0.383328	3.197169	0.0		
С	-2.117545	3.663903	0.0	С	-1.463754	4.032148	0.0	С	-1.740461	3.937966	0.0		
С	-0.901659	4.279193	0.0	\mathbf{C}	-0.131027	4.383517	0.0	\mathbf{C}	-0.420044	4.309200	0.0		
Η	-3.147055	3.997010	0.0	Η	-2.320826	4.687355	0.0	Η	-2.651544	4.511327	0.0		
Η	-0.676969	5.339901	0.0	Η	0.367240	5.338550	0.0	Η	-0.007243	5.304885	0.0		
С	-0.000000	0.835224	0.0	\mathbf{C}	0.000000	0.790431	0.0	\mathbf{C}	-0.000000	0.776991	0.0		
С	1.329938	0.505417	0.0	\mathbf{C}	1.275975	0.307099	0.0	\mathbf{C}	1.319353	0.415386	0.0		
С	1.759686	-0.896277	0.0	\mathbf{C}	1.569983	-1.113123	0.0	\mathbf{C}	1.697091	-1.009599	0.0		
С	0.689106	-1.887795	0.0	\mathbf{C}	0.399178	-1.983553	0.0	\mathbf{C}	0.544484	-1.937038	0.0		
С	-0.646196	-1.447623	0.0	\mathbf{C}	-0.877956	-1.402280	0.0	\mathbf{C}	-0.769437	-1.455862	0.0		
0	-0.974976	-0.126449	0.0	Ο	-1.063473	-0.053406	0.0	Ο	-1.040652	-0.116559	0.0		
0	2.974132	-1.144089	0.0	Ο	2.751436	-1.482031	0.0	Ο	2.858643	-1.385492	0.0		
0	2.319738	1.411572	0.0	Ο	2.360696	1.129676	0.0	Ο	2.318489	1.305755	0.0		
Η	3.137703	0.870230	0.0	Η	3.125944	0.519985	0.0	Η	1.937476	2.214621	0.0		
С	0.947282	-3.275844	0.0	\mathbf{C}	0.505236	-3.386343	0.0	\mathbf{C}	0.744740	-3.328637	0.0		
С	-0.100296	-4.182185	0.0	\mathbf{C}	-0.631462	-4.171341	0.0	\mathbf{C}	-0.331284	-4.196737	0.0		
С	-1.432642	-3.718099	0.0	\mathbf{C}	-1.901597	-3.568003	0.0	\mathbf{C}	-1.640351	-3.688449	0.0		
С	-1.713428	-2.358795	0.0	\mathbf{C}	-2.033195	-2.190392	0.0	\mathbf{C}	-1.866298	-2.322200	0.0		
Η	1.986285	-3.601797	0.0	Η	1.497741	-3.820290	0.0	Η	1.766991	-3.686937	0.0		
Η	0.100857	-5.252957	0.0	Η	-0.547804	-5.251507	0.0	Η	-0.167860	-5.267661	0.0		
Η	-2.255298	-4.433520	0.0	Η	-2.791598	-4.186705	0.0	Η	-2.484751	-4.367950	0.0		
Η	-2.734745	-1.981816	0.0	Η	-3.000684	-1.704299	0.0	Η	-2.868350	-1.911079	0.0		
0	-1.905634	2.313266	0.0	Ο	0.557921	3.201305	0.0	0	-1.738450	2.559183	0.0		

TABLE S-3. Cartesian coordinates (in Å) of the ground state minimum energy structures of OHC-A, B and C. The z components are abbreviated as they are zero-valued.

OHC-A $S_{1,\text{min}}^{FC}(\pi\pi^*)$				0	OHC-B S_{1}^{FC} $(\pi\pi^*)$				OHC-C $S_{2min}^{FC}(\pi\pi^*)$				
_	10 11 01,min	(***)			$10 D S_{1,min}$	("")			iie e e 2,min	(***)			
С	-0.463577	2.219626	0.0	\mathbf{C}	-0.356142	2.227824	0.0	С	-0.275483	2.201110	0.0		
Ν	0.246321	3.334488	0.0	Ν	-1.568508	2.755688	0.0	Ν	0.661108	3.148470	0.0		
С	-1.950445	3.784333	0.0	\mathbf{C}	-1.350803	4.106556	0.0	С	-1.375120	4.061374	0.0		
С	-0.687470	4.333775	0.0	\mathbf{C}	0.003476	4.356236	0.0	С	-0.034387	4.333351	0.0		
Η	-2.960563	4.181404	0.0	Η	-2.168328	4.824056	0.0	Η	-2.278252	4.661470	0.0		
Η	-0.408435	5.385052	0.0	Η	0.621590	5.248408	0.0	Η	0.464585	5.298789	0.0		
С	-0.000000	0.866097	0.0	\mathbf{C}	0.000000	0.841546	0.0	С	0.000000	0.800963	0.0		
С	1.319619	0.463327	0.0	\mathbf{C}	1.275468	0.315359	0.0	С	1.321068	0.317947	0.0		
С	1.708347	-1.005613	0.0	\mathbf{C}	1.529155	-1.180385	0.0	С	1.613215	-1.154676	0.0		
С	0.633626	-1.933839	0.0	\mathbf{C}	0.374485	-2.004407	0.0	С	0.415437	-1.979723	0.0		
С	-0.703346	-1.438493	0.0	\mathbf{C}	-0.911330	-1.384478	0.0	С	-0.878613	-1.410238	0.0		
0	-0.993687	-0.071838	0.0	Ο	-1.075983	0.001066	0.0	0	-1.062855	-0.027146	0.0		
0	2.943926	-1.200342	0.0	Ο	2.745369	-1.483373	0.0	0	2.776661	-1.569315	0.0		
0	2.376331	1.246508	0.0	Ο	2.405651	0.993262	0.0	0	2.351601	1.139309	0.0		
Η	3.112491	0.544424	0.0	Η	3.065806	0.213699	0.0	Η	2.004992	2.091011	0.0		
С	0.819224	-3.354573	0.0	\mathbf{C}	0.425156	-3.435583	0.0	С	0.497842	-3.397718	0.0		
С	-0.285870	-4.203886	0.0	\mathbf{C}	-0.753854	-4.178036	0.0	С	-0.667118	-4.182487	0.0		
С	-1.587379	-3.691971	0.0	\mathbf{C}	-2.001868	-3.545473	0.0	С	-1.927564	-3.590336	0.0		
С	-1.799148	-2.284133	0.0	\mathbf{C}	-2.080471	-2.125655	0.0	С	-2.038375	-2.171687	0.0		
Η	1.839143	-3.738177	0.0	Η	1.404676	-3.913309	0.0	Η	1.492081	-3.844241	0.0		
Η	-0.131052	-5.285553	0.0	Η	-0.701011	-5.269393	0.0	Η	-0.578511	-5.271391	0.0		
Η	-2.447507	-4.363008	0.0	Η	-2.921320	-4.132646	0.0	Η	-2.831936	-4.200304	0.0		
Η	-2.800869	-1.854278	0.0	Η	-3.037224	-1.603265	0.0	Η	-3.006152	-1.669566	0.0		
0	-1.820188	2.433275	0.0	Ο	0.649430	3.161746	0.0	0	-1.540404	2.698111	0.0		

TABLE S-4. Cartesian coordinates (in Å) of the optimal geometries on the lowest excited bright ($\pi\pi^*$) state for OHC-A, B and C in the normal form (Franck-Condon region). The z components are abbreviated as they are zero-valued.

OHC-A $S_{2,min}^{PT}(\pi\pi^*)$					OHC-B $S_{2,min}^{PT}(\pi\pi^*)$				OHC-C $S_{2,min}^{PT}(\pi\pi^*)$			
$\overline{\mathbf{C}}$	-2.267923	-0.158557	0.000005	C	-0.446657	2.212240	0.0	C	-0.266302	2.166208	0.0	
Ν	-3.302194	0.648207	0.000084	Ν	-1.693946	2.627801	0.0	Ν	0.648994	3.169390	0.0	
\mathbf{C}	-3.970008	-1.492703	-0.000017	С	-1.592675	4.003646	0.0	\mathbf{C}	-1.341103	4.085439	0.0	
\mathbf{C}	-4.393552	-0.194740	0.000056	С	-0.275762	4.362708	0.0	С	-0.019733	4.379155	0.0	
Η	-4.454166	-2.463601	-0.000042	Η	-2.471891	4.643736	0.0	Η	-2.244758	4.682949	0.0	
Η	-5.411346	0.188498	0.000100	Η	0.270794	5.299876	0.0	Η	0.494003	5.334555	0.0	
\mathbf{C}	-0.857872	0.150344	-0.000020	С	0.000000	0.840152	0.0	С	0.000000	0.794661	0.0	
\mathbf{C}	-0.282765	1.407765	-0.000010	\mathbf{C}	1.301885	0.371950	0.0	\mathbf{C}	1.375715	0.321340	0.0	
\mathbf{C}	1.140954	1.525719	-0.000009	С	1.541402	-1.036542	0.0	С	1.619045	-1.187786	0.0	
\mathbf{C}	1.965147	0.371227	-0.000018	С	0.459635	-1.953190	0.0	С	0.413115	-1.999288	0.0	
С	1.299953	-0.884276	-0.000022	\mathbf{C}	-0.847127	-1.392963	0.0	\mathbf{C}	-0.881817	-1.427945	0.0	
0	-0.063648	-0.973628	-0.000055	Ο	-1.052315	-0.043785	0.0	Ο	-1.072192	-0.030748	0.0	
0	1.664908	2.753930	0.000000	Ο	2.809645	-1.455041	0.0	Ο	2.777333	-1.619978	0.0	
0	-0.956705	2.551149	-0.000033	Ο	2.383711	1.142685	0.0	Ο	2.316997	1.135713	0.0	
Η	0.874691	3.344565	0.000059	Η	3.331866	-0.618281	0.0	Η	1.645280	2.908063	0.0	
С	3.382122	0.388205	0.000005	\mathbf{C}	0.593667	-3.364057	0.0	\mathbf{C}	0.486176	-3.418808	0.0	
С	4.094245	-0.811523	0.000026	\mathbf{C}	-0.542617	-4.172787	0.0	\mathbf{C}	-0.679653	-4.200070	0.0	
С	3.418733	-2.038537	0.000041	\mathbf{C}	-1.821580	-3.600265	0.0	\mathbf{C}	-1.936741	-3.605004	0.0	
С	2.014547	-2.082171	0.000014	\mathbf{C}	-1.981494	-2.205220	0.0	\mathbf{C}	-2.038472	-2.181809	0.0	
Η	3.892791	1.351109	0.000009	Η	1.595538	-3.793447	0.0	Η	1.478762	-3.868926	0.0	
Η	5.185812	-0.792491	0.000043	Η	-0.433681	-5.259054	0.0	Η	-0.593678	-5.289553	0.0	
Η	3.982038	-2.973664	0.000065	Η	-2.706915	-4.239030	0.0	Η	-2.844559	-4.209986	0.0	
Η	1.464991	-3.023811	0.000019	Η	-2.964778	-1.734279	0.0	Η	-3.004323	-1.675634	0.0	
0	-2.604673	-1.488023	-0.000056	0	0.472037	3.220121	0.0	Ο	-1.504021	2.712044	0.0	

TABLE S-5. Cartesian coordinates (in Å) of the optimal geometries on the lowest excited bright ($\pi\pi^*$) state for OHC-A, B and C in the proton-transferred (PT) form. The z components are abbreviated as they are zero-valued.

FIG. S-1. Orbitals of the CAS(12, 11) space of OHC-A, B and C used in the XMS-CASPT2 calculations

FIG. S-2. Plots of the donor-acceptor $(O_d-O_a \text{ or } O_d-N_a)$ distances and acceptor-H distance $(O_a-H \text{ or } N_a-H)$ as a function of donor-H distance (O_d-H) in the ground as well as excited-state *relaxed* scans for OHC-A, B and C. The corresponding potential profiles are shown in Figures 4 of the manuscript. The plots in the left column are for ground state optimized geometries (B3LYP/cc-pVDZ level), while those in the right column are for lowest bright state optimized geometries (TDA-B3LYP/cc-pVDZ level). It can be clearly seen that the donor-acceptor distances decrease in all cases in the barrier region of the proton transfer. The acceptor-H distances also undergo a non-linear change. Both are typical of transfers across an H-bond.

FIG. S-3. Distributions of the total energies of all propagated trajectories of OHC-A, B and C in the indicated states.

FIG. S-4. NBO (solid) and Mulliken (dashed) charges on the donor, acceptor and transferring H for (a, b) OHC-B and (c, d) OHC-C. The geometries used in each case are from relaxed r_{O_dH} scans on the (a, c) ground state and (b, d) the lowest $\pi\pi^*$ bright state; these are the same as the geometries of Figure 4 in the manuscript. Also, the state densities used in the analysis are those of the ground state in (a, c) and the lowest $\pi\pi^*$ bright state in (b, d). Only the magnitudes of the charges are plotted; of course, O and N have negative charges while that of H is positive.

FIG. S-5. Spin natural orbitals (SNOs) obtained for OHC-B and OHC-C at selected geometries along the relaxed r_{O_dH} scan on the lowest $\pi\pi^*$ bright state (excited state transfer path; same as that in Figure 4). Shown are the spin natural α LUMOs (π^*) at these geometries.

FIG. S-6. Plots of the energies of S_1 - S_3 for the four OHC-A trajectories initialized on S_1 where a potential energy change between successive points exceeding the default 0.7 eV per-step threshold was seen. The dashed vertical line indicates the time location of the potential energy excess change, which occur at (a) 1 fs, (b) 1.5 fs, (c) 22.5 fs and (d) 1 fs. The black horizontal line indicates the total energy of the trajectory. Except for (a), other total energy lines have vertical offsets of (b) -2 eV, (c) -1 eV and (d) -2 eV so that they appears within the plotted energy range.

FIG. S-7. Ratio of oscillators strengths $\log_{10}(f_2/f_1)$ of all the initial conditions of (a, c) OHC-A and (b, d) OHC-B placed on (a, b) S_1 and (c, d) S_2 . Values below zero indicate that S_1 is brighter than S_2 , while those above indicate the opposite. The dashed lines indicate f_2/f_1 being 1/2 (lower line) or 2 (upper line). Note that for the purpose of this plot, the initial conditions are sorted as per increasing values of f_2/f_1 .

FIG. S-8. Oscillator strengths of the active states as a function of time for all (a, c) PT and (b, d) non-PT trajectories of (a, b) OHC-A and (c, d) OHC-B initialized on S_1 . Each line corresponds to a single trajectory.

FIG. S-9. Additional trajectories showing proton transfer in (a, c) OHC-A and (b, d) OHC-B initiated on S_1 . (a, b): Key distances for a representative PT trajectory each for OHC-A and B. (c, d): S_1 - S_3 energies (eV) for the same trajectories. The line colours indicate the oscillator strength red (bright, $\mathcal{O}(0.1)$), yellow (intermediate, $\mathcal{O}(0.01)$ and gray (dark, $\mathcal{O}(0.001)$ or lower). The vertical dashed lines indicate the time points where a state hop occurs. Note that these trajectories are complementary to those in Figure 5 (a-d) of the manuscript, wherein the trajectories reached the bright S_2 state at the end of the simulation time. In the plots for the sample trajectories shown here, the molecule remains in S_1 throughout, both before and after PT. However, S_1 becomes the dark state sometime after PT.

FIG. S-10. Oscillator strengths of the active states as a function of time for all (a, c) PT and (b, d) non-PT trajectories of (a, b) OHC-A and (c, d) OHC-B initialized on S_2 . Each line corresponds to a single trajectory.

FIG. S-11. Additional trajectories showing proton transfer in (a, c) OHC-A and (b, d) OHC-B initiated on S_2 . (a, b): Key distances for a representative PT trajectory each for OHC-A and B. (c, d): S_1 - S_3 energies (eV) for the same trajectories. The line colours indicate the oscillator strength red (bright, $\mathcal{O}(0.1)$), yellow (intermediate, $\mathcal{O}(0.01)$ and gray (dark, $\mathcal{O}(0.001)$ or lower). The vertical dashed lines indicate the time points where a state hop occurs. Note that these trajectories are complementary to those in Figure 6 (a-d) of the manuscript, wherein the trajectories reached the bright S_2 state at the end of the simulation time. In the plots shown here, the trajectories instead are in the dark S_1 state within some time after PT and remain in this state until the end of the simulation.

FIG. S-12. Ratio of oscillators strengths $\log_{10}(f_2/f_1)$ of all the initial conditions of OHC-C placed on (a) S_1 and (b) S_2 . Values below zero indicate that S_1 is brighter than S_2 , while those above indicate the opposite. The dashed lines indicate f_2/f_1 being 1/2 (lower line) or 2 (upper line). Note that for the purpose of this plot, the initial conditions are sorted as per increasing values of f_2/f_1 .

FIG. S-13. Oscillator strengths of the active states as a function of time for all (a) PT and (b) non-PT trajectories of OHC-C initialized on S_2 . Each line corresponds to a single trajectory.

FIG. S-14. Plots of key distances for two trajectories initiated on S_2 in OHC-C that underwent proton transfer, resided in the PT region for a long duration (~80 fs and ~300 fs), but returned to the normal form during the simulation time.

FIG. S-15. Dynamics of OHC-C initialized on S_1 . (a) Key distances for the sole PT trajectory. (b) S_1 - S_3 energies (eV) for this trajectory. The line colours indicates the oscillator strength red (bright, $\mathcal{O}(0.1)$), yellow (intermediate, $\mathcal{O}(0.01)$ and gray (dark, $\mathcal{O}(0.001)$ or lower). The open square shows the active state. The vertical dashed lines indicate the time points where a state hop occurs. The left panel shows the PT time window of the PT event (57.5 fs) which occurs on S_1 . At later times, hops to other states are seen before finally reaching a dark state. (c) Population of states from the sample of the non-PT trajectories.