Efficient Prediction of the Local Electronic Structure of Ionic Liquids from Low-Cost Calculations

Frances K. Towers Tompkins,¹ Lewis G. Parker,¹ Richard M. Fogarty,² Jake M. Seymour,¹ Rebecca Rowe,² Robert G. Palgrave,³ Richard P. Matthews,⁴ Roger A Bennett,¹ Patricia A. Hunt,⁵ Kevin R. J. Lovelock¹

 ¹ Department of Chemistry, University of Reading, Reading, UK
 ² Department of Chemistry, Imperial College London, UK
 ³ Department of Chemistry, University College London, UK
 ⁴ School of Health, Sport and Bioscience, University of East London, UK
 ⁵ School of Chemical and Physical Sciences, Victoria University of Wellington, NZ Contact E-mail: <u>k.r.j.lovelock@reading.ac.uk</u>

1.	Ionic liquids studied	S2-S8
2.	Lone-ion-SMD DFT calculations: methods and ions studied	S9-S13
3.	Data analysis. Peak fitting core level XP spectra	S14-S17
4.	Data analysis. Charge referencing, area normalisation and subtraction	S18-S19
5.	Results. XPS: demonstrating purity using XPS	S20-S26
6.	Results. Experimental and calculated E_{B} (core) data	S27-S37
7.	Results. Experimental versus DFT calculated XP spectra for ions	S38-S47
8.	Results. Experimental versus DFT calculated XP spectra for a chlorobismuthate IL	S48
9.	Results. Effect of basis set choice	S49
10.	References	S50

1. Ionic liquids studied

The five ionic liquids (ILs) that are newly studied here ($[C_4C_1Im][CH_3CO_2]$, $[C_2C_1Im][NTf_2]$, $[C_4C_1Im][NPf_2]$, $[C_4Py][NTf_2]$, $[C_2C_1Im][FAP]$) were purchased from Iolitec or Sigma (Table S1) and used as received. Sample purity for the five new ILs was confirmed by XP spectra (ESI Section 6) and in previous publications for the 39 other ILs.¹⁻⁵

IL no.	Abbreviation	Structure	Name	Ref. or bought for this work
1	[C ₈ C ₁ Im]Cl		1–n–octyl–3–methylimidazolium chloride	2
2	[C ₄ C ₁ Im][SCN]		1-n-butyl-3-methylimidazolium thiocyanate	1
3	[C ₈ C ₁ Im][SCN]		1–n–octyl–3–methylimidazolium thiocyanate	1
4	$[C_4C_1Im][N(CN)_2]$		1–n–butyl–3–methylimidazolium dicyanamide	1
5	[C ₈ C₁Im][C(CN)₃]	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ $	1– <i>n</i> –octyl–3–methylimidazolium tricyanomethanide	1
6	[C ₆ C ₁ Im][B(CN) ₄]		1– <i>n</i> –hexyl–3–methylimidazolium tetracyanoborate	1
7	[C ₈ C ₁ Im][BF ₄]		1–n–octyl–3–methylimidazolium tetrafluoroborate	1

Table S1. ILs investigated in this work.

<i>n</i> -tetradecyl(tri- <i>n</i> -hexyl)phosphonium nitrate	1
1–n–butyl–3–methylimidazolium acetate	Iolitec
1– <i>n</i> –octyl–3–methylimidazolium trifluoroacetate	3
1– <i>n</i> –butyl–3–methylimidazolium hydrogensulfate	1
1– <i>n</i> –octyl–3–methylimidazolium hydrogensulfate	1
n–butyl(dimethyl)ammonium hydrogensulfate	1
<i>n</i> –octyl(dimethyl)ammonium hydrogensulfate	1
1– <i>n</i> –butyl–3–methylimidazolium methylsulfate	1
1–n–butyl–3–methylimidazolium octylsulfate	1

Table S2.	Aqueous	solution	investigated	in this	work

Abbreviation	Name	Ref.			
K[SCN] in water	x = 0.01 (0.5 M) potassium thiocyanate in water	6			

2. Lone-ion-SMD DFT calculations: methods and ions studied

Cation no	Abbreviation	Structure	Name
cation no.	Abbreviation		Nume
1	$[C_2C_1Im]^+$		1–ethyl–3–methylimidazolium
2	[C ₄ C ₁ Im]+		1–n–butyl–3–methylimidazolium
3	[C ₆ C₁Im]⁺		1– <i>n</i> –hexyl–3–methylimidazolium
4	[C ₈ C₁Im]⁺		1– <i>n</i> –octyl–3–methylimidazolium
5	[C₄C₀Im]⁺		1– <i>n</i> –butyl–imidazolium
6	[C ₄ Py] ⁺		1– <i>n</i> –butylpyridinium
7	[N _{4,1,1,0}] ⁺	H ₉ C ₄ N///CH ₃ CH ₃	<i>n–</i> butyl(dimethyl)ammonium
8	[N _{2,2,1,0}]+	H H ₅ C ₂ NCH ₃ C ₂ H ₅	diethyl(methyl)ammonium
9	[N _{2OH,2OH,2OH,1}]+ or [N _{(2OH)3,1}]+]		triethanol(methyl)ammonium
10	[N _{8,8,8,1}]+	C ₈ H ₁₇ +	tri- <i>n</i> -octyl(methyl)ammonium
11	[C ₄ C ₁ Pyrr]+		1- <i>n</i> -butyl-1-methylpyrrolidinium
12	[N _{4,1,1,1}]+	CH ₃ +	<i>n</i> -butyl(trimethyl)ammonium

Table S3. Cations investigated using lone-ion-SMD DFT calculations in this work

13	[\$ _{2,2,2}]+	$H_5C_2 \xrightarrow{S_{11}} C_2H_5$	triethylsulfonium
14	[P _{6,6,6,14}] ⁺	H ₁₃ C ₆ P C ₆ H ₁₃ C ₆ H ₁₃	<i>n</i> –hexadecyl(tri– <i>n</i> –hexyl)phosphoniun
Fable S4. Ani	ons investigated u	sing lone-ion-SMD DFT calculation	ns in this work
Anion no.	Abbreviation	Structure	Name
1	Cl-	ci I ⁻	chloride
2	[SCN] ⁻	s=c=N	thiocyanate
3	[N(CN) ₂] ⁻		dicyanamide
4	[C(CN)₃] ⁻		tricyanomethanide
5	[B(CN) ₄] ⁻		tetracyanoborate
6	[BF4]-		tetrafluoroborate
7	[NO ₃] ⁻		nitrate
8	[CH ₃ CO ₂] [−]	H ₃ C O	acetate
9	[CF ₃ CO ₂] ⁻		trifluoroacetate
10	[HSO ₄] ⁻		hydrogensulfate
11	[MeSO ₄] ⁻		methylsulfate

12	[OcSO ₄] ⁻	о о о с _в н ₁₇	n–octylsulfate
13	[MeSO₃] ⁻	о о с н ₃	methanesulfonate
14	[Me₂PO₄] ⁻		dimethylphosphate
15	[TfO] [.]		trifluoromethylsulfonate
16	[NTf ₂] ⁻		bis[(trifluoromethane)sulfonyl]imide
17	[FSI] ⁻		bis(fluorosulfonyl)imide
18	[NPf ₂] ⁻	F_5C_2 S N C_2F_5	bis[(pentafluoroethyl)sulfonyl]imide
19	[PF ₆] ⁻		hexafluorophosphate
20	[FAP] ⁻	$ \begin{array}{c} C_{2}F_{5} \\ F_{1}M_{1}, \\ P \\ F \\ F$	<i>facial</i> tris(pentafluoroethyl)trifluorophosphate
21	[ZnCl ₄] ²⁻		tetrachlorozincatesss
22	[InCl₄]⁻		tetrachloroindate
23	[SnCl₃]⁻		trichlorostannate
24	[FeCl ₄] ²⁻		tetrachloroferrate

26 [NiCl ₄] ²⁻
27 $[Bi_2Cl_8]^{2-}$ $Cl_{M_n} Cl_{M_n} Cl_{M_n} $
28 [Bi ₃ Cl ₁₂] ³⁻ dodecachlorotriibismuthate
29 [Bi ₂ Cl ₇] ⁻ heptachlorodibismuthate
30 [BiCl ₄] ⁻ tetrachlorobismuthate

Table S5. Parameters used in the SMD model and the references used to obtain the parameters.					
Solvent	Relative	Refractive	Surface tension,	Abraham	Abraham
Solvent	permittivity, $\varepsilon_{ m r}$	index <i>, n</i>	γ / cal mol ⁻¹ Å ²)	acidity, α	basicity, β
$[C_4C_1Im][PF_6]$	11.40	1.4090	70.24	0.266	0.216

The spin-orbit coupling ΔE_B values for S 2p, Cl 2p and P 2p come from fitting experimental core-level XP spectra for many ILs and represent an average value of the ΔE_B values needed to obtain satisfactory fits when one electronic environment is present for the relevant element.

Table 30.	values used to p		eu AF spectra			
Orbital	<i>F</i> (FWHM) / eV	<i>m</i> (Gaussian- Lorentzian (GL) Product function)	Spin-orbit coupling ΔE_{B} / eV	$E_{\rm B}$ (calc.) with spin-orbit coupling correction	Spin-orbit coupling peak area ratio	Peak area ratio
F 1s	1.60	GL(30)	N/A	N/A	N/A	N/A
O 1s	1.35	GL(30)	N/A	N/A	N/A	N/A
N 1s	1.05	GL(30)	N/A	N/A	N/A	N/A
C 1s	1.10	GL(30)	N/A	N/A	N/A	N/A
S 2p	1.05	GL(30)	ΔE_{B} (S 2p _{3/2} - S 2p _{3/2}) = 1.20 eV	$E_{\rm B}({\rm S}\ 2p_{3/2},{\rm calc.}) = E_{\rm B}({\rm S}\ 2p,{\rm calc.}) - (1.20 \times 2/3)$	1:2 for 2p _{1/2} :2p _{3/2}	Area(S $2p_{3/2}$, calc.) = Area(S $2p$, calc.) × 2/3
				$E_{B}(S 2p_{1/2}, calc.) = E_{B}(S 2p, calc.) + (1.20 \times 1/3)$ $E_{B}(Cl 2p_{3/2}, calc.) = E_{B}(Cl 2p, calc.) - (1.60 \times 2/3)$		Area(S $2p_{1/2}$, calc.) = Area(S $2p$, calc.) × $1/3$ Area(Cl $2p_{3/2}$, calc.) = Area(Cl $2p$, calc.) × $2/3$
Cl 2p	0.90	GL(30)	$\Delta E_{\rm B}$ (Cl 2p _{3/2} - Cl 2p _{3/2}) = 1.60 eV	$E_{\rm B}({\rm Cl} 2p_{1/2}.{\rm calc.}) = E_{\rm B}({\rm Cl} 2p_{\rm .calc.}) + (1.60 \times 1/3)$	1:2 for 2p _{1/2} :2p _{3/2}	Area(Cl 2p1/2.calc.) = Area(Cl 2p.calc.) × 1/3
P 2p	1.05	GL(30)	Δ <i>E</i> _B (P 2p _{3/2} - P 2p _{3/2}) = 0.90 eV	$E_{\rm B}({\rm P}\ 2p_{3/2},{\rm calc.}) = E_{\rm B}({\rm P}\ 2p,{\rm calc.}) - (0.90\times 2/3)$	1:2 for 2p _{1/2} :2p _{3/2}	Area(P $2p_{3/2}$, calc.) = Area(P $2p$, calc.) × 2/3
		. ,		$E_{\rm B}({\rm P}\ 2p_{1/2},{\rm calc.}) = E_{\rm B}({\rm P}\ 2p,{\rm calc.}) + (0.90 \times 1/3)$	1 1/2 1 0/2	Area(P $2p_{1/2}$, calc.) = Area(P $2p$, calc.) × $1/3$

Table S6. Values used to produce calculated XP spectra

3. Data analysis. Peak fitting core level XP spectra

Peak fitting core level XP spectra is important for charge referencing to obtain E_B (core) values (ESI Section 5.1) and demonstrating purity (ESI Section 6). All core-level XP spectra were fitted using CASAXPSTM software. Spectra were fitted with a GL30 lineshape (70% Gaussian, 30% Lorentzian) and a Shirley background. How the core level XP spectra were fitted is given in Table S7, along with any constraints used.

IL no.	Abbreviation	Core level	Fitting constraints used
		N 1s	none
1	[C ₈ C ₁ Im]Cl	C 1s	area = 1:4:7 for C ² :C _{hetero} :C _{alkyl}
		Cl 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
		N 1s	none
2	[C ₄ C ₁ Im][SCN]	C 1s	area = 1:5:3 for C ² :C _{hetero} :C _{alkyl}
		S 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
		N 1s	none
3	[C ₈ C ₁ Im][SCN]	C 1s	area = 1:5:7 for C ² :C _{hetero} :C _{alkyl}
		S 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
4	$[C \cap m][N(CN)]$	N 1s	none
4		C 1s	area = 1:6:3 for C ² :C _{hetero} :C _{alkyl}
5	[C,C,m][C(CN),1]	N 1s	none
5		C 1s	area = 1:8:7 for C ² :C _{hetero} :C _{alkyl}
		N 1s	none
6	[C ₆ C ₁ Im][B(CN) ₄]	C 1s	area = 1:8:5 for C ² :C _{hetero} :C _{alkyl}
		B 1s	none
		F 1s	none
7	[C ₂ C ₄ Im][BE ₄]	N 1s	none
,		C 1s	area = 1:8:5 for $C^2:C_{hetero}:C_{alkyl}$
		B 1s	none
		O 1s	none
8	[P _{6,6,6,14}][NO ₃] [C ₄ C ₁ Im][CH ₃ CO ₂]	N 1s	none
		C 1s	area = 4:28 for C_{hetero} : C_{alkyl}
		P 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
		O 1s	none
9		N 1s	none
		C 1s	area = 2:4:4 for C ² :C _{hetero} :C _{alkyl}
		F 1s	none
10	$[C_8C_1Im][CF_3CO_2]$	0 1s	none
		N 1s	none
			area = 1:4:7 for C^2 : C_{hetero} : C_{alkyl}
		U IS	area = 1:3 for O _{bridge} :O _{terminal}
11	[C ₄ C ₁ Im][HSO ₄]	N IS	none $1.4.2$ for C^2 .
			$area = 1.4.3 \text{ for } C^{-1}C_{\text{hetero}}C_{\text{alkyl}}$
		5 2p	$area = 1.2$ for $2\mu_{1/2}.2\mu_{3/2}$
		U IS	area = 1.3 for O _{bridge} .O _{terminal}
12	[C ₈ C₁Im][HSO₄]		$\frac{1}{1000} = \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$
		C 15 5 2n	$dred = 1.4.7 \text{ for } C^{-1}C_{\text{hetero}}C_{\text{alkyl}}$
		3 2µ 0 1c	$a_1e_4 = 1.2$ for $2p_{1/2}.2p_{3/2}$
		0 13 N 1c	area – 1.5 for Obridge.Oterminal
13	[N _{4,1,1,0}][HSO ₄]		$area = 2/2 \text{ for } C_{1,2} + C_{2,3}$
		C 13 S 2n	area = 1.2 for $2n_{4/2}$
		0 1s	area = 1.3 for $\Omega_{1/2}$. $2\beta_{1/2}$.
		N 1s	none
14	[N _{8,1,1,0}][HSO ₄]	C 1s	area = 3.7 for Chaters'Called
		S 2n	area = 1.2 for $2n_{1/2}$: $2n_{2/2}$
		0.15	area = 1.3 for $O_{\text{bridge}}O_{\text{torminal}}$
		N 1s	none
15	[C ₄ C ₁ Im][MeSO ₄]	C 1s	area = 1:5:3 for C ² :Chatero:Calkyl
		S 2p	area = 1:2 for $2p_{1/2}:2p_{3/2}$

 Table S7. Fitting constraints used for core level X-ray photoelectron spectroscopy (XPS) for each ionic liquid

		O 1s	area = 1:3 for O_{bridge} : $O_{terminal}$
16		N 1s	none
10	$[C_4C_1]$	C 1s	area = 1:5:10 for C ² :C _{hetero} :C _{alkyl}
		S 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
		O 1s	none
47		N 1s	none
17	$[C_2C_1]$ m][IVIESO_3]	C 1s	area = 1:5:1 for $C^2:C_{hetero}:C_{alkyl}$
		S 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
		O 1s	none
		N 1s	none
18 [([C ₄ C ₁ Im][Me ₂ PO ₄]	C 1s	area = 1:6:3 for C ² :C _{betero} :C _{alkyl}
		P 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
		F 1s	none
		0.1s	none
19	[C ₄ C ₁ Im][TfO]	N 1s	none
10		C 1s	area = $1.4.3$ for C^2 ·Chatere Colled
		S 2n	area = 1.2 for $2n_{1/2}$: $2n_{2/2}$
		5 2 p E 1 c	none
		0.16	none
20	[C.C.Im][TfO]	0 13 N 1c	none
20		C 1c	$2ro_2 = 1.4.7$ for $C^2 \cdot C_{12} = C_{12} \cdot C_{13}$
		C 13 C 2n	$area = 1.4.7$ for $2n_{c} + 2n_{c} + 2n_{c}$
		5 Zp E 1c	
		P 13	none
24		015	
21	[N _{2,2,1,0}][110]	N 15	
			area = 3:2 for $C_{hetero}:C_{alkyl}$
	[N]][T(O]	5 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
	[N20H,20H,20H,1][ITU]	F 1S	none
22		0 1s	area = 1:1 for O_{cation} : O_{anion}
22	or	N 1S	none
	11-10-1	C 1s	area = 3:2 for Chetero:Calkyl
	[N _{(2OH)3,1}][IfO]	S 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
		F 1s	none
	f = =	O 1s	none
23	$[C_2C_1Im][NTt_2]$	N 1s	none
		C 1s	area = 1:4:1 for $C^2:C_{hetero}:C_{alkyl}$
		S 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
		F 1s	none
		O 1s	none
24	$[C_4C_1Im][NTf_2]$	N 1s	none
		C 1s	area = 1:4:3 for $C^2:C_{hetero}:C_{alkyl}$
		S 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
		F 1s	none
		O 1s	none
25	$[C_6C_1Im][NTf_2]$	N 1s	none
		C 1s	area = 1:4:5 for $C^2:C_{hetero}:C_{alkyl}$
		S 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
		F 1s	none
		O 1s	none
26	$[C_8C_1Im][NTf_2]$	N 1s	none
		C 1s	area = 1:4:7 for C ² :C _{hetero} :C _{alkyl}
		S 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
		F 1s	none
		O 1s	none
27	$[C_4C_0Im][NTf_2]$	N 1s	none
	-	C 1s	area = 1:3:3 for C ² :C _{hetero} :C _{alkyl}
		S 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
		F 1s	none
		O 1s	none
28	[N _{4.1.1.1}][NTf ₂]	N 1s	none
-		C 1s	area = 4:3 for Chetero:Calkyl
		S 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
29	[N _{8.8.8.1}][NTf ₂]	F 1s	none
-	5,5,5,2,1	-	

		O 1s	none
		N 1s	none
		C 1s	area = 4:21 for C_{hetero} : C_{alkyl}
		S 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
		F 1s	none
		O 1s	none
30	[S _{2,2,2}][NTf ₂]	N 1s	none
		C 1s	area = 3:3 for C _{hetero} :C _{alkyl}
		S 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
		F 1s	none
		O 1s	none
1		N 1s	none
-	[0,0,0,14][0 2]	C 1s	area = 4:21 for C_{hetero} : C_{alkyl}
		S 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
		P 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
		F 1s	none
		O 1s	none
2	[C ₈ C ₁ Pyrr][NTf ₂]	N 1s	none
		C 1s	area = 4: for C_{hetero} : C_{alkyl}
		S 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
		F 1s	none
_	f =	O 1s	none
3	[C ₈ C ₁ Im][FSI]	N 1s	none
		C 1s	area = 1:4:7 for $C^2:C_{hetero}:C_{alkyl}$
		S 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
		F 1s	none
		0 1s	none
4	$[C_4C_1Im][NPt_2]$	N 1s	none
			area = 1:4:3 for C^2 : C_{hetero} : C_{alkyl}
		S 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
		F 1S	none
-			none
)			
			dred = 3.3.3 TOT Chetero Cinter Calkyl
		5 2µ 5 1c	$a_1e_4 - 1.2 0 2p_{1/2} 2p_{3/2} $
		F 15	none
5	$[C_4C_1Im][PF_6]$	N 15	$2ro_2 = 1:4:2$ for $C^2:C_1 = 1:C_2$
		C 13 P 2n	area = 1.4.5 for $2n_{c}$ (2)
		F 2p F 1s	none
		N 1s	none
7	[C ₂ C ₁ Im][FAP]	C 1s	area = 1:4:1 for C^2 ·Chatter Collect
		P 2n	area = 1.2 for $2n_{1/2}$, $2n_{2/2}$
		7n 2n	none
	_	N 1s	none
8	$[C_8C_1Im]_2[ZnCl_4]$	C 1s	area = 1:4:7 for C ² :Chatero:Callyd
		Cl 2n	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
		In 4d	none
		N 15	none
9	[C ₈ C₁Im][InCl₄]	C 1s	area = 1:4:7 for C ² :Chetero:Callul
		Cl 2p	area = 1:2 for $2n_{1/2}$: $2n_{3/2}$
		Sn 3d	none
		N 1s	none
)	[C ₈ C ₁ Im][SnCl ₃]	C 1s	area = $1.4.7$ for C^2 . Chotors Called
		Cl 2n	area = 1.2 for $2n_{1/2}$: $2n_{2/2}$
		Fe 2n	none
		N 1s	none
	$[C_8C_1Im]_2[FeCl_4]$	C 1s	area = 1:4:7 for C ² :C _{betero} :C _{allul}
		Cl 2p	area = 1:2 for $2p_{1/2}$:2p _{3/2}
		Co 2n	none
		N 1s	none
		14 7.3	
2	$[C_8C_1Im]_2[CoCl_4]$	C 1s	area = 1:4:7 for C ² :Chetero:Calkul

43 [C	Ni 2p	none
	N 1s	none
	C 1s	area = 1:4:7 for C ² :C _{hetero} :C _{alkyl}
	Cl 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$
	Bi 4f	none
44	N 1s	none
44 [C 1s	area = 1:4:7 for C ² :C _{hetero} :C _{alkyl}
	Cl 2p	area = 1:2 for $2p_{1/2}$: $2p_{3/2}$

4. Data analysis. Charge referencing, area normalisation and subtraction

4.1. Charge referencing

		Charge	Core orbital	E _B for core	
IL		referencing	used for	orbital used for	Rationale for choosing core
no.	Appreviation	method used	charge	charge	orbital used for charge
		from reference ²	referencing	referencing / eV	referencing
1	[C ₈ C ₁ Im]Cl	i	C _{alkyl} 1s	285.00	Long alkyl chain
2	[C ₄ C ₁ Im][SCN]	ii	N _{cation} 1s	401.9	N _{cation} 1s for [C ₈ C ₁ Im][SCN]
3	[C ₈ C ₁ Im][SCN]	i	C _{alkyl} 1s	285.00	Long alkyl chain
4	$[C_4C_1Im][N(CN)_2]$	ii	N _{cation} 1s	402.0	N_{cation} 1s for [C ₈ C ₁ Im][N(CN) ₂] ⁷
5	[C ₈ C ₁ Im][C(CN) ₃]	i	Calkyl 1s	285.00	Long alkyl chain
6	$[C_6C_1Im][B(CN)_4]$	i	C _{alkyl} 1s	285.0	Long alkyl chain
7	$[C_8C_1Im][BF_4]$	i	Calkyl 1s	285.00	Long alkyl chain
8	[P _{6,6,6,14}][NO ₃]	i	Calkyl 1s	285.00	Long alkyl chain
9	$[C_4C_1Im][CH_3CO_2]$	ii	N _{cation} 1s	401.70	N _{cation} 1s for [C ₈ C ₁ Im][CH ₃ CO ₂] ⁸ s
10	$[C_8C_1Im][CF_3CO_2]$	i	C _{alkyl} 1s	285.00	Long alkyl chain
11	[C ₄ C ₁ Im][HSO ₄]	ii	N _{cation} 1s	401.8	N _{cation} 1s for [C ₈ C ₁ Im][HSO ₄]
12	[C ₈ C ₁ Im][HSO ₄]	i	Calkyl 1s	285.00	Long alkyl chain
13	[N _{4,1,1,0}][HSO ₄]	ii	S _{anion} 2p _{3/2}	168.7	S _{anion} 2p _{3/2} for [N _{8,1,1,0}][HSO ₄]
14	[N _{8,1,1,0}][HSO ₄]	i	C _{alkyl} 1s	285.0	Long alkyl chain
15	[C ₄ C ₁ Im][MeSO ₄]	iii	N _{cation} 1s	401.7	N _{cation} 1s for [C ₄ C ₁ Im][OcSO ₄]
16	$[C_4C_1Im][OcSO_4]$	i	C _{alkvl} 1s	285.00	Long alkyl chain
17	[C ₂ C ₁ Im][MeSO ₃]	vi	N _{cation} 1s	401.9	Average N_{cation} 1s for $[C_8C_1Im][A]^7$
18	$[C_4C_1Im][Me_2PO_4]$	vi	N _{cation} 1s	401.9	Average N _{cation} 1s for [C ₈ C ₁ Im][A] ⁷
19	[C ₄ C ₁ Im][TfO]	ii	N _{cation} 1s	402.0	N _{cation} 1s for [C ₈ C ₁ Im][TfO]
20	$[C_8C_1Im][TfO]$	i	Calkyl 1s	285.00	Long alkyl chain
21	[N _{2,2,1,0}][TfO]	v	Fanion 1s	688.41	F _{anion} 1s for [C ₈ C ₁ Im][TfO]
22	[N _{(20H)3.1}][TfO]	v	F _{anion} 1s	688.41	F _{anion} 1s for [C ₈ C ₁ Im][TfO]
23	$[C_2C_1Im][NTf_2]$	ii	N _{cation} 1s	402.10	N _{cation} 1s for [C ₈ C ₁ Im][NTf ₂]
24	$[C_4C_1Im][NTf_2]$	ii	N _{cation} 1s	402.10	N _{cation} 1s for [C ₈ C ₁ Im][NTf ₂]
25	$[C_6C_1Im][NTf_2]$	ii	N _{cation} 1s	402.10	N _{cation} 1s for [C ₈ C ₁ Im][NTf ₂]
26	$[C_8C_1Im][NTf_2]$	i	C _{alkvl} 1s	285.00	Long alkyl chain
27	$[C_4C_0Im][NTf_2]$	ii	Calkyl 1s	285.22	C_{alkyl} 1s for [C ₄ C ₁ Im][NTf ₂]
28	[N _{4,1,1,1}][NTf ₂]	ii	N _{anion} 1s	399.46	N_{anion} 1s for $[C_nC_1Im][NTf_2]$
29	[N _{8.8.8.1}][NTf ₂]	ii	N _{anion} 1s	399.46	N_{anion} 1s for $[C_n C_1 Im][NTf_2]$
30	[S _{2,2,2}][NTf ₂]	ii	N _{anion} 1s	399.46	N_{anion} 1s for $[C_nC_1Im][NTf_2]$
31	[P _{6.6.6.14}][NTf ₂]	i	C _{alkvl} 1s	285.00	Long alkyl chain
32	$[C_8C_1Pyrr][NTf_2]$	ii	N _{anion} 1s	399.46	N_{anion} 1s for $[C_nC_1Im][NTf_2]$
33	[C ₈ C ₁ Im][FSI]	i	Calkyl 1s	285.00	Long alkyl chain
34	$[C_4C_1Im][NPf_2]$	ii	C _{CF2} 1s	291.07	C _{CF2} 1s for [C ₈ C ₁ Im][NPf ₂] ⁹
35	[C ₄ Py][NTf ₂]	ii	N _{anion} 1s	399.46	N_{anion} 1s for $[C_nC_1Im][NTf_2]$
36	$[C_4C_1Im][PF_6]$	ii	N _{cation} 1s	402.1	N_{cation} 1s for [C ₈ C ₁ Im][PF ₆] ⁷
37	[C ₂ C ₁ Im][FAP]	ii	C _{CF3} 1s	293.14	C _{CF3} 1s for [C ₈ C ₁ Im][FAP] ⁹
38	$[C_8C_1Im]_2[ZnCl_4]$	i	C _{alkyl} 1s	285.00	Long alkyl chain
39	[C ₈ C ₁ Im][InCl ₄]	i	Calkyl 1s	285.00	Long alkyl chain
40	[C ₈ C ₁ Im][SnCl ₃]	i	Calkyl 1s	285.00	Long alkyl chain
41	$[C_8C_1Im]_2[FeCl_4]$	i	C _{alkyl} 1s	285.00	Long alkyl chain
42	$[C_8C_1Im]_2[CoCl_4]$	i	C _{alkyl} 1s	285.00	Long alkyl chain
43	$[C_8C_1Im]_2[NiCl_4]$	i	Calkyl 1s	285.00	Long alkyl chain
44	$[C_8C_1Im]_2[Bi_2Cl_8]$	i	C _{alkyl} 1s	285.00	Long alkyl chain
45	[SCN] in water	N/A	N _{anion} 1s	397.79	N_{anion} 1s for $[C_nC_1Im][SCN]^6$

Table S8. Experimental X-ray photoelectron spectroscopy (XPS) details on the charge correction applied for each sample

4.2. Area normalisation

Quantitative area normalisation is achieved using the same method as given in reference ¹ for valence XPS.

4.3. Subtraction

For the subtraction method, both area normalisation and charge referencing must be used.

5. Results. XPS: demonstrating purity using XPS

The IL XPS measurements were made under ultrahigh vacuum (UHV) conditions. These UHV conditions mean that residual molecular solvents will have vaporized prior to XPS measurements, giving ultrapure samples from a molecular solvent contamination perspective. Furthermore, the element-specific nature of XPS means that a number of ionic impurities, *e.g.* Na⁺, can be observed if present (see ESI Section 6). Therefore, we can have very high confidence in the purity of our ILs for the XPS measurements.

Relative sensitivity factors from ref ¹⁰ were used to ensure the experimental stoichiometries matched the nominal stoichiometries.

Figure S1. (a) Survey, (b-f) core XP spectra for $[C_4C_1Im][CH_3CO_2]$ recorded on laboratory–based XPS apparatus at hv = 1486.6 eV. All XP spectra were charge referenced using the method outlined in ESI Section 5.1.

Figure S2. (a) Survey, (b-f) core XP spectra for $[C_2C_1Im][NTf_2]$ recorded on laboratory–based XPS apparatus at $h\nu$ = 1486.6 eV. All XP spectra were charge referenced using the method outlined in ESI Section 5.1.

Figure S3. (a) Survey, (b-f) core XP spectra for $[C_4C_1Im][NPf_2]$ recorded on laboratory–based XPS apparatus at $h\nu$ = 1486.6 eV. All XP spectra were charge referenced using the method outlined in ESI Section 5.1.

Figure S4. (a) Survey, (b-f) core XP spectra for $[C_4Py][NTf_2]$ recorded on laboratory–based XPS apparatus at hv = 1486.6 eV. All XP spectra were charge referenced using the method outlined in ESI Section 5.1.

Figure S5. (a) Survey, (b-f) core XP spectra for $[C_2C_1Im][FAP]$ recorded on laboratory–based XPS apparatus at $h\nu$ = 1486.6 eV. All XP spectra were charge referenced using the method outlined in ESI Section 5.1.

The measured experimental and nominal stoichiometries (Table S9) match well for all four ILs newly investigated here using lab XPS. Differences, especially the larger carbon values relative to other elements, are likely due to differences in relative sensitivity factors (RSF) values, as these RSF values were not tuned specially to the Reading XPS apparatus (in references ^{10, 11} RSF values were tuned specially to the XPS apparatus used in those studies). All these matches, along with the high quality XP spectra given in ESI Figure S1 to ESI Figure S5, demonstrates the high purity of the IL samples newly presented here.

Table S9. Measured experimental and nominal (in brackets) stoichiometries for the ionic liquids studied in this work, recorded at hv = 1486.6 eV.

		F 1s	O 1s	N 1s	C 1s	S 2p _{3/2}	P 2p _{3/2}
Abbreviation	RSF ^a	1.000	0.580	0.350	0.205	0.267	0.200
$[C_4C_1Im][CH_3CO_2]$	Measured (nominal)		1.9 (4)	2.0 (2)	10.2 (10)		
$[C_2C_1Im][NTf_2]$	Measured (nominal)	5.5 (6)	3.9 (4)	3.0 (3)	8.3 (8)	2.2 (2)	
$[C_4C_1Im][NPf_2]$	Measured (nominal)	9.3 (10)	3.9 (4)	3.0 (3)	12.5 (12)	2.3 (2)	
[C ₄ Py][NTf ₂]	Measured (nominal)	5.5 (6)	4.0 (4)	2.0 (2)	11.4 (11)	2.2 (2)	
[C ₂ C ₁ Im][FAP]	Measured (nominal)	17.4 (18)		2.0 (2)	12.5 (12)		1.1 (1)
	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	AbbreviationRSF °[C4C1Im][CH3CO2]Measured (nominal)[C2C1Im][NTf2]Measured (nominal)[C4C1Im][NPf2]Measured (nominal)[C4Py][NTf2]Measured (nominal)[C2C1Im][FAP]Measured (nominal)	$\begin{tabular}{ c c c c c } \hline F 1s \\ \hline Abbreviation & RSF \end{tabular} & 1.000 \\ \hline [C_4C_1Im][CH_3CO_2] & Measured (nominal) \\ \hline [C_2C_1Im][NTf_2] & Measured (nominal) & 5.5 (6) \\ \hline [C_4C_1Im][NPf_2] & Measured (nominal) & 9.3 (10) \\ \hline [C_4Py][NTf_2] & Measured (nominal) & 5.5 (6) \\ \hline [C_2C_1Im][FAP] & Measured (nominal) & 17.4 (18) \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c } \hline F 1s & O 1s \\ \hline Abbreviation & RSF \end{tabular}{0.580} \\ \hline [C_4C_1Im][CH_3CO_2] & Measured (nominal) \\ \hline [C_2C_1Im][NTf_2] & Measured (nominal) \\ \hline [C_4C_1Im][NPf_2] & Measured (nominal) \\ \hline [C_4Py][NTf_2] & Measured (nominal) \\ \hline [C_2C_1Im][FAP] & Measured (nominal) \\ \hline T.4 (18) \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c } \hline F 1s & O 1s & N 1s \\ \hline Abbreviation & RSF o & 1.000 & 0.580 & 0.350 \\ \hline [C_4C_1Im][CH_3CO_2] & Measured (nominal) & 1.9 (4) & 2.0 (2) \\ \hline [C_2C_1Im][NTf_2] & Measured (nominal) & 5.5 (6) & 3.9 (4) & 3.0 (3) \\ \hline [C_4C_1Im][NPf_2] & Measured (nominal) & 9.3 (10) & 3.9 (4) & 3.0 (3) \\ \hline [C_4Py][NTf_2] & Measured (nominal) & 5.5 (6) & 4.0 (4) & 2.0 (2) \\ \hline [C_2C_1Im][FAP] & Measured (nominal) & 17.4 (18) & 2.0 (2) \\ \hline \end{tabular}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

^o RSF = relative sensitivity factors, taken from reference ¹¹ for C 1s, N 1s, O 1s, F 1s, S 2p_{3/2}, P 2p_{3/2}

6. Results. Experimental and calculated *E*_B(core) data

Table S10. Experimental and calculated $E_B(C \ 1s)$. The ion that corresponds to the data is shaded green; the counterion is shaded pink

Cation	Anion	Moioty	Calculated	Average calculated	Experimental	$\Delta E_{\rm B}({\rm C~1s})$ /
Cation	AIIIOII	wolety	- <i>E</i> _B (C 1s) / eV	<i>Е</i> в(С 1s) / eV	<i>E</i> _B (C 1s) / eV	eV
$[C_2C_1Im]^+$	[NTf ₂] ⁻	C ²	-279.91	279.91	287.61	7.71
			-278.64			
[C C lm]+	[NITE]-	c	-278.62	270 52	206 72	0.01
$[C_2C_1]m]^2$		Chetero	-278.50	278.52	286.73	8.21
			-278.32			
$[C_2C_1Im]^+$	[NTf ₂] ⁻		-276.90	276.90	285.41	8.51
$[C_4C_1Im]^+$	[NTf ₂] ⁻	C ²	-279.87	279.87	287.68	7.81
			-278.64			
			-278.60			
$[C_4C_1Im]^+$	$[NIf_2]^2$	C _{hetero}	-278.42	278.49	286.76	8.26
			-278.31			
			-277.00			
[C₄C₁Im]⁺	[NTf ₂] ⁻		-276.76	276.74	285.22	8.48
		unit	-276.45			
[C ₆ C₁lm]⁺	[NTf ₂] ⁻	C ²	-279.89	279.89	287.73	7.85
[]	[2]	-	-278.64			
			-278.61			
[C ₆ C ₁ Im]+	[NTf ₂] ⁻	C _{hetero}	-278.41	278.49	286.76	8.27
			-278.31			
			-276.98			
			-276.71			
[C _c C₁lm]+	[NTf ₂] ⁻	Called	-276 54	276 61	285.09	8 48
[0001111]	[2]	Саку	-276 52	270.01	200.00	0.10
			-276 31			
[C ₀ C ₄ lm]+	[NTf ₂]-	C ²	-279.89	279.89	287 68	7 79
[080][[[]]	[[1112]	C	-278.64	275.05	207.00	1.15
			-278 62			
[C ₈ C₁lm]⁺	[NTf ₂] ⁻	Chetero	-278/11	278.50	286.75	8.25
			_278.22			
			-276.32			
			-276.33			
			276.54			
[C-C.Im]+	[NITF_]-	C	-270.34	276 51	285.00	9.46
		Calkyl	-270.43	270.34	285.00	0.40
			-276.45			
			-270.41			
			270.27			
[C.D.1+	[NITE]-	C.	-279.30	270.08	297.05	7 07
	[[11]]2]	Chetero	-2/3.30 270 52	213.00	207.05	1.31
			-210.32			
[C.D.1+	[NITE]-	C.	-270.45 270.10	72 22	296 10	7 92
[C4Py]		Chetero	-2/8.18	278.27	280.10	7.85
			-270.10			
	[NITE]-	c	-277.10	276.90	205 10	0.20
[C4Py]		Calkyl	-270.84	270.80	285.19	8.39
			-270.47			
[N]]+		c	-278.44	270.22	200 45	0.10
[IN 4,1,1,0]	[HSU4]	Chetero	-2/8.28	278.33	286.45	8.12
			-2/8.2/			
[N]]+		6	-277.10	276.02	205.00	0.24
[N4,1,1,0] ⁺	[HSO ₄] ⁻	Calkyl	-2/6.90	276.83	285.08	8.24
			-2/6.51			
1		6	-2/8.41	270.00	200 45	0.40
[N _{8,1,1,0}] ⁺	[HSO ₄] ⁻	Chetero	-2/8.28	278.32	286.45	8.13
			-2/8.26			
[N ₈₁₁₀] ⁺	[HSO ₄]-		-277.09	276.58	285.00	8.42
[0,1,1,0]	[504]	Carkyr	-276.77	2,000		

			-276.56				
			-276.46				
			-276.46				
			-276.42				
			-276.28				
			-278.47				
[N _{2,2,1,0}] ⁺	[TfO] ⁻	Chetero	-278.46	278.39	286.63	8.23	
			-278.24				
[NL]+	[TfO]-	C	-276.98	276.07	10E 22	0.25	
[112,2,1,0]	[110]	Calkyl	-276.96	270.97	205.55	0.55	
			-278.56				
[S _{2,2,2}] ⁺	$[NTf_2]^-$	Chetero	-278.56	278.56	286.53	7.97	
			-278.56				
			-277.15				
[S _{2,2,2}] ⁺	[NTf ₂] ⁻	Calkyl	-277.15	277.15	285.65	8.50	
			-277.15				
$[C_4C_0Im]^+$	$[NTf_2]^-$	C ²	-280.05	280.05	287.76	7.71	
			-277.03				
[C₄C₀lm]⁺	[NTf ₂] ⁻	Chetero	-276.78	278.65	286.67	8.02	
			-276.46				
			-278.78				
[C₄C₀Im]⁺	[NTf ₂] ⁻	Calkyl	-278.71	276.75	285.16	8.40	
			-278.46				
			-277.48				
[P]+	[NO-]-	C	-277.48	277 /18	285.87	8 30	
[6,6,6,14]	[1003]	Chetero	-277.48	277.40	205.07	0.55	
			-277.48				
			-277.04				
			-277.04				
			-277.04				
			-277.03				
			-276.66				
			-276.66				
			-276.66				
			-276.66				
			-276.52				
			-276.52				
			-276.52				
			-276.52				
			-276.52				
[Pccc14]+	[NO ₂]-	Called	-276.52	276 53	285.00	8 47	
[* 0,0,0,14]	[Calkyl	-276.51	270100	200100	0.17	
			-276.44				
			-276.39				
			-276.39				
			-276.36				
			-276.35				
			-276.34				
			-276.33				
			-276.32				
			-276.32				
			-276.31				
			-276.31				
			-2/6.31				
		_	-2/0.22				—
			-2/8.3/				
[N _{4,1,1,1}] ⁺	[NTf ₂] ⁻	Chetero	-2/8.21	278.24	286.80	8.56	
			-2/8.20				
			-2/8.2U				
[NI.]+	[NITF.]-	C	-211.UD	776 70	10E 10	0 10	
[114,1,1,1]		Calkyl	-2/0.84	2/0./9	۲۵۵.۷۵	0.49	
[NI,]+	[NITF]-	C.	-2/0.4/	22 22	206 20	0 17	
[IN8,8,8,1] ⁺		Chetero	-2/8.28	278.23	280.70	ð.47	

[N _{8,8,8,1}]+	[NTf ₂]·	C _{alkyl}	-278.28 -278.25 -278.10 -277.01 -277.01 -277.00 -276.74 -276.74 -276.74 -276.74 -276.55 -276.55 -276.45 -276.45 -276.45 -276.45 -276.45 -276.45 -276.45 -276.45 -276.41 -276.41 -276.41 -276.27 -276.27	276.55	285.07	8.52
[N _{(20H)3,1}] ⁺	[TfO] [.]	C _{hetero}	-278.74 -278.65 -278.55 -278.50 -278.43 -278.27 -278.21	278.48	286.58	8.10
[C ₈ C ₁ Im]+	[NTf ₂] ⁻	CF ₃	-284.41 -284 41	284.41	292.93	8.52
[C ₈ C ₁ Im] ⁺	[TfO] ⁻	CF ₃	-283.88	283.88	292.50	8.63
[C₂C₁Im]⁺	[FAP] ⁻	CF ₃	-284.26 -284.22 -284.22	284.23	293.11	8.88
$[C_2C_1Im]^+$	[FAP] ⁻	CF ₂	-282.03 -281.98 -281.98	282.00	290.05	8.05
$[C_8C_1Im]^+$	[CF ₃ CO ₂] ⁻	CF₃	-283.13	283.13	292.24	9.11
[C ₈ C ₁ Im]⁺		CO_2	-2/9.4/	2/9.4/	288.46	8.99
$[C_4C_1Im]^+$	[NPf ₂] ⁻	CF ₃	-284.70	284.70	293.68	8.98
$[C_4C_1Im]^+$	[NPf ₂] ⁻	CF ₂	-282.98 - <u>28</u> 2.98	282.98	291.07	8.09
water/K ⁺	[SCN] ⁻	cyano	-277.26	277.26	285.90 (ref. 6)	8.64
subtracted	[N(CN) ₂]-	cyano	-278.09 -278.08	278.08	286.80	8.72
subtracted	[C(CN)₃] ⁻	cyano + central C	-277.84 -277.83 -277.83 -277.81	277.83	286.50	8.67
subtracted	[B(CN) ₄]-	cyano	-277.48 -277.48 -277.48 -277.48	277.48	286.40	8.92
subtracted	[MeSO ₄] ⁻	C-0	-277.65	277.65	286.50	8.85
subtracted	[OcSO ₄] ⁻	C _{alkyl}	-276.28 -276.24 -276.23 -276.16	276.18	285.00	8.82

	-276.15		
	-276.14		
	-276.07		
		average	8.37

Cation	Anion	Maiatu	Calculated	Average calculated	Experimental	$\Delta E_{\rm B}({\rm N~1s})$ /
Cation	Anion	woiety	- <i>Е</i> в(N 1s) / eV	<i>E</i> _B (N 1s) / eV	<i>E</i> _B (N 1s) / eV	eV
[N _{8,1,1,0}] ⁺	[HSO ₄] ⁻	cation	-393.07	393.07	402.23	9.16
[N _{4,1,1,1}] ⁺	[NTf ₂] ⁻	cation	-393.21	393.21	402.98	9.76
[N _{8,8,8,1}] ⁺	[NTf ₂] ⁻	cation	-393.01	393.01	402.73	9.72
[C ₈ C ₁ Im] ⁺	[NTf ₂] ⁻	cation	-392.49 -392.40	392.45	402.10	9.65
[C ₄ Py] ⁺	[NTf ₂] ⁻	cation	-393.03	393.03	402.60	9.57
[C ₈ C ₁ Pyrr] ⁺	[NTf ₂] ⁻	cation	-392.96	392.96	402.70	9.74
$[C_8C_1Im]^+$	[NTf ₂] ⁻	S-N-S	-389.93	389.93	399.46	9.53
$[C_8C_1Im]^+$	[SCN] ⁻	C≡N	-388.03	388.03	397.79	9.75
$[C_4C_1Im]^+$	[N(CN) ₂] ⁻	C-N-C	-389.55	389.55	399.65	10.10
[C ₄ C ₁ Im]+	[N(CN) ₂] ⁻	C≡N	-388.39 -388.39	388.39	398.36	9.96
[C ₈ C ₁ Im]+	[C(CN)₃] ⁻	C≡N	-389.05 -389.05 -389.05	389.05	398.84	9.79
[C ₆ C₁Im]⁺	[B(CN) ₄] ⁻	C≡N	-389.45 -389.45 -389.45 -389.45	389.45	399.75	10.30
[P _{6,6,6,14}] ⁺	[NO ₃] ⁻	N-O	-395.85	395.85	406.16	10.31
$[C_8C_1Im]^+$	[FSI] ⁻	S-N-S	-390.32	390.32	399.79	9.47
$[C_4C_1Im]^+$	[NPf ₂] ⁻	S-N-S	-389.98	389.98	399.49	9.50
					average	9.76

Table S11. Experimental and calculated $E_{B}(N \ 1s)$. The ion that corresponds to the data is shaded green; the counterion is shaded pink

Table S12. Experimental and calculated $E_B(S 2p)$. The ion that corresponds to the data is shaded green; the counterion is shaded pink

Cation	Anion	Moiety	Calculated - $F_{\mathbb{R}}(S 2p) / eV$	Average calculated $F_{\rm B}(S_2p_{3/2}) / eV$	Experimental	∆E _B (S 2p _{3/2}) / eV
			-163.21		-6(
[S _{2,2,2}]+	[NTf ₂] ⁻	cation	-163.21	162.37	166.31	3.95
			-163.07			
			-165.64			
[C ₈ C₁Im]⁺	[HSO ₄] ⁻	anion	-165.58	164.80	168.58	3.78
			-165.58			
			-166.18			
			-166.18			
[C ₂ C ₄ Im]+	[NTf_]-	anion	-166.16	165 36	168.08	3.61
[0801111]	[[]]]]	amon	-166.16	105.50	108.98	
			-166.16			
			-166.16			
			-165.44			
[C ₈ C ₁ Im]⁺	[TfO] ⁻	anion	-165.43	164.63	168.47	3.84
			-165.43			
			-165.47			
$[C_4C_1Im]^+$	[OcSO₄]⁻	anion	-165.42	164.63	168.29	3.65
			-165.41			
			-165.50			
$[C_4C_1Im]^+$	[MeSO ₄] ⁻	anion	-165.45	164.67	168.28	3.61
			-165.45			
			-164.62			
$[C_2C_1Im]^+$	[MeSO₃] ⁻	anion	-164.62	163.81	167.70	3.89
			-164.59			
			-158.90			
[C ₈ C ₁ Im]⁺	[SCN] ⁻	anion	-158.67	157.95	162.33	4.39
			-158.67			
	[ECI]-	anion	-167.08	166.32	160.00	2 60
	[13]	anion	-167.08	100.23	103.30	5.08

			-167.00				
			-167.00				
			-166.99				
			-166.99				
			-166.20				
			-166.20				
[C C Im]+	[NID£]-	anion	-166.18	165.39	169.07	2 5 0	
		anion	-166.18		100.97	5.56	
			-166.18				
			-166.18				
					average	3.80	

Table S13. Experimental and calculated $E_B(O \ 1s)$. The ion that corresponds to the data is shaded green; the counterion is shaded pink

Cation	Anion	Mojoty	Experimental -	Average calculated	Experimental	$\Delta E_{\rm B}({\rm O~1s})$ /
Cation	Amon	wolety	E _B (O 1s) / eV	Е _в (О 1s) / eV	Е _в (О 1s) / eV	eV
			-521.14			
[N _{(2OH)3,1}] ⁺	[TfO] ⁻	cation	-520.93	520.87	532.84	11.98
			-520.53			
[C ₈ C ₁ Im] ⁺	[HSO ₄] ⁻	anion	-520.85	520.85	533.04	12.18
			-519.50			
[C ₈ C ₁ Im] ⁺	[HSO ₄] ⁻	anion	-519.48	519.48	531.63	12.15
			-519.48			
			-520.64			
[C₀C₁lm]+	[NTf ₂]-	anion	-520.64	520.62	532.66	12 04
[6%61111]	[[1]]2]	union	-520.60	520.02	552.00	12.04
			-520.60			
			-519.81			
[C ₈ C₁Im]⁺	[TfO] ⁻	anion	-519.81	519.81	531.91	12.11
			-519.81			
[C₄C₁Im]⁺	[OcSO₄]⁻	anion	-520.70	520.70	532.86	12.16
			-519.40	- 40.00		
[C ₄ C ₁ Im] ⁺	[OcSO ₄] ⁻	anion	-519.37	519.38	531.43	12.05
	(1. co.)		-519.37	- 4 0 0 0		
$[C_2C_1Im]^+$	[MeSO ₃] ⁻	anion		518.99	531.20	12.22
[C₄C₁Im]⁺	[Me ₂ PO ₄] ⁻	anion	-520.21	520.15	532.62	12.46
			-520.10			
$[C_4C_1Im]^+$	[Me ₂ PO ₄] ⁻	anion	-510.50	518.30	530.40	12.10
[C.C.Im]+	[MeSO.]-	anion	-510.50	520 70	533.02	12.22
[C4C1111]	[1016304]	amon	-520.75	520.75	555.02	12.25
[C ₄ C ₄ Im]+	[MeSO ₄]-	anion	-519.42	519 43	531 47	12 04
[0401111]	[[110304]	amon	-519 42	515.45	551.47	12.04
			-519.95			
[P66614]+	[NO₃]-	anion	-519.95	519.94	531.66	11.72
[* 0,0,0,14]			-519.94	515.54	551.00	
			-521.00			
f =	5		-521.00			
$[C_8C_1Im]^+$	[FSI] ⁻	anion	-520.98	520.99	533.03	12.04
			-520.98			
			-520.66			
			-520.66	F20 C4	522.74	42.00
$[C_4C_1\text{Im}]^+$	[NPT ₂] [*]	anion	-520.63	520.64	532.74	12.09
			-520.63			
[C C lm]+		anion	-518.21	E10 10	E20.20	12.21
		anion	-518.16	510.10	550.59	12.21
[C.C.lm]+		0	-519.03	510.01	F21 20	12.20
			-518.99	519.01	551.25	12.20
					average	12.12

Table S14.	Experimental	and	calculated	$E_{B}(F_{anion})$	1s).	The	anion	that	corresponds	to	the	data	is	shaded	green;	the
countercati	on is shaded p	ink														

Cation	Anion	Moiety	Calculated	Average calculated	Experimental	$\Delta E_{\rm B}({\rm F}_{\rm anion} 1{\rm s})$
			-EB(Fanion IS) / EV	EB(Fanion IS) / EV	EB(Fanion 15) / EV	/ ev
			-670.93			
			-670.93			
[C₄C₁Im]+	[PF ₆]-	PF	-670.93	670.93	686.79	15.87
	1 01		-670.92			
			-670.92			
			-670.92			
			-669.91			
[C,C] m]+	[DE]-	DE	-669.91	660.01	695 01	16.00
	[DF4]	DF	-669.91	009.91	005.51	10.00
			-669.91			
			-673.13			
			-673.13			
(0.0.1.).	(a) = ()		-673.12	6 7 0.40	coo o=	
$[C_8C_1Im]^+$	$[NIf_2]^-$	CF3	-673.12	6/3.12	688.87	15.75
			-673.11			
			-673.11			
			-672.75			
[C₀C₁lm]+	[TfO]-	CE₂	-672 75	672 75	688 41	15.66
[030]]	[0]	0.5	-672 75	072.75	000.41	15.00
			-672 87			
			-672.87			
			-672.86			
			-672.86			
			-672.86			
			672.80			
			672.80			
		CE	-072.80	672 65	600 11	15 70
	[FAP]	CFX	-072.79	072.05	000.44	15.79
			-072.79			
			-072.41			
			-672.41			
			-672.39			
			-672.39			
			-672.29			
			-0/2.29			
		DE	-0/1.10	671.00	696 70	15 70
$[C_2C_1IM]$	[FAP] [*]	PF	-0/1.12	0/1.00	080.79	15.73
			-0/0.89			
[C ₈ C ₁ Im] ⁺	[FSI] ⁻	F	-0/2.UI	672.00	687.82	15.81
			-072.00			
			-0/3.23			
			-0/3.23			
			-0/3.20			
			-0/3.20			
$[C_4C_1Im]^+$	[NPf ₂] ⁻	CFx	-6/3.18	673.16	689.05	15.89
			-6/3.18			
			-673.12			
			-673.12			
			-673.09			
			-673.09			
			-672.18			
[C ₈ C ₁ Im]+	$[CF_3CO_2]^-$	CF_3	-672.18	672.18	688.24	16.06
			-672.18			
					average	15.84

Cation	Anion	Moiety	Calculated	Average calculated	Experimental	$\Delta E_{\rm B}$ (Cl 2p _{3/2})
Cution	/	worcty	<i>-Е</i> в(Cl 2p) / eV	E _B (Cl 2p _{3/2}) / eV	<i>Е</i> в(Cl 2р _{3/2}) / eV	/ eV
			-192.88			
[C ₈ C ₁ Im] ⁺	Cl-	anion	-192.88	191.81	196.96	5.15
			-192.88			
			-193.90			
			-193.90			
			-193.90			
			-193.90			
			-193.82			
[C₀C₁lm]+	[7nCl ₄] ²⁻	anion	-193.82	192 78	198 16	5 38
[0801111]	[211014]	union	-193.82	192.70	190.10	5.50
			-193.82			
			-193.82			
			-193.82			
			-193.82			
			-193.82			
			-193.95			
			-193.95			
			-193.95			
			-193.95			
			-193.86		198.16	
[C ₈ C ₁ Im] ⁺	[NiCl ₄] ²⁻	anion	-193.80	192.81		5.35
			-193.80			
			-193.00			
			-193.85			
			-193.85			
			-193.85			
			-193 92			<u> </u>
	[CoCl4] ²⁻	anion	-193.92	192.78		
			-193.91			
			-193.91		198.18	5.40
			-193.84			
			-193.84			
[C ₈ C ₁ Im] ¹			-193.83			
			-193.83			
			-193.83			
			-193.83			
			-193.83			
			-193.83			
			-193.90			
			-193.90			
			-193.90			
			-193.90			
			-193.84			
[C ₈ C ₁ Im] ⁺	[FeCl ₄] ²⁻	anion	-195.04	192.78	198.20	5.42
			-193.84			
			-193.83			
			-193.83			
			-193.83			
			-193.83			
			-194.80			
			-194.80			
			-194.80			
		onion	-194.70	102.67	100 50	4.01
[C ₈ C ₁ Im]	[511013]	anion	-194.70	193.07	198.58	4.91
			-194.70			
			-194.70			
			-194.70			

Table S15. Experimental and calculated $E_B(Cl 2p_{3/2})$. The anion that corresponds to the data is shaded green; the countercation is shaded pink

			-194.70			
			-195.44			
			-195.44			
			-195.44	101.00		
			-195.44			
			-195.31			
			-195.31		100.00	- 40
[C ₈ C ₁ Im] ⁺	[InCl ₄] ²	anion	-195.31	194.28	199.38	5.10
			-195.31			
			-195.31			
			-195.31			
			-195.30			
			-195.30			
			-195.28			
		-195.28				
			-195.12			
			-195.12			
			-195.12			
			-195.12			
			-194.83			
			-194.83			
			-194.82			
			-194.82			
			-194.77			
[C-C.Im]+	[Bi_Cl_12-	anion	-194.77	103 77	108 /7	4 70
[080]111]	[D12C18]	amon	-194.76	155.77	190.47	4.70
			-194.76			
			-194.76			
			-194.76			
			-194.65			
			-194.65			
			-194.65			
			-194.65			
			-194.65			
			-194.65			
			-194.65			
			-194.65			
					average	5 18

Cation	Anion	Moiety	Calculated -E _B (P 2p) / eV	Calculated $E_{\rm B}$ (P 2p _{3/2}) / eV	Experimental <i>E</i> _B (P 2p _{3/2}) / eV	Δ <i>E</i> _B (P 2p _{3/2}) / eV
[C ₄ C ₁ Im]+	[PF ₆] ⁻	anion	-133.77 -133.77 -133.77	133.17	136.68	3.51
$[C_2C_1Im]^+$	[FAP] ⁻	anion	-132.49 -132.41 -132.33	131.81	134.71	2.90
[C ₄ C ₁ Im]+	[Me ₂ PO ₄] ⁻	anion	-130.05 -130.03 -129.97	129.42	132.82	3.41
[P _{6,6,6,14}] ⁺	[NO ₃] ⁻	cation	-130.00 -130.00 -130.00	129.40	132.50	3.10
					average	3.23

Cation	Anion	Moiety	Calculated -E _B (Cl 2p) / eV	Average calculated E _B (Cl 2p _{3/2}) / eV
			-195.53	- 5(
			-195.53	
			-195.39	
			-195.39	
			-105.35	
			105 29	
N/A	[BiCl ₄] ⁻	anion	104 61	193.93
			-194.01	
			-194.01	
			-194.55	
			-194.53	
			-194.53	
			-194.53	
			-196.07	
			-196.07	
			-195.96	
			-195.96	
			-195.92	
			-195.92	
			-195.65	
			-195.65	
			-195.52	
			-195.52	
N/A	[Bi ₂ Cl ₇] ⁻	anion	-195.51	194.47
			-195.51	
			-195.32	
			-195.32	
			-195.21	
			-195.21	
			-195.21	
			-195 21	
			-195.20	
			-195.20	
			-195.20	
			-19/ 89	
			-194.89	
			-194.88	
			104.00	
			-194.07	
			-194.87	
			-194.87	
			-194.85	
			-194.85	
			-194.84	
			-194.84	
			-194.81	
			-194.81	
			-194.80	
N/A	[Bi ₃ Cl ₁₂] ²⁻	anion	-194.80	193.70
			-194.80	
			-194.79	
			-194.79	
			-194.79	
			-194.76	
			-194.76	
			-194.76	
			-194.76	
			-194.75	
			-194.75	
			-194.75	
			-194.75	
			-194.68	

Table S17. Calculated $E_B(Cl 2p_{3/2})$ for chlorobismuthate anions that do not form in the liquid-phase

-194.67
-194.67
-194.67
-194.67
-194.67
-194.64
-194.64
-194.64
-194.64

Table S18. Average E_B (correction) = E_B (core,exp.) - E_B (core,calc.) where E_B (core,calc.) comes from lone-ion-SMD calculations, and E_B ranges for E_B (core,exp.) for each core-level

	Average	Standard deviation of	Number of	Standard error	Average
Core-level	$E_{\rm B}(\text{correction})$ from	E _B (correction) from	datapoints,	of the sample	E _B (core,exp)
	lone-ion-SMD / eV	lone-ion-SMD / eV	n	mean / eV	/ eV
F 1s	15.84	0.13	9	0.04	687.81
O 1s	12.12	0.16	17	0.04	532.01
N 1s	9.76	0.31	15	0.08	400.97
C 1s	8.37	0.36	47	0.05	287.15
Cl 2p _{3/2}	5.18	0.26	8	0.09	198.26
S 2p _{3/2}	3.80	0.24	10	0.08	167.78
P 2p _{3/2}	3.23	0.28	4	0.14	134.18

7. Results. Experimental versus DFT calculated XP spectra for ions

7.1. Carbon: cations

Figure S6. Experimental and calculated C 1s XPS and C-containing lone cations. (a) (top) experimental C 1s XPS for four $[C_nC_1Im][NTf_2]$ ILs (where n = 2, 4, 6, 8); (bottom) calculated C 1s XPS for lone-ion-SMD of four $[C_nC_1Im]^+$ cations (where n = 2, 4, 6, 8) (E_B (correction) = +8.37 eV). (b) (top) experimental C 1s XPS for two $[N_{n,1,1,0}][HSO_4]$ ILs (where n = 4, 8); (bottom) calculated C 1s XPS for lone-ion-SMD of four $[C_nC_1Im]^+$ cations (where n = 2, 4, 6, 8) (E_B (correction) = +8.37 eV). (b) (top) experimental C 1s XPS for two $[N_{n,1,1,0}][HSO_4]$ ILs (where n = 4, 8); (bottom) calculated C 1s XPS of lone-ion-SMD of two $[N_{n,1,1,0}]^+$ cations (where n = 4, 8) (E_B (correction) = +8.37 eV). (c) (top) experimental C 1s XPS of the ILs $[N_{(20H)3,1}][TfO]$, $[S_{2,2,2}][NTf_2]$, $[N_{2,2,1,0}][TfO]$, $[C_4PY][NTf_2]$ and $[N_{4,1,1,1}][NTf_2]$; (bottom) calculated N 1s XPS for lone-ion-SMD of the cations $[N_{(20H)3,1}]^+$, $[S_{2,2,2}]^+$, $[N_{2,2,1,0}]^+$, $[C_4PY]^+$ and $[N_{4,1,1,1}]^+$ (E_B (correction) = +8.37 eV). (d) (top) experimental C 1s XPS of the ILS $[N_{4,1,1,1}][NTf_2]$, $[N_{8,8,8,1}][NTf_2]$ and $[P_{6,6,6,14}][NTf_2]$; (bottom) calculated N 1s XPS for lone-ion-SMD of the cations $[N_{4,1,1,1}][NTf_2]$, $[N_{8,8,8,1}][NTf_2]$ and $[P_{6,6,6,14}][NTf_2]$; (bottom) calculated N 1s XPS for lone-ion-SMD of the cations $[N_{4,1,1,1}]^+$, $[N_{8,8,8,1}]^+$ and $[P_{6,6,6,14}]^+$ (E_B (correction) = +8.37 eV). Experimental XP spectra are area normalised and charge referenced using methods given in ESI Section 5. Traces are vertically offset for clarity.

Figure S7. Experimental and calculated C 1s XPS for $[C_8C_1Im]^+$ -containing ILs. (top) experimental C 1s XPS for $[C_8C_1Im]Cl$ and $[C_8C_1Im][NTf_2]$ ILs; (middle) calculated C 1s XPS for lone-ion-SMD of $[C_8C_1Im]^+$ cation (E_8 (correction) = +8.48 eV); (bottom) calculated C 1s XPS for AIMD of $[C_8C_1Im]Cl$ and $[C_8C_1Im][NTf_2]$ (E_8 corrections taken from reference ³). Experimental XP spectra are area normalised and charge referenced using methods given in ESI Section 5.

7.2. Carbon: anions

Figure S8. Experimental and calculated C 1s XPS and C-containing lone anions with large E_B and V_n . (top) experimental C 1s XPS of the ILs [C₈C₁Im][TfO], [C₈C₁Im][NTf₂], [C₂C₁Im][FAP], [C₈C₁Im][NPf₂] and [C₈C₁Im][CF₃CO₂]; (bottom) calculated N 1s XPS for lone-ion-SMD of the cations [TfO]⁻, [NTf₂]⁻, [FAP]⁻, [NPf₂]⁻ and [CF₃CO₂]⁻ (E_B (correction) = +8.37 eV). Experimental XP spectra are area normalised and charge referenced using methods given in ESI Section 5. Traces are vertically offset for clarity.

Figure S9. (a) (top) experimental C 1s XPS of the ILS $[C_4C_1 Im][N(CN)_2]$ and $[C_4C_1 Im][TfO]$; (bottom) calculated C 1s XPS for loneion-SMD of the ions $[C_4C_1 Im]^+ + [N(CN)_2]^-$ and $[C_4C_1 Im]^+ (E_B(correction) = +8.37 \text{ eV})$. (b) (top) experimental C 1s XPS of the ILS $[C_8C_1 Im][C(CN)_3]$ and $[C_8C_1 Im][BF_4]$; (bottom) calculated C 1s XPS for lone-ion-SMD of the ions $[C_8C_1 Im]^+ + [C(CN)_3]^-$ and $[C_8C_1 Im]^+ (E_B(correction) = +8.37 \text{ eV})$. (c) (top) experimental C 1s XPS of the ILS $[C_6C_1 Im][B(CN)_4]$ and $[C_6C_1 Im][NTf_2]$; (bottom) calculated C 1s XPS for lone-ion-SMD of the ions $[C_6C_1 Im]^+ + [B(CN)_4]^-$ and $[C_6C_1 Im]^+ (E_B(correction) = +8.37 \text{ eV})$. (d) loneanions: (top) subtracted experimental C 1s XPS of the anions $[B(CN)_4]^-$, $[C(CN)_3]^-$, $[N(CN)_2]^-$ and $[SCN]^-$; (bottom) calculated C 1s XPS for lone-ion-SMD of the anions $[B(CN)_4]^-$, $[C(CN)_3]^-$, $[N(CN)_2]^-$ and $[SCN]^-$ (E_B(correction) = +8.37 eV). Experimental XP spectra are area normalised and charge referenced using methods given in ESI Section 5. Traces are vertically offset for clarity.

Figure S10. Experimental and calculated C 1s XPS for alkyl-SO_x-containing lone-ions. (a) (top) experimental C 1s XPS of the ILS $[C_4C_1Im][OcSO_4]$ and $[C_4C_1Im][HSO_4]$; (bottom) calculated C 1s XPS for lone-ion-SMD of the ions $[C_4C_1Im]^+ + [OcSO_4]^-$ and $[C_4C_1Im]^+ (E_B(correction) = +8.37 \text{ eV})$. (b) (top) experimental C 1s XPS of the ILS $[C_4C_1Im][MeSO_4]$ and $[C_4C_1Im][HSO_4]$; (bottom) calculated C 1s XPS of the ILS $[C_4C_1Im][MeSO_4]$ and $[C_4C_1Im][HSO_4]$; (bottom) calculated C 1s XPS for lone-ion-SMD of the ions $[C_4C_1Im]^+ + [MeSO_4]^-$ and $[C_4C_1Im]^+ (E_B(correction) = +8.37 \text{ eV})$. (c) (top) experimental C 1s XPS of the ILS $[C_2C_1Im][MeSO_3]$ and $[C_2C_1Im][MeSO_3]^-$ and $[C_2C_1Im]^+ + [MeSO_4]^-$ and $[C_2C_1Im]^+ + [MeSO_3]^-$ and $[MeSO_3]^-$; (bottom) calculated C 1s XPS for lone-ion-SMD of the anions $[OcSO_4]^-$, $[MeSO_4]^-$ and $[MeSO_3]^-$; (bottom) calculated C 1s XPS for lone-ion-SMD of the anions $[OcSO_4]^-$, $[MeSO_4]^-$ and $[MeSO_3]^-$; (bottom) calculated C 1s XPS for lone-ion-SMD of the anions $[OcSO_4]^-$, $[MeSO_4]^-$ and $[MeSO_3]^-$; (bottom) calculated C 1s XPS for lone-ion-SMD of the anions $[OcSO_4]^-$, $[MeSO_4]^-$ and $[MeSO_3]^-$; (bottom) calculated C 1s XPS for lone-ion-SMD of the anions $[OcSO_4]^-$, $[MeSO_4]^-$ and $[MeSO_3]^-$; (bottom) calculated C 1s XPS for lone-ion-SMD of the anions $[OcSO_4]^-$, $[MeSO_4]^-$ and $[MeSO_3]^-$; (bottom) calculated XP spectra are area normalised and charge referenced using methods given in ESI Section 5. Traces are vertically offset for clarity.

7.3. Nitrogen

Figure S11. Experimental and calculated N 1s XPS for ILs and N-containing lone ions. (a) anions with small E_B and V_n ; (top) experimental N 1s XPS of the ILs $[C_8C_1Im][FSI]$, $[C_8C_1Im][NTf_2]$, $[C_4C_1Im][NPf_2]$, $[C_6C_1Im][B(CN)_4]$, $[C_8C_1Im][C(CN)_3]$, $[C_4C_1Im][N(CN)_2]$ and $[C_8C_1Im][SCN]$; (bottom) calculated N 1s XPS for lone-ion-SMD of the anions [FSI]⁻, $[NTf_2]^-$, $[NPf_2]^-$, $[B(CN)_4]^-$, $[C(CN)_3]^-$, $[N(CN)_2]^-$ and $[SCN]^-$ (E_B (correction) = +9.76 eV). (b) cations; (top) experimental N 1s XPS of the ILs $[N_{4,1,1,1}][NTf_2]$, $[C_8C_1Im][NTf_2]$ and $[C_4Py][NTf_2]$; (bottom) calculated N 1s XPS for lone-ion-SMD of the cations $[N_{4,1,1,1}]^+$, $[C_8C_1Im]^+$ and $[C_4Py]^{+-}$ (E_B (correction) = +9.76 eV). (c) an anion with large E_B and V_n ; (top) experimental N 1s XPS of the ILs $[P_{6,6,6,14}][NO_3]$ and $[C_8C_1Im][NTf_2]$; (bottom) calculated N 1s XPS for lone-ion-SMD of the anions $[NO_3]^-$ and $[NTf_2]^-$; (E_B (correction) = +9.76 eV). (c) an anion with large E_B and V_n ; (top) experimental N 1s XPS of the ILs $[P_{6,6,6,14}][NO_3]$ and $[C_8C_1Im][NTf_2]$; (bottom) calculated N 1s XPS for lone-ion-SMD of the anions $[NO_3]^-$ and $[NTf_2]^-$; (E_B (correction) = +9.76 eV). Experimental XP spectra are area normalised and charge referenced using methods given in ESI Section 5. Traces are vertically offset for clarity.

Figure S12. Experimental and calculated S 2p XPS for 10 ILs and the matching S-containing lone ions: (top) experimental S 2p XPS of the ILs $[C_8C_1Im][FSI]$, $[C_8C_1Im][NTf_2]$, $[C_4C_1Im][NPf_2]$, $[C_8C_1Im][HSO_4]$, $[C_8C_1Im][TfO]$, $[C_4C_1Im][MeSO_4]$, $[MeSO_4]$, [MeSO

7.5. Oxygen

Figure S13. Experimental and calculated O 1s XPS for 10 ILs and the matching O-containing lone ions: (top) experimental O 1s XPS of the ILs $[C_8C_1Im][FSI]$, $[N_{(2OH)3,1}][TfO]$, $[C_8C_1Im][NTf_2]$, $[C_4C_1Im][NPf_2]$, $[C_8C_1Im][TfO]$, $[C_8C_1Im][HSO_4]$, $[C_8C_1Im][CF_3CO_2]$, $[C_2C_1Im][MeSO_3]$, $[C_4C_1Im][Me_2PO_4]$ and $[C_8C_1Im][CH_3CO_2]$; (bottom) calculated O 1s XPS for lone-ion-SMD of the ions [FSI]⁻, $[N_{(2OH)3,1}]^+$ and [TfO]⁻ (also including their sum), $[NTf_2]^-$, $[NPf_2]^-$, $[TFO]^-$, $[HSO_4]^-$, $[CF_3CO_2]^-$, $[MeSO_3]^-$, $[Me_2PO_4]^-$ and $[CH_3CO_2]^-$ (E_B (correction) = +12.12 eV). Experimental XP spectra are area normalised and charge referenced using methods given in ESI Section 5. Traces are vertically offset for clarity.

7.6. Fluorine

Figure S14. Experimental and calculated F 1s XPS for $[C_nC_1Im][A]$ where $[A]^- = [BF_4]^-$, $[PF_6]^-$, $[FAP]^-$, $[FSI]^-$, $[CF_3CO_2]^-$, $[TfO]^-$, $[NTf_2]^-$ and $[NPf_2]^-$: (top) experimental F 1s XPS (vertically offset for clarity); (bottom) calculated F 1s XPS for lone-ion-SMD of the anions (E_B (correction) = +15.84 eV, vertically offset for clarity). Experimental XP spectra are area normalised and charge referenced using methods given in ESI Section 5.

7.7. Chlorine

Figure S15. Experimental and calculated Cl 2p XPS for $[C_8C_1Im][A]$ where $A = Cl^-$, $[ZnCl_4]^2^-$, $[NiCl_4]^2^-$, $[FeCl_4]^2^-$, $[Bi_2Cl_8]^2^-$, $[SnCl_3]^-$ and $[InCl_4]^-$: (top) experimental Cl 2p XPS (vertically offset for clarity); (bottom) calculated Cl 2p XPS for lone-ion-SMD of the anions (E_B (correction) = +5.18 eV, vertically offset for clarity). Experimental XP spectra are area normalised and charge referenced using methods given in ESI Section 5.

8. Results: Experimental versus DFT calculated XP spectra for a chlorobismuthate IL

Figure S16. Experimental Cl 2p XPS for x = 0.5 BiCl₃ dissolved in [C₈C₁Im]Cl (all four graphs) and calculated Cl 2p XPS for loneion-SMD of the anions (E_B (correction) = +4.74 eV): (top) [Bi₂Cl₈]²⁻; (upper middle) [Bi₃Cl₁₂]³⁻; (lower middle) [BiCl₄]⁻, (bottom) [Bi₂Cl₇]⁻ + Cl⁻. The experimental XP spectrum is charge referenced using methods given in ESI Section 5.

9. Results. Effect of basis set choice

Figure S17. (top) Experimental N 1s XPS for $[N_{4,1,1,1}][NTf_2]$ and $[C_8C_1Pyrr][NTf_2]$. (middle) Calculated N 1s XPS for lone-ion-SMD of the cations: $[N_{4,1,1,1}]^+$ and $[C_8C_1Pyrr]^+$ with the 6-311+G(d,p) basis set (E_B (correction) = +9.76 eV). (bottom) Calculated N 1s XPS for lone-ion-SMD of the cations: $[N_{4,1,1,1}]^+$, $[C_4C_1Pyrr]^+$ and $[C_8C_1Pyrr]^+$ with the def2-QZVPP basis set taken from reference ⁵ (E_B (correction) = +6.37 eV). The experimental XP spectra are charge referenced using methods given in ESI Section 5.

10. References

- 1. R. M. Fogarty, R. G. Palgrave, R. A. Bourne, K. Handrup, I. J. Villar-Garcia, D. J. Payne, P. A. Hunt and K. R. J. Lovelock, *Phys. Chem. Chem. Phys.*, 2019, **21**, 18893-18910.
- 2. J. M. Seymour, E. Gousseva, A. I. Large, C. J. Clarke, P. Licence, R. M. Fogarty, D. A. Duncan, P. Ferrer, F. Venturini, R. A. Bennett, R. G. Palgrave and K. R. J. Lovelock, *Phys. Chem. Chem. Phys.*, 2021, **23**, 20957-20973.
- 3. E. Gousseva, F. K. Towers Tompkins, J. M. Seymour, L. G. Parker, C. J. Clarke, R. G. Palgrave, R. A. Bennett, R. Grau-Crespo and K. R. J. Lovelock, *J. Phys. Chem. B*, 2024, **128**, 5030-5043.
- 4. J. M. Seymour, E. Gousseva, F. K. T. Tompkins, L. G. Parker, N. O. Alblewi, C. J. Clarke, S. Hayama, R. G. Palgrave, R. A. Bennett, R. P. Matthews and K. R. J. Lovelock, *Faraday Discuss.*, 2024, **253**, 251-272.
- 5. F. K. Towers Tompkins, L. G. Parker, R. M. Fogarty, J. M. Seymour, E. Gousseva, D. C. Grinter, R. G. Palgrave, C. D. Smith, R. A. Bennett, R. P. Matthews and K. R. J. Lovelock, *Chem. Commun.*, 2024, **60**, 10756-10759.
- 6. E. Gousseva, S. D. Midgley, J. M. Seymour, R. Seidel, R. Grau-Crespo and K. R. J. Lovelock, *J. Phys. Chem. B*, 2022, **126**, 10500-10509.
- 7. I. J. Villar-Garcia, E. F. Smith, A. W. Taylor, F. L. Qiu, K. R. J. Lovelock, R. G. Jones and P. Licence, *Phys. Chem. Chem. Phys.*, 2011, **13**, 2797-2808.
- 8. I. J. Villar-Garcia, K. R. J. Lovelock, S. Men and P. Licence, *Chem. Sci.*, 2014, **5**, 2573-2579.
- 9. T. Cremer, C. Kolbeck, K. R. J. Lovelock, N. Paape, R. Wölfel, P. S. Schulz, P. Wasserscheid, H. Weber, J. Thar, B. Kirchner, F. Maier and H. P. Steinrück, *Chem.-Eur. J.*, 2010, **16**, 9018-9033.
- 10. C. Kolbeck, M. Killian, F. Maier, N. Paape, P. Wasserscheid and H. P. Steinrück, *Langmuir*, 2008, 24, 9500-9507.
- 11. C. Kolbeck, T. Cremer, K. R. J. Lovelock, N. Paape, P. S. Schulz, P. Wasserscheid, F. Maier and H. P. Steinrück, *J. Phys. Chem. B*, 2009, **113**, 8682-8688.