Supporting Information

BC₂N Monolayer as High-performance Anode Material for Potassium-Ion Batteries

Jingguo Wang^a, Wenyuan Zhang^b, Yanling Si^{*a}, and Guochun Yang^{*b}

^a School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China

^b State Key Laboratory of Metastable Materials Science & Technology and Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China

Index	Page
1. Mechanical property parameters of BC ₂ N structure	2
2. Stable adsorption sites and adsorption energies of K on BC ₂ N surfaces	2
3. Structural information of the predicted BC ₂ N monolayer	2
4. Thermal stability of BC ₂ N monolayer at 350 K	2
5. The formation energies of $K_x BC_2 N$ systems	3
6. Thermal stability of BC ₂ N monolayer at 300 K when it reaches a saturated adsorption state	3
7. The interlayer spacing between the adsorbed K-ions layers on the substrate K ₂ BC ₂ N	3
8. The electron localization function (ELF) maps of $K_{0.5}BC_2N$ and K_1BC_2N	4
9. The band structures and density of states for (a) $K_{0.5}BC_2N$ and (b) K_1BC_2N	4

Table S1

Independent elastic constants (C_{ij}), Young's modulus (Y^{2D}) in N m⁻¹ and Poisson's ratio (V^{2D}) of BC₂N.

	C ₁₁	C ₂₂	C ₁₂	C ₆₆	Y ^{2D} [01]	Y ^{2D} [10]	$V^{2D}_{[01]}$	V ^{2D} [10]
BC ₂ N	302.824	294.118	58.101	118.392	274.454	291.684	0.186	0.216

Table S2

Stable adsorption sites and adsorption energies of K on BC_2N surfaces.

K site	T_1	T_2	T ₃	H_1	H_2	H_3	\mathbf{B}_1	B_2	B ₃	B_4
BC ₂ N	-0.481	-0.480	-0.506	-0.560	-0.606	-0.570	H2	H1	Н3	Н3

Table S3

Structural information of the BC₂N monolayer.

Dhasa	Space Group	Lattice	W	Wyckoff Positions (fractional)					
r nase		Parameters(Å, °)	Atoms	x	у	z			
BC ₂ N	Cmmm	a = 5.06590	B (4j)	0.50000	-0.33085	-0.50000			
		<i>b</i> = 8.63750	C (8q)	0.73817	-0.08125	-0.50000			
		<i>c</i> = 30.00000	N (4j)	0.50000	-0.16268	-0.50000			
		$\alpha = 90.00000$							
		$\beta = 90.00000$							
		$\gamma = 90.00000$							

Fig. S1. The ab-initio molecular dynamics simulations at 350 K and 5 ps with the free-energy evolution and final structure of BC_2N .

Fig. S2. The formation energies of $K_x BC_2 N$ systems with respect to the BC₂N monolayer and the K bulk metal.

Fig. S3. Ab-initio molecular dynamics simulation showing the free energy evolution and final structure of BC_2N at 300 K and 5 ps in the saturated adsorption state.

Fig. S4. Comparing the interlayer spacing between the adsorbed K-ions layers on the substrate K₂BC₂N.

Fig. S5. Electron localization function (ELF) maps of (a) $K_{0.5}BC_2N$, (b) K_1BC_2N .

Fig. S6. The band structures and density of states for (a) $K_{0.5}BC_2N$, (b) K_1BC_2N . The Fermi level is set to 0 eV and labeled with a horizontal dashed line.