Supporting Information

Relaxation dynamics of aniline in methanol: the photoionization channel

Raúl Montero,^{*,1,2} Iker Lamas,¹ Marta Fernández-Fernández,¹ Andrew W. Prentice,³ Dave Townsend,^{3,4} Martin J. Paterson,³ Asier Longarte^{*,1}

¹Departamento de Química Física. Universidad del País Vasco (UPV/EHU). Apart. 644, 48080 Bilbao, Spain.

²SGIker Laser Facility, Universidad del País Vasco (UPV/EHU), Leioa, Spain.

³Institute of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.

⁴Institute of Photonics & Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.

*Corresponding authors: asier.longarte@ehu.es; raul.montero@ehu.es

Contents

SI.1. Dependence of the absorption signal on the pump energy.

SI.2. Pump-repump-probe experiments with repump at 800 nm.

SI.3. CAM-B3LYP and XMS-CASPT2(8e,9o) vertical excitation energies of aniline(H_2O_1 and aniline(CH_3OH_1 clusters.

SI1. Dependence of the absorption signal on the pump energy

Dependence of the absorption signal, at the indicated probe wavelengths, on the pump energy at 6 (a) and 470 ps (b) pump-probe delays. The points marked with the star correspond to the energies employed in the TA measurements reported in the manuscript.

SI2. Pump-repump-probe experiments with repump at 800 nm

Pump (267 nm)–repump (800 nm)–probe spectra collected for aniline in methanol at fixed pump–repump delay ($\tau_1 = 20$ ps) and at the indicated repump–probe delays (τ_2).

SI2. CAM-B3LYP and XMS-CASPT2(8e,9o) vertical excitation energies.

Table SI2. CAM-B3LYP and XMS-CASPT2(8e,9o) vertical excitation energies (VEE) for the most stable structures of the aniline(H_2O_1 and aniline(CH_3OH_1) clusters.

Structure	S ₁		S ₂		0.0.1-1/4
	VEE [eV] (nm)	Character	VEE [eV] (nm)	Character	S ₂ -S ₁ [eV]
CAM-B3LYP					
1-aniline(H ₂ O) ₁	5.08 (244)	ππ*	5.40 (230)	πRydberg	0.32
2-aniline(H ₂ O) ₁	4.64 (267)	πRydberg	4.82 (257)	ππ*	0.18
1-aniline(CH₃OH)₁	5.06 (245)	ππ*	5.38 (230)	πRydberg	0.32
2-aniline(CH ₃ OH)₁	4.84 (256)	ππ*	4.93 (251)	πRydberg	0.09
XMS-CASPT2(8e,9o)					
1-aniline(H ₂ O) ₁	5.05 (246)	ππ*	5.79 (214)	πRydberg	0.74
2-aniline(H ₂ O) ₁	4.86 (255)	ππ*	5.18 (239)	πRydberg	0.32
1-aniline(CH₃OH)₁	5.38 (230)	ππ*	5.77 (215)	πRydberg	0.39
2-aniline(CH ₃ OH)₁	4.93 (251)	ππ*	5.34 (232)	πRydberg	0.41