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Electrochemical tests

Electrochemical measurements were carried out using a CHI760E 

workstation equipped with a Pine rotator. A standard three-electrode cell 

was used to conduct electrochemical experiments, where the working, 

counter, and reference electrodes were a glassy carbon disk coated 

with the catalyst, a Pt wire, and an Ag/AgCl electrode, respectively. For 

the working electrode preparation, typically, 5.0 mg of electrocatalyst 

was dispersed via ultrasonication in 500 μL of N,N-Dimethylformamide 

and 500 μL of 0.5 wt% Nafion solution for 2 h to form the catalyst ink. 

Subsequently, 8 μL of the as-prepared ink was dropped onto the 

polished glassy carbon disk and allowed to dry completely. For 

comparison, the benchmark Pt/C (20 wt%) and RuO2/C (30 wt%) 

catalysts were dropped onto the electrode surface under the same 

conditions. The catalyst loading was controlled at 0.203 mg cm−2. 

ORR tests

The electrocatalytic activity towards the oxygen reduction reaction 

(ORR) was evaluated in either 0.1 M KOH or 0.5 M H2SO4 solution. 

First, cyclic voltammetry (CV) measurements were performed in Ar- or 

O2-saturated electrolytes at a scan rate of 50 mV s−1. Linear sweep 

voltammetry (LSV) was conducted in O2-saturated electrolyte at rotating 

speeds of 625, 900, 1225, 1600, 2025, and 2500 rpm with a scan rate of 

5 mV s−1. The inverse current density (j−1) versus the inverse square 

root of rotation rate (ω−1/2) plots were fitted with linear curves, and the 

intercepts were used to calculate the kinetic current density (jk) and the 

Tafel slope according to the following equations:
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where j is the measured current density (mA cm−2), jk is the kinetic 

current density (mA cm−2), jL is the limiting current density (mA cm−2), j0 

is the exchange current density (mA cm−2), ω is the rotating rate (rad 

s−1), η is the overpotential (η = 1.23 V − ERHE, V), and b is the Tafel 

slope.

Rotating ring-disk electrode (RRDE) measurements were further 

employed to assess ORR activity and selectivity. Based on the RRDE 

data, the electron transfer number (n) and the peroxide yield (HO2− in 

alkaline or H2O2 in acid) were calculated using the following equations:
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where Id and Ir are the disk and ring current (mA), respectively, and 

N is the current collection coefficient of the Pt ring (0.37 under the test 

conditions).

Durability was evaluated via a chronoamperometric measurement at 

0.70 V (vs. RHE) for 80000 s in O2-saturated KOH solution. Accelerated 

durability tests were conducted by continuous CV cycling between 0.6 

and 1.1 V (vs. RHE) at 100 mV s−1 for 5000 cycles.

OER tests

The electrocatalytic activity for the oxygen evolution reaction was 

evaluated in 1 M KOH aqueous solution. LSV curves for all catalysts 

were recorded at a scan rate of 5 mV s−1 and corrected using 85% iR 

compensation. Electrochemical impedance spectroscopy (EIS) was 

conducted at 1.62 V (vs. RHE) in the frequency range of 100 kHz to 0.1 

Hz. The double-layer capacitance (Cdl) was determined from CV 

performed at scan rates ranging from 20 to 100 mV s−1 in the non-



Faradaic potential window of 1.0 – 1.2 V in Ar-saturated 1 M KOH. Cdl 

was calculated as half the slope of the Δj (ja − jc) versus scan rate plot. 

Accelerated durability tests were carried out by continuous CV cycling 

between 1.2 and 1.6 V (vs. RHE) at 100 mV s−1 for 2000 cycles.

ZABs measurements

A Zn-air battery (ZAB) was assembled and tested using the 

CoFe@NC-5 catalyst (loading: 1.5 mg cm−2) supported on carbon paper  

as the air cathode, a polished Zn plate as the anode, and a mixed 

electrolyte consisting of 6 M KOH and 0.2 M Zn(CH3COO)2. For 

comparison, a control ZAB was assembled using a mixture of 

commercial Pt/C (20 wt%) and RuO2 at a 1:1 weight ratio as the air 

cathode. All tests were conducted under ambient conditions. 

Polarization curves were recorded using a CHI 760E electrochemical 

workstation, while galvanostatic charge–discharge tests were performed 

on a LAND battery testing system. The specific capacity of ZAB was 

calculated using the following equation:
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where i is the discharge current, t is discharge time, and ∆m 

represents the mass of zinc plate consumed during the discharge 

process.



Figure S1. PXRD patterns of g-C3N4/ZnFe-DH and pristine g-C3N4.

Figure S2. SEM images of g-C3N4/ZnFe-DH at different magnifications.



Figure S3. PXRD patterns of g-C3N4/ZnFe-DH@ZIF-67-x precursors (x = 2.5, 
5, and 10).



Figure S4. (a-c) TEM and (d) HRTEM images of the CoFe@NC-2.5 sample. 
Inset in (a) shows the corresponding histogram of the particle size distribution.



Figure S5. (a) HAADF image of CoFe@NC-5 and elemental mapping images 
of (b) C, (c) N, (d) Fe, and (e) Co.



Figure S6. (a-c) TEM and (d) HRTEM images of the CoFe@NC-10 sample. 
Inset in (b) shows the corresponding histogram of the particle size distribution.



Figure S7. Survey XPS spectra of CoFe@NC-x samples (x = 2.5, 5, and 10).

Figure S8. High-resolution C 1s XPS spectra of CoFe@NC-x samples (x = 
2.5, 5, and 10).



Figure S9. Comparison of ORR half-wave potential (E1/2) and kinetic current 
density at 0.8 V (jk@0.8 V) for CoFe@NC-x and commercial 20 wt% Pt/C 
catalysts in 0.1 M KOH solution.

Figure S10. LSV curves of CoFe@NC-5, Fe@NC, and Co@NC catalysts 
recorded at 1600 rpm with a scan rate of 5 mV s-1 in O2-saturated 0.1 M KOH 
solution.



Figure S11. LSV curves of (a) CoFe@NC-2.5, (c) CoFe@NC-5, and (e) 
CoFe@NC-10 catalysts recorded at different rotation speeds with a scan rate 
of 5 mV s-1 in O2-saturated 0.1 M KOH solution; corresponding K–L plots 
calculated from (b) CoFe@NC-2.5, (d) CoFe@NC-5, and (f) CoFe@NC-10 
catalysts.



Figure S12. RRDE curves of (a) CoFe@NC-2.5, (b) CoFe@NC-5, and (c) 
CoFe@NC-10 catalysts recorded at 1600 rpm in O2-saturated 0.1 M KOH 
solution.



Figure S13. XRD patterns of CoFe@NC-5 before and after accelerated 
durability tests (ADTs) for ORR and OER.



Figure S14. (a) CV curves of CoFe@NC-x and commercial 20 wt% Pt/C 
catalysts recorded at a scan rate of 50 mV s-1 in Ar- and O2-saturated 0.5 M 
H2SO4 solution; (b) LSV curves of CoFe@NC-x and commercial 20 wt% Pt/C 
catalysts at 1600 rpm with a scan rate of 5 mV s-1 in O2-saturated 0.5 M 
H2SO4; (c) Tafel plots; (d) electron transfer numbers (n) and peroxide (H2O2) 
yields calculated from RRDE data.



Figure S15. OER polarization curves of CoFe@NC-5, Fe@NC, and Co@NC 
catalysts measured in 1 M KOH with 85% iR compensation.



Figure S16. Electrochemical double-layer capacitance (Cdl) measurements of 
(a) CoFe@NC-2.5, (b) CoFe@NC-5, and (c) CoFe@NC-10 catalysts in 1 M 
KOH, obtained from CV scans at various scan rates ranging from 20 to 100 
mV·s-1.



Figure S17. Open-circuit voltage measurements of Zn-air batteries (ZABs) 
based on CoFe@NC-5 and Pt/C + RuO2 catalysts.



Figure S18. Galvanostatic charge-discharge curves of CoFe@NC-5-based 
ZAB at 10 mA·cm−2 (a) the 1st cycle and (b) the 990th cycle.



Table S1. Fe and Co mass percentages in CoFe@NC-x samples determined 
by ICP-OES analysis.

samples Fe (wt%) Co (wt%) Fe Relative 
(%) a

Co Relative 
(%) b

CoFe@NC-2.5 21.66 5.88 78.65 21.35

CoFe@NC-5 23.84 13.40 64.02 35.98

CoFe@NC-10 16.38 17.13 48.88 51.12
a: Fe Relative (%) = Fe (wt%)/(Fe (wt%) + Co (wt%))
a: Co Relative (%) = Co (wt%)/(Fe (wt%) + Co (wt%))

Table S2. Surface atomic composition of the as-prepared CoFe@NC-x 
samples obtained from XPS analysis. 

samples C 1s (at. %) O 1s (at. 
%)

N 1s (at. 
%)

Co 2p (at. 
%)

Fe 2p (at. 
%)

CoFe@NC-2.5 90.12 3.88 5.2 0.29 0.51
CoFe@NC-5 89.27 3.95 5.26 0.66 0.86

CoFe@NC-10 89.02 4.07 5.5 0.68 0.73

Table S3. Relative contents of different types of nitrogen species in 
CoFe@NC-x samples derived from XPS analysis.

Samples CoFe@NC-2.5 (%) CoFe@NC-5 (%) CoFe@NC-10 (%)
Pyridinic N 37.80 29.03 32.31
Co(Fe)-Nx 10.41 14.44 10.70
Pyrrolic N 33.74 37.93 37.15

Graphitic N 10.98 15.00 10.88
Oxidized N 7.07 3.60 8.96



Table S4. ORR parameters of CoFe@NC-x electrocatalysts (x = 2.5, 5, and 
10) and commercial 20 wt% Pt/C in both alkaline and acidic media.

0.1 M KOH
Electrocatalysts Eonset

(V vs. RHE)
E1/2

(V)
jk @ 0.8 V
(mA cm-2)

Tafel 
slopes

(mV dec-1)

n H2O2%

CoFe@NC-2.5 0.94 0.82 −4.62 77 3.69 15.45
CoFe@NC-5 0.98 0.84 −10.32 66 3.81 9.65

CoFe@NC-10 0.98 0.83 −9.06 72 3.73 13.35
20% Pt/C 1.00 0.85 −10.58 66 3.97 1.27

0.5 M H2SO4

Eonset

(V vs. RHE)
E1/2

(V)
jk @ 0.7 V
(mA cm-2)

Tafel 
slopes

(mV dec-1)

n H2O2%

CoFe@NC-2.5 0.67 0.45 - 0.12 135 3.71 14.12
CoFe@NC-5 0.72 0.54 - 0.17 109 3.77 11.75

CoFe@NC-10 0.72 0.53 - 0.19 113 3.76 12.87
20% Pt/C 0.95 0.80 -12.85 86 3.90 4.17



Table S5. Comparison of ORR/OER and Zn-air battery performance between this work and previous reports on carbon-
encapsulated FeCo-based heterostructured alloy electrocatalysts in alkaline media.

ORR OER Bifunctional 
activity Zn-air battery

Electrocatalysts
E1/2 a (V) jL (mA cm-2) Ej=10 b (V) ∆E=Ej=10−E1/2 

(V)
Open circuit 
voltage (V)

Power density 
(mW cm-2)

Refs

CoFe@Fe3N-CNT 0.936 5.12 1.56 0.624 1.534 173.6 1

CoFe-Co@PNC-12 0.887 6.0 1.55 0.663 1.45 152.8 2

Co0.7Fe0.3@NC2:1-800 0.827 4.9 1.544 0.717 1.449 85.7 3

Co/CoFe@NC 0.84 6.8 1.54 0.7 1.49 146.6 4

Co5.47N/Co3Fe7/NC 0.89 5.73 1.609 0.719 1.502 264 5

FeCo@Co/N-C-8 0.87 5.73 1.542 0.672 1.52 148 6

CoFe-CoCX@NCNT-2 0.89 3.8 1.63 0.74 1.42 175 7

CoFe-Co3C@NCNTs-20 0.934 5.0 1.55 0.616 1.505 209 8

Co-CoFe@NRPC-90 0.885 6.15 1.55 0.665 1.507 281 9

CoFe@NCNTs 0.84 5.0 1.482 0.642 1.60 158.4 10

CoFe-Co5.47N@NC 0.79 5.4 1.634 0.844 1.46 178 11

FeCo/N-CNFs 0.88 5.2 1.58 0.7 1.445 356.2 12

FeCo/Co-N-C 0.86 5.42 1.61 0.75 1.53 188 13



Co/Co7Fe3@PNCC 0.899 5.5 1.525 0.626 1.534 211.8 14

Co/Co3Fe7@NCNTs-
800 0.89 4.4 1.51 0.62 1.52 165 15

CoFe0.08@NCS 0.8 5.4 1.513 0.713 1.425 157 16

CoFe@NC-5 0.84 5.10 1.597 0.757 1.426 363.7 This work
a: E1/2, half-wave potential in ORR
b: Ej = 10, the operating potential at 10 mA cm−2 in OER
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