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1 Cross-correlated dipole-dipole relaxation

Here, we give a brief justification of why cross-correlated dipole-dipole (DD) relaxation
does not couple the time evolution of single-spin operators, which correspond to magneti-
sation observables, with other single-spin operators. Instead, the first possible couplings
exist between single-spin and three-spin operators.

Let Ŝi be a single-spin operator acting on spin i, and Q̂ an arbitrary operator of the
Liouville space of the spin system. Q̂ can be of any spin order up to N , where N is
the total number of spins in the system. Coupling between the two operators caused by
cross-correlated DD relaxation is determined by the corresponding matrix elements in the
relaxation superoperator, which include factors of the following type [1]:〈

Ŝi

∣∣∣ ˆ̂Sa
ˆ̂
Sb

ˆ̂
Sa′

ˆ̂
Sb′

∣∣∣Q̂〉
= Tr

{
Ŝ†
i
ˆ̂
Sa

ˆ̂
Sb

ˆ̂
Sa′

ˆ̂
Sb′Q̂

}
.

Here, the
ˆ̂
Sa are commutation superoperators involving a single-spin operator Ŝa. The

DD coupling is a bilinear interaction that does not couple a spin with itself, meaning that
a (a′) and b (b′) always refer to two different spins: a ̸= b and a′ ̸= b′. The action of the
commutation superoperator product to the right yields

ˆ̂
Sa

ˆ̂
Sb

ˆ̂
Sa′

ˆ̂
Sb′Q̂ = Q̂a,b,a′,b′,...,

where Q̂a,b,a′,b′,... is a product operator that includes single-spin operators of spins a, b, a′, b′.
Otherwise the operators would act on different spins and, hence, commute, yielding zero.
The remaining matrix element 〈

Ŝi

∣∣∣Q̂a,b,a′,b′,...

〉
can only be non-zero if Q̂a,b,a′,b′,... = Q̂a,b,a′,i,..., i.e., when at least one of the indices of the
ket operator coincides with that of the bra-operator. The operator with the smallest spin
order that satisfies this condition and obeys a ̸= b and a′ ̸= i, is Q̂a,i,a′,i, which is of spin
order 3.
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2 Equation of motion for chemically equiv-
alent spin groups

To derive Eq. (18) in the main text, we simply compute the time derivative of Mz,I(t)
using the present definitions of the group quantities:

d

dt
Mz,I(t) =

d

dt

∑
i∈I

Sz,i(t) = NI
d

dt
Sz,i∈I(t)

= −NI

[∑
j ̸=i

Rz,ij∆Sz,i(t) +
∑
j ̸=i

rz,ij∆Sz,j(t)

]
i∈I

= −NI

[∑
J

∑
(j ̸=i)∈J

Rz,ij∆Sz,i(t) +
∑
J

∑
(j ̸=i)∈J

rz,ij∆Sz,j(t)

]
i∈I

.

In the last step, the spins were divided into the groups J , within which they are chemically
equivalent. Each spin j can belong to the same chemically equivalent group as i (J = I),
or to a different, chemically non-equivalent group (J ̸= I). We treat these cases separately:

d

dt
Mz,I(t) = −NI

[ ∑
(j ̸=i)∈I

Rz,II∆Sz,i(t) +
∑

(j ̸=i)∈I

rz,II∆Sz,j(t)

]
i∈I

−NI

[∑
J ̸=I

∑
j∈J

Rz,IJ∆Sz,i(t) +
∑
J ̸=I

∑
j∈J

rz,IJ∆Sz,j(t)

]
i∈I

= −
[ ∑

(j ̸=i)∈I

Rz,II∆Mz,I(t) +NIrz,II
∑

(j ̸=i)∈I

∆Sz,j(t)

+
∑
J ̸=I

∑
j∈J

Rz,IJ∆Mz,I(t) +NI

∑
J ̸=I

rz,IJ∆Mz,J(t)

]
.

Then, using Eq. (17) of the main text, which is based on the requirement that chemically
equivalent spins have identical time evolution, we get

d

dt
Mz,I(t) = −

[
(NI − 1)Rz,II∆Mz,I(t) +NIrz,II(NI − 1)∆Sz,j∈I(t)

+
∑
J ̸=I

NJRz,IJ∆Mz,I(t) +NI

∑
J ̸=I

rz,IJ∆Mz,J(t)

]
= −

[
(NI − 1)(Rz,II + rz,II)∆Mz,I(t)

+
∑
J ̸=I

NJRz,IJ∆Mz,I(t) +NI

∑
J ̸=I

rz,IJ∆Mz,J(t)

]
= −

[
(RCE

z,I +RCnE
z,I )∆Mz,I(t) +NI

∑
J ̸=I

rz,IJ∆Mz,J(t)

]
.

where (NI − 1)(Rz,II + rz,II) ≡ RCE
z,I and

∑
J ̸=I NJRz,IJ ≡ RCnE

z,I .
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3 Equation of motion for population-weighted
magnetisation

The equation of motion for the population-weighted magnetisation, O(t) = P (t)⊙M (t),
is obtained by using the product rule of differentiation:

d

dt
O(t) =

d

dt
[P (t)⊙M (t)] =

[
d

dt
P (t)

]
⊙M(t) + P (t)⊙ d

dt
M(t).

In chemical equilibrium conditions we may now use Eq. (39) of the main article for the first
term involving the site populations. In the second term we note that the time propagation
of the magnetisation vector M(t) is driven by the propagator matrix L incorporating the
coherent and incoherent Hamiltonians appropriate to the sites. This leads to

d

dt
O(t) = νeqP (t)⊙M(t) + P (t)⊙LM (t),

and employing the associativity of the Hadamard product ⊙ one obtains

d

dt
O(t) = νeqP (t)⊙M (t) +LP (t)⊙M (t)

=

(
νeq +L

)
P (t)⊙M (t)

=

(
νeq +L

)
O(t).

Here, M(t) = M z(t) and L = −Rz in the longitudinal case, whereas M (t) = M+(t)
and L = iω −R+ in the transverse case. Thermalisation of this equation is carried out
exactly as in the absence of chemical exchange (see the main text).
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4 Dipole-dipole time-correlation functions

The DD time-correlation functions (TCFs), GD
IJ(τ), between each pair of spin groups

IJ are shown in Figures S1, S2 and S3 for the Xe(aq), Xe@3AC(aq) and Xe@6AC(aq)
systems, respectively.

Longer MD trajectories with larger number of molecules would provide better statistics
for the TCFs and, hence, more reliable values for the fitted parameters. However, we
believe that the present MD trajectories are sufficiently long for relatively reliable DD
TCFs.

Different choices of the final time point of the TCFs to be included in the exponential
fits result in slightly different values for the fitted parameters. In our case the values
remained within roughly 20% of our ultimate choice, where we strived to include as much
of the TCF as possible, before it became too noisy. Following this procedure, the final
time points were chosen to be 1 ns less than the length of the full production period for
the Xe@Cr(aq) systems, and 0.5 ns for the Xe(aq) system.

Figure S1: Dipole-dipole time-correlation functions for the Xe(aq) system. (a) GD
IJ(τ)

with I = 129Xe, J = 1H. (b) GD
IJ(τ) with I = 1H, J = 129Xe (blue) and GD

II(τ) with
I = 1H (orange). Molecular dynamics data in full lines, Lipari-Szabo fit in dashed lines.
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Figure S2: Dipole-dipole time-correlation functions GD
IJ(τ) for the Xe@3AC(aq) system.

In each panel, the spin group I is indicated by the panel title and the spin groups J are
given in the legend. Molecular dynamics data in full lines, Lipari-Szabo fit in dashed
lines.
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Figure S3: Dipole-dipole time-correlation functions GD
IJ(τ) for the Xe@6AC(aq) system.

In each panel, the spin group I is indicated by the panel title and the spin groups J are
given in the legend. Molecular dynamics data in full lines, Lipari-Szabo fit in dashed
lines.
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5 Chemical exchange rates

Starting from Eq. (3) of the main text

Ka =
[Xe@Cage]eq
[Xe]eq[Cage]eq

and using the relations
[Xe]eq = [Xe]init − [Xe@Cage]eq

[Cage]eq = [Cage]init − [Xe@Cage]eq,

we get

Ka =
[Xe@Cage]eq(

[Xe]init − [Xe@Cage]eq

)(
[Cage]init − [Xe@Cage]eq

) .

This is equivalent to the quadratic polynomial equation for [Xe@Cage]eq:

Ka[Xe@Cage]2eq −
(
Ka[Xe]init +Ka[Cage]init + 1

)
[Xe@Cage]eq +Ka[Xe]init[Cage]init = 0.

With given [Xe]init and [Cage]init, the above equation can be solved to obtain [Xe@Cage]eq,
from which the equilibrium concentrations [Xe]eq and [Cage]eq follow.
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6 129Xe-1H dipole-dipole relaxation as a func-
tion of τc

Figure S4: Longitudinal relaxation rate (in arbitrary units) of a 129Xe nucleus caused
by DD coupling to a proton as a function of the rotational correlation time τc.

Using Eq. (6) in the main text for the longitudinal auto-relaxation rate,

Rz =
1

24

[
3JD(ωXe) + JD(ωXe − ωH) + 6JD(ωXe + ωH)

]
,

and the spectral density functions appropriate for isotropic rotational tumbling (here
omitting the G(0) factor, see the main text),

JD(ω) =
τg

1 + ω2τ 2g
,

Rz(τc) can be plotted for a 129Xe nucleus DD-coupled to a proton. Note that in the
main text we interpret the Lipari-Szabo fit parameter τg to represent τc. The relaxation
rate reaches a maximum at τc ≈ 0.5 ns, which is quite close to the rotational correlation
time of 0.6 ns found for the Xe@0AC(C2D2Cl4) system [2]. The relaxation rate decreases
when τc increases from this point onward, and precisely this is observed in the present
simulations, where correlation times of 1.38 and 1.48 ns are found for Xe@3AC(aq) and
Xe@6AC(aq), respectively.
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