Supporting Information for:

Surface Charge-Driven Sodium-Ion Migration and Secondary Desolvation in MXene Nanoconfinement

Lei Li,^a Huihong Wang,^b and Zhu Liu*^{ab}

^aZhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China

^bCollege of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310012, China

*Corresponding author

E-mail addresses: liuzhu@zju.edu.cn

	-	1	0 1	· · · ·
Atom	L-J and point charge parameters			
	ε (kcal/mol)	σ (Å)	Charge-Anode (e)	Charge-Cathode (e)
Ti-inner	0.6087	1.9565	1.04350	1.0435
Ti-outer	0.6087	1.9565	1.30535	1.30535
			-1.30920 (0e)	-1.30920 (0e)
			-1.33420 (40e)	-1.28420 (40e)
			-1.35920 (80e)	-1.25950 (80e)
С	0.0660	3.5000	-1.38420 (120e)	-1.23420 (120e)
			-1.40920 (160e)	-1.20920 (160e)
			-1.43420 (200e)	-1.18420 (200e)
			-1.45920 (240e)	-1.15920 (240e)
0	0.1554	3.1656	-0.9579	-0.9579
Н	0.1554	1.5000	0.44000	0.44000

Table S1 Lennard-Jones components and point charge parameters for $Ti_3C_2(OH)_2$

Figure S1 Radial distribution function g(r) and coordination number plots n(r) of ClO4⁻ and Na⁺, where the black and red lines represent the MXene interlayer and the bulk phase, respectively.

Figure S2 (a)-(i) Variation of water density in Layer_void with time for different charge cases. (j) Variation of Na⁺ number in Layer_mid with time for different charge cases.

Figure S3 Variation of surface arriving Na-ions concentration with time for different charged cases. The insert image shows the Na-ions absorbed on the MXene surface at 50 ns for 200e/240e cases. Note that in order to distinguish them with the interlayer Na-ions, these surface-arriving Na-ions (marked by red circles) are intentionally drawn larger. The confined water molecules are also hidden.

Figure S4 The change of the water molecules number around the surface-arriving Na ions over time at 200e.

Figure S5 The change of the water molecules number around the surface-arriving Na ions over time at 240e.

Figure S6 In the case of 200e, all surface-arriving Na ions that have switched positions with water molecules were counted. This figure shows the distance variation between surface-arriving Na ions/"blocking" water and H-COM over time. Note that Na⁺-1 (named Na⁺-mark in the manuscript) are present in Fig. 5d.

Figure S7 In the case of 240e, all surface-arriving Na ions that have switched positions with water molecules were counted. This figure shows the distance variation between surface-arriving Na ions/"blocking" water and H-COM over time.

Figure S8 In the case of 200e, the orientation of the water molecule as a function of simulation time. θ is the angle between the dipole moment of the water molecule and the y-axis of the simulation box.

Figure S9 In the case of 240e, the orientation of the water molecule as a function of simulation time. θ is the angle between the dipole moment of the water molecule and the y-axis of the simulation box.