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1 Computational hydrogen electrode
Electrochemical reactions involve proton-coupled electron transfer steps which are affected by 

the electrode potential. This potential dependence is accounted for in the computational 

hydrogen electrode model originally developed by Norskov.1 The reversible hydrogen electrode 

(RHE) is used as reference in this approach.

(S1)
1
2

𝐻2↔𝐻 + + 𝑒 ‒

At an applied potential U vs. RHE, the chemical potential of the proton-electron pair is shifted by 

-eU:

(S2)𝜇(𝐻 + + 𝑒 ‒ ) = 1/2 𝜇(𝐻2) ‒ 𝑒𝑈

Using Equation (2), the reaction free energy of an elementary step *A + (H++e−) → *AH with an 

applied potential U can be calculated as:

(S3)Δ𝐺 = Δ𝐺0 + 𝑒𝑈

where ∆G0 is the reaction free energy at 0 V vs. RHE. The limiting potential is defined as the lowest 

applied potential (vs RHE) that makes the reaction (elementary steps) downhill in free energy.
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(S4)
𝑈𝑙𝑖𝑚𝑖𝑡𝑖𝑛𝑔 =‒

Δ𝐺𝑚𝑎𝑥

𝑒

2 d-band model

The interaction of the adsorbate and the catalyst surface involves interaction of sp-states of the 

adsorbate with both sp-states and d-states of the catalyst,2,3 with an adsorption energy that can 

be decomposed as:

(S5)Δ𝐸 = Δ𝐸𝑠𝑝 + Δ𝐸𝑑

where  is the interaction of the adsorbate with sp-states of the surface and  is the Δ𝐸𝑠𝑝 Δ𝐸𝑑

interaction of the adsorbate states with the d-states of the surface. Since all transition metals 

(TMs) have filled and broad sp orbitals, the adsorbate interaction with sp states (∆Esp) of the 

catalyst is the same for all TMs. Thus,  depends primarily on the interaction of the sp-states of Δ𝐸

the adsorbate and the d-states of the catalyst. The projected density of states (PDOS) onto the 

metal d-orbitals that interact with the adsorbate sp-orbitals is characterized by its moments: the 

first moment is the d-band center (ϵd) and the second moment is the d-band width (Wd). As seen 

from the Pearson correlation map in the main text (Figure 3), the combination of ϵd and Wd is a 

good descriptor to estimate trends in adsorption energy for TMs with different adsorbates, as 

reported before in different contexts.4-6

3 Hyperparameter tuning

The hyperparameters that could be tuned for the ANN, SVR and RF algorithms are listed in Table 

S1. The optimal hyperparameter set for ANN is as follows: number of hidden layers (2 layers), 

learning rate (0.01), nodes (2 layers with 13 → 11 nodes/layer), batch size (16), activation 

function (relU) and total number of epochs (300) with early stopping. The loss function is set as 

the mean squared error (MSE). During the training phase, the loss function is minimized using 

the Adam optimization algorithm.
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Table S1: Experimental and calculated gas-phase thermochemistry data

Species EDFT ZPE (Exp.) Cp (Exp.) TS (Exp.) ZPE (DFT) TS (DFT)
N2(g) -35.13 0.15 0.09 0.59 0.14 0.59
H2(g) -8.01 0.19 0.09 0.40 0.25 0.40

NH3(g) -30.18 0.88 0.10 0.60 0.91 0.59
EDFT: electronic energy; ZPE: zero-point energy; Cp: heat capacity; TS: vibrational entropy (S) multiplied by 
temperature T=298 K. All values are in eV. Experimental data from NIST (https://webbook.nist.gov/chemistry/form-
ser/) and calculated data evaluated with BEEF-vdW/PAW (see section 3.1 of main text).

Table S2: Hyperparameters of machine learning algorithms

MLA Hyperparameters Range
Activation function relU, gelU, selU
Number of layers 1-2

Neurons 4-18
Epochs 150, 200, 250, 300

Optimizer Adam, rmprop
Learning rate 0.01, 0.005, 0.001

ANN

Batch size 16, 32
kernel linear, rbf

C 1, 10, 100, 1000SVR

Gamma 1, 10−1, 10−2, 10−3, 10−4

n estimators 50, 100, 200, 300, 400
max depth 1,2,3,4,5

max features sqrt
RF

min samples leaf 3,4,5
MLA: machine learning algorithm; ANN: artificial neural network: SVR: 
support vector regressor; RF: random forest.

https://webbook.nist.gov/chemistry/form-ser/
https://webbook.nist.gov/chemistry/form-ser/
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Table S3: Performance of machine learning algorithms

MLA MAE MSE RMSE
Linear regression 0.28 (0.32) 0.16 (0.21) 0.40 (0.46)
Ridge regression 0.31 (0.34) 0.17 (0.22) 0.42 (0.47)
Lasso 0.35 (0.38) 0.21 (0.26) 0.46 (0.51)
Elastic net 0.33 (0.36) 0.20 (0.25) 0.44 (0.50)
SVR 0.27 (0.32) 0.19 (0.28) 0.43 (0.53)
Random forest 0.17 (0.25) 0.06 (0.15) 0.26 (0.39)
Neural network 0.15 (0.23) 0.06 (0.13) 0.25 (0.34)
MAE: mean absolute error, MSE: mean squared error; RMSE: root mean squared error. All values are in eV.

(a) (b)

(c) (d)

Figure S1: MLA feature distributions, (a) d-band center, (b) d-band width, (c) d-band filling 
and (d) top-edge of the d-band.
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(a) (b)

Figure S2: Training and validation loss curves of the ANN: (a) without early stopping, showing 
signs of overfitting, and (b) with early stopping, where training is stopped at epoch 80 to 
prevent overfitting.

4 Model performance 
All models were initially trained using all available features discussed in the text but following 

feature importance analysis (Fig. S1), only the important features, namely the d-band center, 

filling and top edge (dtop), and the electron affinity, were used to reduce the model complexity 

and evaluate the performance of the SVR, RF and ANN models. Using only four important 

features, the ANN MAE for train and test sets increased to 0.21 and 0.28 eV, respectively, which 

remains relatively small. However, the RMSE increased to 0.33 and 0.44 eV, respectively. We also 

evaluated the ANN performance using only elemental descriptors and the RMSE for train and 

test sets increased to 0.42 and 0.54 eV, which clearly shows the effect of electronic descriptors 

on the model accuracy. Another common approach for feature elimination/filtering, based on 

feature variance, was found to be questionable for the problem at hand; d-band filling has the 

lowest variance and should be eliminated based on the feature variance approach, while feature 

importance analysis clearly identifies d-band filling as one of the important features.
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Table S4. Absolute variance of training features used in the MLA model.

Feature Variance Unit a

Center 1.16 eV

Filling 0.03 -

Width 0.28 eV

d-band top edge 1.47 eV

Ionization potential 0.45 eV

Electron affinity 0.27 eV

Electronegativity 0.03 -

Workfunction 0.34 eV

Atomic radius 0.01 Å
a Units refer to the original features; variance is expressed in squared units (e.g., eV2, Å2)

Figure S3: Relative feature importance of the train set used for MLA training. Values reflect 
the influence of each input feature on prediction performance.
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Figure S4: Features of the distal vs enzymatic pathway for the NRR over Au@Au3Re and 
Au@Au3Mo. (a) adsorption free energy of N2 with end-on and side-on configurations, (b) first 
NRR step of the enzymatic pathway with *N2 and *N2H side-on configuration (to be compared 
with Fig. 6 of the main text for the distal pathway with end-on configurations); (c, e) side and 
(d, f) top view of intermediates.

(a) (b)

(c) (d)

(e) (f)
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Figure S5: Crystal orbital Hamilton population for the interactions of Re in Au3Re and adsorbed 
N2. The Fermi level is indicated by the dashed line.
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5 Formation energy
The formation energy, which provides a measure of the stability of a compound or mixture with 

respect to its pure elemental components, is calculated for the alloys as:

                                 (S6)
𝐸𝐹𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = 𝐸𝐴(4 ‒ 𝑥)𝐵𝑥

+ 𝑥(𝐸𝐴 ‒ 𝐸𝐵) ‒ 𝐸𝐴 (𝑠𝑙𝑎𝑏)

where ,  and  are the electronic energies of the four-layer 2 2 alloy slab, isolated 
𝐸𝐴(4 ‒ 𝑥)𝐵𝑥 𝐸𝐴 𝐸𝐵 ×

host and guest metal atoms, respectively, x is the number of guest metals in the alloy, and 

 is the electronic energy of the four-layer 2 2 pure host slab (16 host atoms). The second 𝐸𝐴 (𝑠𝑙𝑎𝑏) ×

term in the right-hand side of the equation accounts for guest (B) substitution of a host (A) atom 

in the slab. For example, the so-defined formation energy of Au@Au3Re is:

                                  (S7)
𝐸𝐹𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = 𝐸𝐴𝑢@𝐴𝑢3𝑅𝑒 + 𝐸𝐴𝑢 ‒ 𝐸𝑅𝑒 ‒ 𝐸𝐴𝑢(𝑠𝑙𝑎𝑏)

where EAu@Au3Re, EAu, ERe and EAu(slab) are the energies of the alloy slab, isolated Au and Re atoms, 

and pure Au slab, respectively.”

Table S5 Formation energy of surface alloys in eV.a

Structure EFormation

Au3Re -5.37
Au3Mo -3.20

aThe formation energies are calculated using equation S6.

(a) (b) (c)

Figure S6: Adsorption sites considered in the search of minimum energy configurations of each 
intermediate overA3B, A2B2 and AB3 surface alloys.
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Table S6: Adsorption free energy of NRR intermediates over selected solid supports (eV)

Structure ∆G∗N2 ∆G∗N2H ∆G∗N2H2 ∆G∗N ∆G∗NH ∆G∗NH2 ∆G∗NH3 ∆G∗H

Au3Re -0.64 -0.15 0.09 -1.13 -1.04 -0.69 -0.57 -0.26
Au3Mo -0.37 0.29 0.22 -0.74 -0.91 -0.59 -0.46 0.08

Mo -0.07 0.10 0.08 -1.39 -1.37 -0.69 -0.13 -0.40
Re -0.16 0.43 0.44 -1.28 -1.20 -0.25 -0.09 -0.46

The adsorption free energies ( ) are calculated using Equation 2 of the main text.Δ𝐺

Figure S7: Net charge on active sites (Re in Au3Re and Mo in Au3Mo) relative to that of in 
pure Re (001) and Mo (100)
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(a)

(b)

(c)
Figure S8: PDOS of the Mo active site in Au-Mo surface alloys; Au3Mo (green), Au2Mo2 (red) 

and AuMo3 (blue); (a) Au3Mo and Au2Mo2, (b) Au3Mo and AuMo3 and Au2Mo2 and AuMo3 
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(a) (b)

(c) (d)

Figure S9: Free energy profile of the NRR distal pathway on (a) Re (001), (b) Mo (110), (c) Au3Re 
(111) and (d) Au3Mo (111) surfaces.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure S10: Minimum energy configuration of NRR intermediates over (a-h) Au3Mo and (i-p) 
Au3Re (top view).
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Table S7: Adsorption free energies of N2 and H along with selectivity factor (eV)

structure ∆𝐺 ∗ 𝑁2 ∆𝐺 ∗ 𝐻 PLS Ulimiting ∆𝐺𝑆

Au3Re -0.64 -0.26 b -0.48 -0.38
Au3Mo -0.37 0.08 b -0.67 -0.46

Mo -0.07 -0.40 f -0.67 0.33
Re -0.16 -0.46 f -0.95 0.30

PLS: potential limiting step. Step b (*N2  *N2H) and step f (*NH  *NH2) are illustrated in the NRR distal mechanism 
of Equation 1 of the main text.
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(a) (b)

(c)

Figure S11: MLA-predicted vs DFT-calculated NRR limiting potentials for (a) ANN, (b) SVR and (c) 
RF for train (blue) and test (red) datasets
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure S12: PDOS of N2 before (blue) and after adsorption (red) on Au3Re.
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(a) (b)

Figure S13: PDOS of (a) Re and (b) Mo active sites in Au3Re and Au3Mo, respectively. The 
dashed line represents the Fermi level.
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(a)

(b)

(c)
Figure S14: Hydrogenation sequence of NRR intermediates for the (a) distal, (b) alternating 
and (c) enzymatic mechanism. Nitrogen, hydrogen and the catalyst surface are represented 
as blue, white and gray balls, respectively.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure S15: Minimum energy configuration of NRR intermediates over (a-h) Re (001) and (i-p) 
Mo (110) surfaces (top view).



21

Figure S16: Free energy profile of the HER Volmer-Heyrovsky pathway over Au3Mo (111) (violet), 
Au3Re (111) (green), Mo (110) (red) and Re (001) (blue) surfaces.
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