Supporting Information

Achieving Tunable Adsorption Selectivity and Sensitivity of Boridenes for Gas Detection with Surface O-termination Engineering

Sateng Li¹, Haoliang Liu¹, Yuxuan Hou¹, Qin Jiang¹, Kai Wu¹, Yonghong Cheng¹, Bing Xiao^{1*}

 School of Electrical Engineering & State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University. Xi'an, Shaanxi, 710049, P.R. China

* Corresponding Author: bingxiao84@xjtu.edu.cn

Fig. S1 Adsorption energies of NO on $Mo_{4/3}B_2$ and $Mo_{4/3}B_2O_2$ with and without dipole correction.

Fig. S2 The calculated partial density of states (PDOS) and total density of states (TDOS) for the stable adsorption structures of the bare $Mo_{4/3}B_2$ monolayer: (a): $C_2H_2_1$; (b): $C_2H_2_2$; (c): C_2H_4 ; (d): C_2H_6 ; (e): $C_4F_7N_1$; (f): $C_4F_7N_2$; (g): CH_2O_1 ; (h): CH_2O_2 ; (i): CH_4 ; (j): CO; (k): CO_2 ; (l): H_2_1 ; (m): H_2_2 ; (n): H_2O ; (o): N_2 ; (p): NO; (q): NO_2_1 ; (r): NO_2_2 ; (s): O_2_1 ; (t): O_2_2 ; (u): SF_6 ; (v): SO_2_1 ; (w): SO_2_2 .

Fig. S3 TDOS of the $Mo_{4/3}B_2O_2$ substrate with and without the gas adsorbates and the gas molecule along: (a): NO; (b): NO₂.

Fig. S4 Electrostatic potential profiles for the stable gas adsorption structures of $Mo_{4/3}B_2$: (a): $C_2H_2_1$; (b): $C_2H_2_2$; (c): C_2H_4 ; (d): C_2H_6 ; (e): $C_4F_7N_1$; (f): $C_4F_7N_2$; (g): CH_2O_1 ; (h): CH_2O_2 ; (i): CH_4 ; (j): CO; (k): CO_2 ; (l): H_2_1 ; (m): H_2_2 ; (n): H_2O ; (o): N_2 ; (p): NO; (q): NO_2_1 ; (r): NO_2_2 ; (s): O_2_1 ; (t): O_2_2 ; (u): SF_6 ; (v): SO_2_1 ; (w): SO_2_2 , (x) bare $Mo_{4/3}B_2$.

Fig. S5 Tracking the adsorbed molecules in FPMD simulations at 300 K for insulating gases: (a): CO_2/C_4F_7N ; (b): N_2/C_4F_7N ; (c): CO/C_4F_7N ; (d): CO_2/SF_6 ; (e): N_2/SF_6 ; (f): SO_2/SF_6 .

Fig. S6 Tracking the adsorbed molecules for characteristic decomposition gases of insulating oils from FPMD simulations at 300 K: (a): C_2H_4/C_2H_2 ; (b): C_2H_4/H_2 ; (c): C_2H_6/C_2H_2 ; (d): C_2H_6/C_2H_4 ; (e): C_2H_6/H_2 ; (f): CH_4/C_2H_2 ; (g): H_2/C_2H_2 ; (h): CH_4/C_2H_4 ; (i): CH_4/C_2H_6 ; (j): CH_4/H_2 .

Fig. S7 Tracking the adsorbed molecules for pollutant gases from FPMD simulations at 300 K: (a): CH₂O/H₂O; (b): CO/H₂O; (c): NO/H₂O; (d): NO₂/H₂O; (e): SO₂/H₂O; (f): CH₂O/O₂; (g): CO/O₂; (h): NO/O₂; (i): NO₂/O₂; (j): SO₂/O₂.

(a)

	0.0		
Initial	0.8 ps	1.4 ps	Final(2 ps)
\vee \vee \leftrightarrow \vee	don o d	8 00 8 h	A
solo al	~ }}~}\$}~}\$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~88~98~98~98	A-88-88-88-9	A~82~82~82~80	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
⊷ ¥ ⊷ ¥	A ***	T	>
~~~ <u>&gt;=~ &gt;=~ &gt;=~ &gt;=</u>	8 89 A 98 A 98 A 98 A	~ ASLA ASLA ASLA 28.~	~ ~ ~ M~ M~ M~ M~ M~ M
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*****	\$~9\$~ <del>\$\$</del> ~\$\$~\$
0-0 V 0-0 0-0	مي م	مو م و	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	88-88-88-88-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~\$\$~\$\$~\$\$~\$\$~	&~&~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(b)			
Initial	0.8 ps	1.4 ps	Final(2 ps)
0-0 0-0 0-0 0-0	م م مح	* * *	^{وم} وم 8 8
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~80~86~80~86~8°	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<i>૾ૺ૱ૡૺ૱ૡૺ૱ૡૡ૱ૡ</i>
~98~98~98~98	Aragragragrag	A-98-98-98-98	-98-98-98-98
	I	800	
0-0 0-0 0-0 0-0	90 gr	\$	••••••••••••••••••••••••••••••••••••••
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<b>`}~?</b> ~?~?~?~?~?	<u>}</u> } } } }	Acher Server
••• ••• •••	°° °°	as as as	00 95
<i>.</i> શ્વેરક્ષેપ્ક્ષેપ્ક્ર	weekeekeekeekeekeekeekeekeekeekeekeekeek	~84~84~84~84°	~ ~ <u>58 ~ 58 ~ 58 ~</u>
~98~98~98~98~	A~98~98~98~98	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Fig. S8 Molecular dynamics sampling of NO adsorption configurations on  $Mo_{4/3}B_2O_2$  in gas mixtures with different molecular ratios (1:3, 1:1 and 3:1) at 300 K and different times: (a):NO-H₂O; (b): NO-O₂.

Table. S1 Average DOS values or band gaps of  $Mo_{4/3}B_2$  or  $Mo_{4/3}B_2O_2$  before and after adsorption

Gas species	Mo _{4/3} B ₂ (average DOS:	Mo _{4/3} B ₂ O ₂ (band gap: eV)	
	states/eV.cell)		
substrate(before adsorption)	98.72	0.324	
$C_2H_2(-1)$	65.74	0.333	
$C_2H_2_2$	71.62		
$C_2H_4$	68.65	0.324	
$C_2H_6$	78.58	0.333	
$C_4F_7N(1)$	67.75	0.324	
$C_4F_7N_2$	61.07		
$CH_2O(1)$	79.31	0.333	
$CH_2O_2$	74.81		
$CH_4$	70.06	0.333	
CO	70.3	0.333	
$CO_2$	78.62	0.333	
H ₂ (_1)	65.31	0.333	
H ₂ _2	68.41		
H ₂ O	72.37	0.333	
$N_2$	64.22	0.333	
NO	71.55	0	
NO ₂ (_1)	70.67	0.09	
NO ₂ _2	77.8		
O ₂ (_1)	78.55	0.333	
O ₂ _2	82.38		
$SF_6$	96.7	0.333	
$SO_2(1)$	72.92	0.333	
SO ₂ _2	77.44		

of various gas species.

Molecules	Mo _{4/3} B ₂				Mo _{4/3} B ₂ O ₂			
	$E_{\rm ads}({\rm eV})$	∆q (e)	S (%)	$\tau$ (s)	$E_{\rm ads}({\rm eV})$	$ ext{ } \Delta q$ (e)	S (%)	$\tau$ (s)
C ₂ H ₂ (_1)	-4.42	-0.79	33.41	$1.36\times10^{62}$	0.037	0.04	2.78	$2.4 \times 10^{-13}$
$C_2H_2_2$	-5.45	-1.55	27.45	$2.56 \times 10^{79}$	$>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$			
$C_2H_4$	-3.23	-0.76	30.46	$1.49\times10^{42}$	-0.028	0.05	0	$2.95\times10^{\text{-12}}$
$C_2H_6$	-1.2	-0.09	20.4	$1.34 \times 10^8$	-0.046	0.01	2.78	$5.91  imes 10^{-12}$
$C_4F_7N(1)$	-1.89	-2.23	38.14	$5.01  imes 10^{19}$	-0.078	0	0	$2.03 \times 10^{-11}$
$C_4F_7N_2$	-7.84	-1.39	31.37	$3.12 \times 10^{119}$	$\succ$			
CH ₂ O(_1)	-3.54	-0.29	19.66	$2.36\times10^{47}$	0.052	0.07	2.78	$1.34 \times 10^{-13}$
$\rm CH_2O_2$	-4.86	-1.66	24.22	$3.26\times10^{69}$	$>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$			
$CH_4$	-0.89	-0.02	29.03	$8.46 \times 10^2$	0.073	0.01	2.78	$5.97  imes 10^{-14}$
СО	-2.79	-0.96	28.79	$6.23 \times 10^{34}$	0.122	0.01	2.78	$8.99\times10^{15}$
$CO_2$	-7.41	-1.31	20.36	$1.91 \times 10^{112}$	0.107	0	2.78	$1.6  imes 10^{-14}$
H ₂ (_1)	-0.41	-0.04	33.85	7.53 × 10 ⁻⁶	0.155	0.01	2.78	$2.51 \times 10^{-15}$
$H_2_2$	-2.75	-0.88	30.7	$1.33  imes 10^{34}$	$>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$			
$H_2O$	-1.74	-0.11	26.69	$1.53 \times 10^{17}$	0.076	0.02	2.78	$5.31 \times 10^{-14}$
$N_2$	-1.11	-1.11	34.95	$4.14 \times 10^{6}$	0.086	0	2.78	3.61 × 10 ⁻¹⁴
NO	-4.77	-1.1	27.52	$1.01  imes 10^{68}$	-0.27	0.38	100	$3.38  imes 10^{-8}$
NO ₂ (_1)	-10.14	-2.76	28.41	$1.17 \times 10^{158}$	0.059	0.09	72.22	$1.02 \times 10^{-13}$
$NO_2_2$	-13.67	-1.43	21.18	$1.89\times10^{217}$	$\succ$			
O ₂ (_1)	-3.81	-0.72	20.43	$7.98\times10^{51}$	0.175	0.06	2.78	$1.16 \times 10^{-15}$
O2_2	-10.82	-1.82	16.55	$2.98\times10^{169}$	$\succ$			
$SF_6$	1.33	-0.05	2.04	$4.93\times10^{\text{-}35}$	0.039	-0.01	2.78	$2.22 \times 10^{-13}$
SO ₂ (_1)	-5.43	-0.85	26.13	$1.18  imes 10^{79}$	0.021	0.01	2.78	$4.44 \times 10^{-13}$
SO ₂ _2	-10.38	-2.5	21.55	$1.24 \times 10^{162}$				

Table. S2 Gas sensing-properties of Mo_{4/3}B₂ and Mo_{4/3}B₂O₂.

Molecules	Mo _{4/3} B ₂ O _{2/3}			Mo _{4/3} B ₂ O _{4/3}				
	$E_{\rm ads}({\rm eV})$	$ ext{ } \Delta q (e)$	S (%)	$\tau$ (s)	$E_{\rm ads}({\rm eV})$	$ ext{ } \Delta q (e)$	S (%)	$\tau$ (s)
C ₂ H ₂	-0.986	-0.51	11.3	$3.45  imes 10^4$	-0.607	0.13	8.74	$1.52 \times 10^{-2}$
$C_2H_4$	-0.991	-0.35	11.87	$4.18 \times 10^4$	-0.55	0.14	34.05	$1.68 \times 10^{-3}$
$C_2H_6$	0.149	-0.01	9.28	$3.17 \times 10^{-15}$	-0.353	0.06	37.71	$8.33  imes 10^{-7}$
$C_4F_7N$	-0.035	-0.33	9.42	$3.86 \times 10^{-12}$	-0.651	0.03	35.74	$8.29  imes 10^{-2}$
CH ₂ O	-0.665	-0.22	17.59	$1.42 \times 10^{-1}$	-0.848	0.08	38.37	$1.67 \times 10^2$
$CH_4$	0.3	0.04	8.96	$9.3\times10^{\text{-18}}$	-0.262	0.03	33.44	$2.48 \times 10^{-8}$
СО	-0.787	-0.34	13.57	15.8	-0.447	-0.04	37.86	$3.14 \times 10^{-5}$
CO ₂	0.002	-0.01	10.99	9.26 × 10 ⁻¹³	-0.467	0.01	37.55	$6.8 \times 10^{-5}$
H ₂ (_1)	0.443	-0.01	0.79	$3.71 \times 10^{-20}$	-0.189	0.03	42.51	$1.48 \times 10^{-9}$
H2_2	-1.018	-0.66	18.89	$1.19 \times 10^5$	$\succ$			
$H_2O$	-0.932	0.1	9.08	$4.28  imes 10^3$	-1.163	0.11	43.27	$3.21  imes 10^7$
$N_2$	-0.31	-0.22	18.87	$1.58 \times 10^{-7}$	-0.382	-0.01	33.12	$2.55 \times 10^{-6}$
NO	-1.594	-0.89	8.02	$5.43  imes 10^{14}$	-1.006	-0.26	23.14	$7.46  imes 10^4$
NO ₂	-3.212	-1.4	11.28	$7.45\times10^{41}$	-1.213	-0.45	8.87	$2.21 \times 10^8$
O ₂ (_1)	-2.795	-0.71	14.55	$7.55\times10^{34}$	-1.326	-0.52	0.78	$1.74  imes 10^{10}$
O ₂ _2	-7.992	-1.68	26.99	$1.1  imes 10^{122}$	$\succ$			
$SF_6$	0.411	-0.01	0.03	$1.28  imes 10^{-19}$	-0.282	-0.02	30.26	$5.37  imes 10^{-8}$
$SO_2$	-1.847	-0.81	9.76	$9.51\times10^{18}$	-0.647	-0.04	29.38	$7.11 \times 10^{-2}$

Table. S3 Gas sensing-properties of Mo_{4/3}B₂O_{2/3} and Mo_{4/3}B₂O_{4/3}.