Supplementary Material

Band alignment and optoelectronic characteristics of blue phosphorene/SbN van der Waals heterostructures

Mengge Li^{a, b}, Yuhua Zhang^a, Yufei Wang^a, Weiguang Chen^c, Liying Zhang

^{b,*}, Yanwei Luo^{a,*}

^a School of Physics, Henan University of Technology, Zhengzhou 450001, China

^b Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China

^c School of Physics and Electrical Engineering, Zhengzhou Normal University, Zhengzhou 450001, China

* Corresponding authors: Liying Zhang, Yanwei Luo

* E-mail addresses: zhangly@henu.edu.cn, luoyanwei@haut.edu.cn

Figure S1 The band structures of the most stable configuration (hcp-top) of Blue-P/SbN vdWHs were calculated using both PBE+SOC and HSE06+SOC methods.

Figure S2 (a)-(c)The geometric structures of Blue-P monolayer, SbN monolayer, and the most stable configurations of Blue-P/SbN vdWHs, respectively.

Figure S3 Top and side views of six high symmetry structures of Blue-P/SbN vdWHs. (a) Initial structures and (b) optimized structures, respectively. The yellow, dark (light) blue, and gray balls represent Sb, P and N atoms, respectively.

Figure S4 (a) Total energy variation curves of heterostructure under different strains,(b) Change curve of CBM and VBM under different strains.

Figure S5 Strain energy (E_{strain})and stress-strain curves of Blue-P/SbN vdWHs were calculated. The blue line represents the change of stress-strain, the pink line represents the change of strain energy.

Figure S6 The contributions of each p orbital sub-orbital to the CBM of the Blue-P monolayer in Blue-P/SbN vdWHs under (a) Different biaxial strains, and (b) Different interlayer distances.

	Туре-	fcc-hcp	fcc-top	hcp-top	hcp-fcc	top-hcp	top-fcc
Blue-P/ SbN	E _b (eV)	-0.195	-0.230	-0.241	-0.233	-0.105	-0.109
	H _{-FS} (Å)	3.29	3.22	3.22	3.21	4.02	3.89
	R _{-FS} (Å)	2.25	2.25	2.25	2.25	2.25	2.25

Table S1. Binding energy (E_b) , interlayer distances (H_{-FS}) , P-P bond lengths (R_{-FS}) of Blue-P/SbN vdWHs.

Strain(%)	-4	-2	0	2	4
R _(P-P) (Å)	2.21	2.24	2.26	2.28	2.32
$R_{(Sb-N)}(\text{\AA})$	2.10	2.12	2.14	2.16	2.18
d (interlayer) (Å)	3.33	3.28	3.23	3.18	3.13

Table S2 P-P bond and Sb-N bond lengths and the interlayer distances (d) ofvdWHs lengths under different strains.