# Supplementary Information

Viscosity Prediction of CO<sub>2</sub>-Saturated Imidazolium-Based Ionic Liquids Using  $\varepsilon^*$ -Modified

Sanchez-Lacombe Equation of State and Free Volume Theory with a New Correction Term

Ryohei Otani,<sup>a</sup> Yuya Hiraga,<sup>a,\*</sup> Masaru Watanabe<sup>a, \*\*</sup> <sup>a</sup> Research Center of Supercritical Fluid Technology, Tohoku University Aramaki Aza Aoba 6-6-11, Aoba-ku, Sendai, Miyagi 980-8579, Japan

\*Corresponding author. E-mail: yuya.hiraga.d6@tohoku.ac.jp (Y. Hiraga).

\*\*Corresponding author. E-mail: masaru.watanabe.e2@tohoku.ac.jp (M. Watanabe).

#### S1 Calculation for pure IL density



**Fig. S1** Correlation results for the density of [hmim][Tf<sub>2</sub>N]. Symbols:  $\bigcirc$ , 273 K;  $\triangle$ , 293 K;  $\Box$ , 313 K;  $\bigtriangledown$ , 333 K;  $\diamondsuit$ , 353 K;  $\triangleleft$ , 373 K;  $\triangleright$ , 393 K;  $\bigstar$ , 413 K.<sup>1</sup> Lines:  $\varepsilon^*$ -mod SL-EoS.



**Fig. S2** Correlation results for the density of [dmim][Tf<sub>2</sub>N]. Symbols:  $\bigcirc$ , 293 K;  $\triangle$ , 298 K;  $\Box$ , 303 K;  $\bigtriangledown$ , 313 K;  $\diamondsuit$ , 333 K;  $\triangleleft$ , 353 K;  $\triangleright$ , 373 K;  $\doteqdot$ , 393 K.<sup>2</sup> Lines:  $\varepsilon^*$ -mod SL-EoS.



**Fig. S3** Correlation results for the density of [emim][FAP]. Symbols:  $\bigcirc$ , 293 K;  $\triangle$ , 303 K;  $\Box$ , 313 K;  $\bigtriangledown$ , 323 K;  $\diamondsuit$ , 333 K;  $\triangleleft$ , 343 K.<sup>3</sup> Lines:  $\varepsilon^*$ -mod SL-EoS.



**Fig. S4** Correlation results for the density of [hmim][FAP]. Symbols:  $\bigcirc$ , 293 K;  $\triangle$ , 303 K;  $\Box$ , 313 K;  $\bigtriangledown$ , 323 K;  $\diamondsuit$ , 333 K;  $\triangleleft$ , 343 K.<sup>3</sup> Lines:  $\varepsilon^*$ -mod SL-EoS.

## S2 Calculation for pure IL viscosity



**Fig. S5** Correlation results for viscosity of [hmim][Tf<sub>2</sub>N]. Symbols:  $\bigcirc$ , 283.15 K;  $\triangle$ , 298.15 K;  $\Box$ , 323.15 K;  $\nabla$ , 348.15 K.<sup>4</sup> Lines: FVT +  $\varepsilon^*$ -mod SL-EoS.



**Fig. S6** Correlation results for viscosity of [dmim][Tf<sub>2</sub>N]. Symbols:  $\bigcirc$ , 298.15 K;  $\triangle$ , 323.15 K;  $\Box$ , 343.15 K.<sup>5</sup> Lines: FVT +  $\varepsilon^*$ -mod SL-EoS.



**Fig. S7** Correlation results for viscosity of [emim][FAP]. Symbols:  $\bigcirc$ , 303.15 K;  $\triangle$ , 318.15 K;  $\Box$ , 323.15 K;  $\nabla$ , 333.15 K.<sup>6</sup> Lines: FVT +  $\varepsilon^*$ -mod SL-EoS.



**Fig. S8** Correlation results for viscosity of [hmim][FAP]. Symbols:  $\bigcirc$ , 303.15 K;  $\triangle$ , 318.15 K;  $\Box$ , 323.15 K;  $\bigtriangledown$ , 333.15 K.<sup>6</sup> Lines: FVT +  $\varepsilon^*$ -mod SL-EoS.

### S3 Calculation for CO<sub>2</sub> solubility



**Fig. S9** Correlation results for CO<sub>2</sub> solubility in [hmim][Tf<sub>2</sub>N]. Symbols:  $\bigcirc$ , 298.15 K;  $\triangle$ , 323.15 K;  $\Box$ , 343.15 K.<sup>7</sup> Lines: FVT +  $\varepsilon^*$ -mod SL-EoS.



**Fig. S10** Correlation results for CO<sub>2</sub> solubility in [dmim][Tf<sub>2</sub>N]. Symbols:  $\bigcirc$ , 298.15 K;<sup>7</sup> •, 298.15 K;<sup>8</sup>  $\triangle$ , 323.15 K;<sup>7</sup>  $\blacktriangle$ , 323.15 K;<sup>8</sup>  $\square$ , 343.15 K.<sup>7</sup> Lines: FVT +  $\varepsilon^*$ -mod SL-EoS.



**Fig. S11** Correlation results for CO<sub>2</sub> solubility in [emim][FAP]. Symbols:  $\bigcirc$ , 303.15 K;  $\triangle$ , 313.15 K;  $\Box$ , 323.15 K;  $\bigtriangledown$ , 343.15 K.<sup>9</sup> Lines: FVT +  $\varepsilon^*$ -mod SL-EoS.



**Fig. S12** Correlation results for CO<sub>2</sub> solubility in [hmim][FAP]. Symbols:  $\bigcirc$ , 298.15 K;  $\triangle$ , 313.15 K;  $\square$ , 333.15 K.<sup>10</sup> Lines: FVT +  $\varepsilon^*$ -mod SL-EoS.

S4 Viscosity of IL + CO<sub>2</sub> mixtures using  $\beta$  determined by correlation



**Fig. S13** Prediction and correlation results for the viscosity of the [hmim][Tf<sub>2</sub>N] + CO<sub>2</sub> mixture. Symbols:  $\bigcirc$ , 298.15 K;  $\triangle$ , 323.15 K;  $\square$ , 343.15 K.<sup>11</sup> Dashed lines: Prediction with FVT +  $\varepsilon^*$ -mod SL-EoS ( $\beta = 0$ ). Solid lines: Correlation with FVT +  $\varepsilon^*$ -mod SL-EoS ( $\beta \neq 0$ ).



**Fig. S14** Prediction and correlation results for the viscosity of the [dmim][Tf<sub>2</sub>N] + CO<sub>2</sub> mixture. Symbols:  $\bigcirc$ , 298.15 K;  $\triangle$ , 323.15 K;  $\square$ , 343.15 K.<sup>11</sup> Dashed lines: Prediction with FVT +  $\varepsilon^*$ -mod SL-EoS ( $\beta = 0$ ). Solid lines: Correlation with FVT +  $\varepsilon^*$ -mod SL-EoS ( $\beta \neq 0$ ).



**Fig. S15** Prediction and correlation results for the viscosity of the [emim][FAP] + CO<sub>2</sub> mixture. Symbols:  $\bigcirc$ , 293.15 K;  $\triangle$ , 313.15 K;  $\square$ , 323.15 K;  $\bigtriangledown$ , 333.15 K;  $\diamondsuit$ , 343.15 K.<sup>6</sup> Dashed lines: Prediction with FVT +  $\varepsilon^*$ -mod SL-EoS ( $\beta = 0$ ). Solid lines: Correlation with FVT +  $\varepsilon^*$ -mod SL-EoS ( $\beta \neq 0$ ).



**Fig. S16** Prediction and correlation results for the viscosity of the [hmim][FAP] + CO<sub>2</sub> mixture. Symbols:  $\bigcirc$ , 293.15 K;  $\triangle$ , 313.15 K;  $\square$ , 323.15 K;  $\bigtriangledown$ , 333.15 K;  $\diamondsuit$ , 343.15 K.<sup>6</sup> Dashed lines: Prediction with FVT +  $\varepsilon^*$ -mod SL-EoS ( $\beta = 0$ ). Solid lines: Correlation with FVT +  $\varepsilon^*$ -mod SL-EoS ( $\beta \neq 0$ ).

#### S5 Viscosity of IL + CO<sub>2</sub> mixtures using $\beta$ predicted by solubility parameters

The solubility parameters were calculated based on the following method with reference to the literature.<sup>12</sup> The solubility parameter of CO<sub>2</sub>,  $\delta_{CO_2}$ , was calculated using the Span and Wagner equation<sup>13</sup> and following equation (Eq. (S1)).

$$\delta_{CO_2} = \left(\rho \cdot \left(\widehat{U}^0(\rho^0, T) - \widehat{U}(\rho, T)\right)\right)^{\frac{1}{2}}$$
(S1)

The  $\hat{U}^0$  represents the internal energy in the ideal gas state at  $\rho = 0.1 \text{kg/m}^3$ , and  $\hat{U}$  represents the internal energy at the temperature and pressure of the system.

The method for calculating the solubility parameter of the ionic liquid,  $\delta_{IL}$ , is as follows. First, the critical constants and acentric factor of the ionic liquid were calculated using the group contribution method by Valderrama.<sup>14</sup> Then, these values were applied to the Pitzer correlation to determine the enthalpy of vaporization  $\Delta H$ .<sup>15</sup> The molar volume  $V_m$  was calculated using the molar mass and the density at 298 K and 0.1 MPa. Finally, these parameters were substituted into Eq. (S2) to calculate  $\delta_{IL}$ .

$$\delta_{IL} = \left(\frac{\Delta H - RT}{V_{\rm m}}\right)^{\frac{1}{2}} \tag{S2}$$



**Fig. S17** Contribution of "1-  $\tilde{\rho}_{mix}$ " (Dashed lines) and " $\beta x'$ " (Solid line) of [hmim][Tf<sub>2</sub>N] + CO<sub>2</sub> mixture. Lines; blue, 298.15 K; black, 323.15 K; red, 343.15 K.



**Fig. S18** Contribution of "1-  $\tilde{\rho}_{mix}$ " (dashed lines) and " $\beta x'$ " (solid lines) of [dmim][Tf<sub>2</sub>N] + CO<sub>2</sub> mixture. Lines; blue, 298.15 K; black, 323.15 K; red, 343.15 K.



**Fig. S19** Contribution of "1-  $\tilde{\rho}_{mix}$ " (dashed lines) and " $\beta x'$ " (solid line) of [hmim][FAP] + CO<sub>2</sub> mixture. Lines; blue, 303.15 K; black, 323.15 K; red, 343.15 K.



**Fig. S20** Prediction results using solubility parameters for the viscosity of  $[\text{emim}][\text{Tf}_2\text{N}] + \text{CO}_2$  mixture. Symbols:  $\bigcirc$ , 298.15 K;  $\triangle$ , 323.15 K;  $\square$ , 343.15 K<sup>11</sup>;  $\blacktriangle$ , 323.15 K.<sup>6</sup> Solid lines: Prediction with FVT +  $\varepsilon^*$ -mod SL-EoS.



**Fig. S21** Prediction results using solubility parameters for the viscosity of  $[hmim][Tf_2N] + CO_2$  mixture. Symbols:  $\bigcirc$ , 298.15 K;  $\triangle$ , 323.15 K;  $\square$ , 343.15 K.<sup>11</sup> Solid lines: Prediction with FVT +  $\varepsilon^*$ -mod SL-EoS.



**Fig. S22** Prediction results using solubility parameters for the viscosity of  $[dmim][Tf_2N] + CO_2$  mixture. Symbols:  $\bigcirc$ , 298.15 K;  $\triangle$ , 323.15 K;  $\square$ , 343.15 K.<sup>11</sup> Solid lines: Prediction with FVT +  $\varepsilon^*$ -mod SL-EoS



**Fig. S23** Prediction results using solubility parameters for the viscosity of [emim][FAP] + CO<sub>2</sub> mixture. Symbols:  $\bigcirc$ , 293.15 K;  $\triangle$ , 313.15 K;  $\square$ , 323.15 K;  $\bigtriangledown$ , 333.15 K;  $\diamondsuit$ , 343.15 K.<sup>6</sup> Solid lines: Prediction with FVT +  $\varepsilon^*$ -mod SL-EoS.



**Fig. S24** Prediction results using solubility parameters for the viscosity of [hmim][FAP] + CO<sub>2</sub> mixture. Symbols:  $\bigcirc$ , 293.15 K;  $\triangle$ , 313.15 K;  $\square$ , 323.15 K;  $\bigtriangledown$ , 333.15 K;  $\diamondsuit$ , 343.15 K.<sup>6</sup> Solid lines: Prediction with FVT +  $\varepsilon^*$ -mod SL-EoS.

#### References

- J. Safarov, R. Hamidova, S. Zepik, H. Schmidt, I. Kul, A. Shahverdiyev and E. Hassel, J. Mol. Liq., 2013, 187, 137-156.
- L. I. N. Tomé, P. J. Carvalho, M. G. Freire, I. M. Marrucho, I. M. A. Fonseca, A. G. M. Ferreira, J. o. A.
  P. Coutinho and R. L. Gardas, *J. Chem. Eng. Data*, 2008, 53, 1914-1921.
- D. Almantariotis, S. Stevanovic, O. Fandino, A. S. Pensado, A. A. Padua, J. Y. Coxam and M. F. Costa Gomes, J. Phys. Chem. B, 2012, 116, 7728-7738.
- 4. K. R. Harris and M. Kanakubo, J. Chem. Eng. Data, 2021, 66, 4618-4628.
- 5. A. Ahosseini and A. M. Scurto, Int. J. Thermophys., 2008, 29, 1222-1243.
- 6. K. Li, W. Wu, L. Peng and H. Zhang, J. Mol. Liq., 2021, 337, 116240.
- 7. W. Ren, B. Sensenich and A. M. Scurto, J. Chem. Thermodyn., 2010, 42, 305-311.
- 8. M. Gonzalez-Miquel, J. Bedia, J. Palomar and F. Rodriguez, J. Chem. Eng. Data, 2014, 59, 212-217.
- 9. A. H. Jalili, M. Shokouhi, G. Maurer and M. Hosseini-Jenab, J. Chem. Thermodyn., 2013, 67, 55-62.
- M. J. Muldoon, S. N. V. K. Aki, J. L. Anderson, J. K. Dixon and J. F. Brennecke, *J. Phys. Chem. B*, 2007, 111, 9001-9009.
- 11. A. Ahosseini, E. Ortega, B. Sensenich and A. M. Scurto, *Fluid Phase Equilib.*, 2009, 286, 72-78.
- 12. Y. Hiraga, W. Endo, H. Machida, Y. Sato, T. M. Aida, M. Watanabe and R. L. Smith Jr, J. Supercrit. Fluids, 2012, 66, 49-58.
- 13. R. Span and W. Wagner, J. Phys. Chem. Ref. Data, 1996, 25, 1509-1596.
- 14. J. O. Valderrama, L. A. Forero and R. E. Rojas, Ind. Eng. Chem. Res., 2012, 51, 7838-7844.
- 15. B. E. Poling, R. C. Reid, J. M. Prausnitz and J. P. O'Connell, *The Properties of Gases and Liquids*, McGraw-Hill, New York, 5th edn., 2001.