Revealing the role of Si vacancy and interface in SiHCl₃ dissociation applied in

polysilicon

Mao Peng^{a,b,d,#}, Jia Ren^{c,#}, Wei Li^a, Chenliang Ye^{e, *}, Jinli Zhang^{a, *}

^a School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.

^b Zhejiang Institute of Tianjin University, Shaoxing, 312300.

^c Chinese Acad Sci, Shenzhen Inst Adv Technol, Adv Energy Storage Technol Res Ctr, Shenzhen 518055, China.

^d State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University Hangzhou 310027, China.

^e Department of Power Engineering, North China Electric Power University, Baoding 071003, Hebei, China.

* Corresponding author:

Jinli Zhang, E-mail address: zhangjinli@tju.edu.cn

Chenliang Ye, E-mail: chenliangye@ncepu.edu.cn

[#] These authors contributed equally to this work.

2 Calculational details

2.1 Selected models

To deeply explore the influence of Si vacancy and interface on SiHCl₃ reduction mechanism, we constructed the models in Figure 1 based on our previous studies ¹. Si(111)-V was formed based on perfect Si(111) surface with a Si vacancy, and the $p(3\times3)$ super cell was selects; the bottom one slab atoms were frozen, and the top two atomic layers with the adsorbed molecules were relaxed during optimization. Aiming at examining the effect of interface on SiHCl₃ reduction, three typical structure models was built based on previous investigation ^{2, 3}. Si₈/Si(111) interface were formed through placing Si₈ clusters on perfect $p(4\times4)$ super cell Si(111) surface; the bottom one slab atoms were frozen; the top two atomic layers, Si₈ cluster and adsorbed molecules were relaxed. Si₈/Si(111)-V1 and Si₈/Si(111)-V2 models showed that two different Si vacancies were formed on Si(111), and the distances between interface and Si vacancy were 2.573 and 4.361 Å, respectively. The vacuum degree of four models in *z* direction was set to 15 Å to avoid mutual interference.

Figure S1. (a) side view and (b) top view of Si(111)-V, Si₈/Si(111), Si₈/Si(111)-V1 and Si₈/Si(111)-V2, respectively.

2.2 calculational methods

All calculation data were obtained using VASP software with PAW, and the exchange-correlation functional was performed by PBE pseudopotentials ^{4, 5}. Spin-polarization was included in all structures presented here. Si(111)-V adopted $3\times3\times1$ Monkhorst–Pack k-point; the $2\times2\times1$ k-point was performed for Si₈/Si(111), Si₈/Si(111)-V1 and Si₈/Si(111)-V2. We selected the cutoff energy of 400 eV and set the convergence accuracy of the force as 0.03 eV Å⁻¹. When the total energy change between two steps was both less than 1×10^{-5} eV, the electronic degree of freedom was converged. The transition states of all elementary reactions were calculated using the CI-NEB ^{6,7} and dimer method ^{8,9}.

The activation free energy (ΔG_a) and reaction free energy (ΔG) are calculated according to the following

formula:

$$\Delta G_{\rm a} = E_{\rm TS} - E_{\rm R} + G_{\rm TS} - G_{\rm R} \tag{1}$$

$$\Delta G = E_{\rm p} - E_{\rm R} + G_{\rm p} - G_{\rm R} \tag{2}$$

where E_R , E_{TS} and E_P correspond to the total energies of reaction, transition state and production, respectively. G_R , G_{TS} and G_p are the Gibbs free energies of reaction, transition state and production at a finite temperature. The temperature was set as 1425 K based on the practical temperature range (1273~1623 K)¹⁰, ¹¹.

Reaction rate constant (k) can be obtained using harmonic Transition State Theory (TST) according to the Eq. (1)

$$k = \frac{k_B T}{h} \frac{q_{Ts}}{q_{Is}} exp\left(-\frac{Ea}{RT}\right)$$
(3)

Here E_a is the zero-point-corrected energy difference between the transition state and the initial state. For surface reactions, only the vibrational degrees of freedom have been considered for the partition functions (q), which is calculated in the harmonic model according to the Eq. (4).

$$q = \frac{-b \pm \sqrt{b^2 - 4ac}}{\prod_{i=1}^{Vibrations} 1 - \exp\left(\frac{-hv_i}{k_B T}\right) 2a}$$
(4)

Figure S2. (a) The adsorption configurations of SiHCl₃, SiH₃Cl, SiH₂Cl₂, SiH₄ and SiCl₄ on Si(111)-V, Si₈/Si(111), Si₈/Si(111)-V1 and Si₈/Si(111)-V2 surfaces. (b) The most stable adsorption configurations of SiHCl₂, SiH₂Cl, SiHCl, SiH₃, SiH₂ and SiH on Si(111)-V, Si₈/Si(111), Si₈/Si(111)-V1 and Si₈/Si(111)-V2 surfaces. The Cl, Si and H atoms are shown in the green, yellow and white balls, respectively

Figure S3. (a) The most stable adsorption configurations of SiCl₃, SiCl₂, SiCl, Si, H and Cl on Si(111)-V, Si₈/Si(111), Si₈/Si(111)-V1 and Si₈/Si(111)-V2 surfaces. (b) The adsorption configurations of SiHCl₃, SiCl₃, SiCl₂, SiHCl₂, SiH₂Cl and SiHCl on Si vacancy of Si(111)-V, Si₈/Si(111)-V1 and Si₈/Si(111)-V2 surfaces.

SiHCl ₃ reduction on Si (111)-V, Si ₈ /Si (111), Si ₈ /Si (111)-V1 and Si ₈ /Si (111)-V2 surfaces at 1425 K.								
Elementary reactions	Si (111)-V		Si ₈ /Si (111)		Si ₈ /Si (111)-V1		Si ₈ /Si (111)-V2	
	ΔG_{a}	$\triangle G$	ΔG_{a}	$\triangle G$	ΔG_{a}	$\triangle G$	ΔG_{a}	$\triangle G$
SiHCl ₃ →SiCl ₃ +H	22.3	-190.0	173.9	24.3	151.3	17.1	83.9	-70.8
SiHCl ₃ →SiHCl ₂ +Cl	115.5	-218.6	128.5	26.7	122.6	51.0	108.8	-45.3
SiCl ₃ →SiCl ₂ +Cl	69.7	-72.5	97.5	-77.6	50.1	-41.5	88.5	16.4
SiCl ₃ +Cl→SiCl ₄	222.3	153.5	77.6	17.1	207.9	34.7	90.4	10.1
SiHCl ₂ +H→SiH ₂ Cl ₂	202.4	170.9	126.9	44.3	199.6	178.8	131.8	19.3
SiHCl2→SiHCl+Cl	77.5	-48.5	85.5	-73.6	56.6	-61.1	55.6	-44.1
SiHCl ₂ →SiCl ₂ +H	45.1	-106.6	75.7	-88.1	105.6	-48.3	48.1	-51.7
SiCl ₂ →SiCl+Cl	62.4	-107.2	60.3	-143.7	74.3	44.3	27.5	-258.6
SiHCl+H→SiH ₂ Cl	115.2	60.8	147.9	31.5	37.2	-57.7	141.1	38.0
SiHCl→SiCl+H	71.6	-42.5	69.5	-104.4	106.0	-93.3	56.6	-106.9
SiHCl→SiH+Cl	53.0	-101.7	121.3	-102.3	121.2	-36.0	59.2	-74.4
$SiH_2Cl+Cl {\rightarrow} SiH_2Cl_2$	224.4	165.4	155.1	117.4	209.9	156.5	79.1	7.2
SiH₂Cl+H→SiH₃Cl	220.1	144.3	190.0	134.9	338.1	168.5	130.5	-8.6
SiH ₂ Cl→SiH ₂ +Cl	56.1	-92.9	98.8	-56.4	41.5	-71.2	27.7	-85.1
SiCl→Si+Cl	152.4	-0.4	136.8	-2.1	94.1	-14.1	41.8	-125.8
SiH₂+H→SiH₃	157.4	29.8	68.9	42.0	98.0	97.6	43.6	-92.9
SiH+H→SiH ₂	268.4	228.0	54.3	19.6	69.6	15.5	264.9	221.7
SiH ₃ +Cl→SiH ₃ Cl	247.7	182.2	237.3	120.7	202.5	201.9	81.4	-23.5
SiH₃+H→SiH₄	208.4	119.4	130.5	-3.1	95.4	38.7	274.9	221.4
SiH→Si+H	159.1	-6.1	44.0	-13.3	87.4	-28.8	29.4	-29.6

Table S1. The activation energies ($\Delta G_a/kJ \text{ mol}^{-1}$) and reaction energies ($\Delta G/kJ \text{ mol}^{-1}$) of each elementary reactions about

Si ₈ /Si (111)-V1 and Si ₈ /Si (111)-V2 surfaces at 1425 K.						
Elementary reactions	Si (111)-V	Si ₈ /Si (111)	Si ₈ /Si (111)-V1	Si ₈ /Si (111)-V2		
SiHCl₃→SiCl₃+H	4.52×10 ¹²	1.25×10 ⁷	8.44×10 ⁷	2.50×10 ¹⁰		
SiHCl ₃ →SiHCl ₂ +Cl	1.72×10 ⁹	5.75×10 ⁸	9.48×10 ⁸	3.05×10 ⁹		
SiCl ₃ →SiCl ₂ +Cl	8.27×10^{10}	7.92×10 ⁹	8.67×10 ¹¹	1.69×10^{10}		
SiCl ₃ +Cl→SiCl ₄	2.10×10 ⁵	4.23×10 ¹⁰	7.05×10 ⁵	1.44×10^{10}		
SiHCl2+H→SiH2Cl2	1.12×10^{6}	6.59×10 ⁸	1.42×10^{6}	4.39×10 ⁸		
SiHCl2→SiHCl+Cl	4.27×10^{10}	2.17×10 ¹⁰	2.50×10 ¹¹	2.71×10 ¹¹		
SiHCl2→SiCl2+H	6.61×10 ¹¹	4.96×10 ¹⁰	4.00×10 ⁹	5.11×10 ¹¹		
SiCl₂→SiCl+Cl	1.53×10 ¹¹	1.83×10 ¹¹	5.62×10 ¹⁰	2.91×10 ¹²		
SiHCl+H→SiH ₂ Cl	1.77×10 ⁹	1.12×10^{8}	1.29×10 ¹²	2.00×10^{8}		
SiHCl→SiCl+H	7.01×10^{10}	8.44×10^{10}	3.86×10 ⁹	2.51×10 ¹¹		
SiHCl→SiH+Cl	3.37×10 ¹¹	1.06×10 ⁹	1.07×10 ⁹	2.01×10 ¹¹		
SiH ₂ Cl+Cl→SiH ₂ Cl ₂	1.76×10 ⁵	6.09×10 ⁷	5.99×10 ⁵	3.74×10 ¹⁰		
SiH₂Cl+H→SiH₃Cl	2.52×10 ⁵	3.22×10^{6}	1.19×10	4.89×10 ⁸		
SiH₂Cl→SiH₂+Cl	2.60×10 ¹¹	7.08×10 ⁹	8.93×10 ¹¹	2.86×10 ¹²		
SiCl→Si+Cl	7.65×10 ⁷	2.87×10^{8}	1.06×10^{10}	8.69×10 ¹¹		
SH₂+H→SiH₃	5.05×10 ⁷	8.86×10 ¹⁰	7.61×10 ⁹	7.50×10 ¹¹		
SiH+H→SiH ₂	4.26×10 ³	3.03×10 ¹¹	8.32×10^{10}	5.75×10 ³		
SiH₃+Cl→SiH₃Cl	2.46×10 ⁴	5.93×10 ⁴	1.12×10^{6}	3.07×10^{10}		
SiH ₃ +H→SiH ₄	6.78×10 ⁵	4.87×10^{8}	9.44×10 ⁹	2.46×10 ³		
SiH→Si+H	4.37×10 ⁷	7.21×10 ¹¹	1.86×10^{10}	2.49×10 ¹²		

Table S2. The rate constants k (s⁻¹) of each elementary reactions involved in SiHCl₃ reduction on Si (111)-V, Si₈/Si (111),

Elementary reactions	Frequency/cm ⁻¹						
—	Si(111)-V	Si ₈ /Si(111)	Si ₈ /Si(111)-V1	Si ₈ /Si(111)-V2			
SiHCl ₃ →SiCl ₃ +H	179	134	94	119			
SiHCl ₃ →SiHCl ₂ +Cl	204	83	93	133			
SiCl ₃ +Cl→SiCl ₄	58	109	148	109			
SiCl ₃ →SiCl ₂ +Cl	145	83	92	185			
SiCl ₂ →SiCl+Cl	68	131	100	62			
SiCl→Si+Cl	83	126	94	131			
SiHCl ₂ →SiCl ₂ +H	46	129	185	97			
SiHCl2→SiHCl+Cl	41	146	95	87			
$SiHCl_2+H \rightarrow SiH_2Cl_2$	349	237	93	214			
SiHCl→SiCl+H	653	283	211	470			
SiHCl→SiH+Cl	105	119	43	70			
SiH→Si+H	1050	972	576	250			
SiHCl+H→SiH ₂ Cl	166	354	180	198			
SiH ₂ Cl+Cl→SiH ₂ Cl ₂	183	261	160	141			
SiH ₂ Cl+H→SiH ₃ Cl	142	349	296	275			
SiH ₂ Cl→SiH ₂ +Cl	137	227	150	131			
SiH+H→SiH ₂	200	329	285	602			
SiH ₂ +H→SiH ₃	459	693	436	224			
SiH ₃ +H→SiH ₄	204	419	165	105			
SiH ₃ +Cl→SiH ₃ Cl	552	256	379	91			

Table S3. The only one imaginary frequency corresponding to the transition states involved in reduction mechanism on Si(111)-V, $Si_8/Si(111)$, $Si_8/Si(111)-V1$ and $Si_8/Si(111)-V2$

- 1. M. Peng, B. Z. Shi, Y. Han, W. Li and J. L. Zhang, Applied Surface Science, 2022, 580.
- 2. J. L. Gong and X. H. Bao, Chemical Society Reviews, 2017, 46, 1770-1771.
- 3. J. A. Rodriguez, D. C. Grinter, Z. Y. Liu, R. M. Palomino and S. D. Senanayake, *Chemical Society Reviews*, 2017, 46, 1824-1841.
- 4. P. Honenberg and W. Kohn, Resonance-Journal of Science Education, 2017, 22, 810-811.
- 5. J. P. Perdew, K. Burke and M. Ernzerhof, *Physical Review Letters*, 1996, 77, 3865-3868.
- 6. D. Sheppard, P. H. Xiao, W. Chemelewski, D. D. Johnson and G. Henkelman, Journal of Chemical Physics, 2012, 136.
- 7. D. Sheppard, R. Terrell and G. Henkelman, Journal of Chemical Physics, 2008, 128.
- 8. G. Henkelman and H. Jónsson, *Journal of Chemical Physics*, 1999, **111**, 7010-7022.
- R. A. Olsen, G. J. Kroes, G. Henkelman, A. Arnaldsson and H. Jónsson, *Journal of Chemical Physics*, 2004, 121, 9776-9792.
- 10. T. A. Halgren and W. N. Lipscomb, Chemical Physics Letters, 1977, 49, 225-232.
- 11. K. Yasuda, K. Saegusa and T. H. Okabe, Materials Transactions, 2009, 50, 2873-2878.