Supplementary Information

Dependence of the crystal structure of Prussian blue on the occupation of interstitial sites

Maria Vitória Cavalheiro Issler^{*a*}, Cristiano Vicente^{*a*}, Iuri Stefani Brandt^{*a*}, Bruna Fernanda Baggio^{*a*}, Ricardo Faccio^{*b*}, Milton Andre Tumelero^{c*} and Andre Avelino Pasa^{a*}

^a Graduate Program in Physics, PPGFSC, Federal University of Santa Catarina (UFSC), R. Eng. Agronômico Andrei Cristian Ferreira, s/n - Trindade, Florianopolis, 88040-900, SC, Brazil.

^b Centro NanoMat e Área Física, DETEMA, Facultad de Química, Universidad de la República (Udelar), Montevideo C.P. 11800, Uruguay.

^c Physics Institute, Federal University of Rio Grande do Sul, Rua Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brazil.

* Corresponding authors: matumelero@if.ufrgs.br and pasa@fisica.ufsc.br

Table 1: Effective ionic radii of relevant ions. Adapted from [1].

Ion	Efective ionic radii (pm)	
Li^+	76	
Na^+	102	
K^+	138	
Rb^+	152	
H_3O^+	100	
$\left[Fe(CN)_6\right]^{3-}$	357	

Tables 2, 3 and 4 present the relative change in volume ΔV , distortion energy ΔE and enthalpy of formation ΔH_f^o . ΔV is the variation in volume related to the cubic cell for each cation, in percentage. ΔE is the difference between the energy of a configuration and the total energy of the cubic cell, for each cation. The enthalpy of formation, ΔH_f^o , was calculated using the following equations:

Soluble PB:

$$\Delta H_f^o = E(PB_s) - E(xA) - E(Fe^{3+}) - E(Fe^{2+}) - E(6CN)$$
(1)

Soluble PW:

$$\Delta H_f^o = E(PW_s) - E(xA) - E(Fe^{2+}) - E(Fe^{2+}) - E(6CN)$$
(2)

Insoluble PB:

$$\Delta H_f^o = E(PB_i) - E\left(Fe^{3+}\right) - 0.75E\left(Fe^{2+}\right) - 0.75E(6CN) - 1.5E(H_2O) \quad (3)$$

Insoluble PW:

$$\Delta H_f^o = E(PW_i) - E(A) - E(Fe^{2+}) - 0.75E(Fe^{2+}) - 0.75E(6CN) - 1.5E(H_2O), \quad (4)$$

where A is the ionic species, and E(PB) or E(PW) is the energy of the compound per unit of formula.

Cation	Site	Space group	$V(\AA^3)$	$\Delta V(\%)$	E(eV)	$\Delta E(eV)$	$\Delta H_f^o(eV/atom)$	
Li	8c	$F\overline{4}3m$	1042.24	0	4.355	0	-1.898	
	$\mathbf{24d}$	Immm	1036.61	-0.54	0	-4.355	-1.971	
	32f'	R3m	1047.24	0.48	1.930	-2.425	-1.938	
	32f	R3m	1059.53	1.66	0.603	-3.752	-1.960	
Na	8c	$F\overline{4}3m$	1043.50	0	1.821	0	-1.946	
	$\mathbf{24d}$	Immm	1062.13	1.79	0	-1.821	-1.976	
	32f'	R3m	1047.41	0.37	1.112	-0.709	-1.957	
	32f	R3m	1055.87	1.19	0.766	-1.055	-1.963	
Κ	8c	$F\overline{4}3m$	1049.58	0	0.178	0	-2.012	
	24d	Immm	1097.96	4.61	3.021	2.843	-1.965	
	32f'	R3m	1054.34	0.45	0.063	-0.114	-2.014	
	32f	R3m	1054.54	0.47	0	-0.178	-2.015	
Rb	8c	$F\overline{4}3m$	1053.46	0	0.123	0	-2.025	
	24d	Immm	1118.36	6.16	5.440	5.317	-1.936	
	32f'	$\mathbf{R3m}$	1057.48	0.38	0	-0.123	-2.027	
	32f	R3m	1055.04	0.15	0.150	0.027	-2.024	

Table 2: Volume, relative energy and enthalpy of formation for soluble Prussian Blue. The Wyckoff positions in the table are related to the initial position of the ions in the cubic cell.

Table 3: Volume, relative energy and enthalpy of formation for soluble Prussian White

Cation	Site	Space group	$V(\AA^3)$	$\Delta V(\%)$	E(eV)	$\Delta E(eV)$	$\Delta H_f^o(eV/atom)$
Li	8c	$Fm\overline{3}m$	1042.69	0	8.330	0	-1.721
	24d	I4/mmm	1051.78	0.87	1.994	-6.336	-1.820
	32f'	$R\overline{3}m$	1042.90	0.02	2.481	-5.849	-1.812
	32f	$R\overline{3}m$	1071.28	2.74	0	-8.330	-1.851
Na	8c	$Fm\overline{3}m$	1045.84	0	2.625	0	-1.810
	$\mathbf{24d}$	$\mathbf{I4}/\mathbf{mmm}$	1081.96	3.45	0	-2.625	-1.851
	32f'	$R\overline{3}m$	1044.65	-0.11	1.101	-1.524	-1.834
	32f	$R\overline{3}m$	1065.47	1.88	0.471	-2.154	-1.843
Κ	8c	$Fm\overline{3}m$	1057.05	0	0.004	0	-1.934
	24d	I4/mmm	1168.91	10.58	6.146	6.142	-1.838
	32f'	$R\overline{3}m$	1056.44	-0.06	0.042	0.038	-1.934
	32f	$R\overline{3}m$	1056.91	-0.01	0	-0.004	-1.934
Rb	8c	${ m Fm}\overline{3}{ m m}$	1065.34	0	0	0	-1.957
	24d	I4/mmm	1236.22	16.04	11.085	11.085	-1.783
	32f'	$R\overline{3}m$	1064.89	-0.04	0.038	0.038	-1.956
	32f	$R\overline{3}m$	1065.32	0.002	0.005	0.005	-1.956

Compound	Site	Space group	$V(A^{o})$	$\Delta V(\%)$	E(eV)	$\Delta E(eV)$	$\Delta H_f^o(eV/atom)$
PB	_	$Pm\overline{3}$	1029.46	0	0	0	-1.317
K-PW	8c	P23	1061.04	0	1.778	0	-1.327
	24d	P2/m	1070.26	0.87	3.986	2.208	-1.293
	32f'	$\mathbf{R3}$	1050.84	-0.96	0	-1.778	-1.355
	32f	R3	1055.82	-0.49	0.004	-1.774	-1.355
Na-PW	8c	P23	1045.68	0	4.963	0	-1.249
	24d	P2/m	1041.33	-0.42	2.554	-2.408	-1.286
	32f'	R3	1047.26	0.15	0.140	-4.823	-1.323
	32f	R3	1039.07	-0.63	0	-4.963	-1.325

Table 4: Volume, relative energy and enthalpy of formation for the insoluble forms ofPrussian Blue and Prussian White

References

[1] Alexander Kraft. Some considerations on the structure, composition, and properties of prussian blue: A contribution to the current discussion. *Ionics*, 27(6):2289–2305, 2021.