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S1. Additional details of the LMB-EAM construction 

(1) Setup for a single-component system  

In the LMB-EAM, as described in the main body with Eqs. 1-5, the potential energy of atom-i, 𝐸𝑖 , 
is written as follows:  
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The definition of each variable is explained in the main body.  

For a given configuration, all structural parameters such as 𝑟𝑖𝑗  and 𝜌𝑛,𝑖  can be calculated. 

Accordingly, the energy of each atom can be expressed as a linear combination of basis set coefficients 
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{𝑎𝑚}, {𝑏𝑛,𝑚} and 𝑐. To be specific, the energy of the i-th atom in the j-th configuration can be written down 

as 
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where {𝑑2𝑏,𝑖,𝑗,𝑚} and {𝑑𝑒𝑎𝑚,𝑖,𝑗,𝑛,𝑚} are values that can be calculated for a given configuration by Eqs. S1-

1 and S1-2.  

As in Eq. 12 of the main body, the total model error, 𝑌, is expressed as a weighted sum of the 

energy, force, and stress squared errors from the first-principles (FP) calculation results used as the training 

data with regularization terms as  
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,      Eq. S1-4 

where 𝑌𝑓𝑖𝑡 is composed of the first 3 terms about the fitting errors and  𝑌𝑟𝑒𝑔  is composed of the last 2 terms 

about the regularization. Our goal is to minimize 𝑌 by optimizing the model parameters {𝑎𝑚}, {𝑏𝑛,𝑚}, and 

𝑐, which can be done by solving a system of linear equations that can be established as the partial derivatives 

of 𝑌 with respect to the model parameters, as explained in the main body.  

 In the following, we present the forms of the partial derivatives of 𝑌 more specifically and confirm 

that the partial derivatives can form a system of linear equations.  

 

(2) The energy term 

We first focus on the energy fitting error term in 𝑌𝑓𝑖𝑡: 
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.      Eq. S1-5 

The partial derivatives of Eq. S1-5 are written as 
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.   Eq. S1-6 

Each equation in Eq. S1-6 is linear with respect to  {𝑎𝑚}, {𝑏𝑛,𝑚}, and 𝑐.  

The key point here is that, since the atom energy is described as a linear combination of {𝑎𝑚}, 

{𝑏𝑛,𝑚} , and 𝑐 , as shown in Eq. S1-3, the system energy is also described as a linear combination. 

Accordingly, as shown in Eq. S1-6, the energy fitting error term included in the problem to minimize 𝑌 

also only contain linear terms.  

 

(3) Regularization terms 

As described with Eqs. 6-11 of the main body, the regularization terms for the two-body and EAM 

functions are expressed as  
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In this study, we consider up to the 2nd order regularization for both two-body and EAM functions. Thus, 

the regularization terms in 𝑌, denoted as 𝑌𝑟𝑒𝑔, are expressed as 
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Using Eqs. S1-7 and S1-8, the derivatives of 𝑌𝑟𝑒𝑔 with respect to {𝑎𝑚}, {𝑏𝑛,𝑚}, and 𝑐 are expressed as  
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.     Eq. S1-10 



Since each equation of Eq. S1-10 is linear with respect to  {𝑎𝑚}, {𝑏𝑛,𝑚}, and 𝑐 , the inclusion of the 

regularization terms still preserves the linearity of the problem to minimize 𝑌. 

 

(4) Energy and regularization terms in the multi-component systems 

 As an example of a multi-component system, we consider a system composed of two elements, A 

and B here. Assuming that atom i is of element A, the energy of the atom i in the LMB-EAM is written as 
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,     Eq. S1-11 

where the superscript A or B is added to each atom index i and j to clarify the element type of each atom. 

For the cutoff distances 𝑟𝑐𝑢𝑡1 and 𝑟𝑐𝑢𝑡2, we can set different values for different combinations as 𝑟𝑐𝑢𝑡1−𝐴𝐴, 

𝑟𝑐𝑢𝑡1−𝐴𝐵, 𝑟𝑐𝑢𝑡2−𝐴𝐴, and 𝑟𝑐𝑢𝑡2−𝐴𝐵. As in the single-component case, the 𝜙 and 𝑓 functions are expanded by 

truncated trigonometric series and the 𝑔 functions are pre-determined. Accordingly, even when we apply 

the LMB-EAM formalism to a multi-component system, the problem of minimizing 𝑌  can still be 

established as a linear problem. 

 Meanwhile, as seen in Eqs. S1-7 and S1-8, the regularization term is built for each 𝜙 and 𝑓 function. 

Therefore, for the regularization term, whether the system is single-component or multi-component does 

not affect the linearity.  

 

(5) The Force term 

For the force term, as a test case, we use a system composed of two elements (A and B). For a given 

configuration, the force term acting on atom k, which is of element A, in the x direction due to the two-

body and EAM functions is expressed as 
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where A A A Ak j j k
x x x = − , etc. The derivatives of 𝜙 and 𝑓 functions are expressed as 
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Since these functions are also linear with respect to the model parameters, the inclusion of the force terms 

still preserves the linearity of the problem to minimize 𝑌. 

 

(6) The stress term 

The force expression can be simplified as 
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where 𝑔𝑗𝑖  is the effective density from atom j at atom i position. Using these simplified force expressions, 

we can express the atomic stress tensor of atom 𝑖 due to the two-body function (𝑠2𝑏,𝑖
𝑎𝑏 ) and the EAM function 

(𝑠𝑒𝑎𝑚,𝑖
𝑎𝑏 ) for the ab component, where a and b are x, y or z, as follows: 
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As confirmed in (5), the derivatives of the 𝜙 and 𝑓 functions are linear with respect to the model parameters. 

The system-wise stress tensor is obtained as the sum of the atomic stress tensors, and thus the system stress 

tensor can also be expressed as linear functions. Therefore, adding the stress terms into the fitting target 

still maintains the problem to be linear with respect to {𝑎𝑚}, {𝑏𝑛,𝑚}, and 𝑐. 

 

 

S2. Details of the training sets used for the LMB-EAMs 

The training sets used to construct the LMB-EAMs for H diffusion in bcc-W and O diffusion in 

liquid Na in this study were taken from previous studies1,2, where MTPs were generated. Although the details 

of the training set can be found in these previous studies, for the convenience of the readers, the contents of 



the training sets are briefly summarized in Table S1. In total, the training sets contain 936 configurations for 

the W-H case and 360 configurations for the Na-O case. 

 

 

Table S1. The contents of the training sets used to construct the LMB-EAMs. QHA stands for the quasi-

harmonic approximation. For more details, please refer to Ref. 1 for the W-H case and Ref. 2 for the Na-O 

case. 

 

Type The number of atoms in a unit cell The number of configurations 

(a) For the W-H potential 

Lattice deformation by Mote 

Carlo methods 

2 W atoms 122 

Geometry optimization 

calculations for hydrogen at T-

site/O-site/Tri-site. 

54 W atoms; 1 H atom 180 

NEB calculations for H 

migrations 

54 W atoms; 1 H atom 144 

QHA with H 54 W atoms; 1 H atom 45 

QHA without H 54 H atoms 24 

Active learning MD 54 W atoms; 1 H atom 421 

(b) For the Na-O potential 

Liquid Na from FPMD 102 Na atoms 100 

Liquid Na with an O atom 

from FPMD 

101 Na atoms; 1 O atom 100 

Iterative learning MD 101 Na atoms; 1 O atom 160 

 

 

S3. Details of the convergence test conditions 

For the convergence behavior of the fitting error, there are five hyperparameters that can affect the 

fitting error: (1) 𝑁𝑏𝑠1, the number of cosine basis functions for each two-body potential function; (2) 𝑁𝑏𝑠2, 

the number of cosine basis functions for each embedding energy function; (3) 𝑁𝐸𝐴𝑀, the number of the 

embedding energy functions; (4) 𝜆, the regularization weight; (5) the shapes of each 𝑔 function (cubic or 

quartic; cutoff distance). In the convergence tests described in the main body, the default value of each 

parameter was set as follows, and one parameter was changed for each convergence test: 𝑁𝐸𝐴𝑀 = 3 with 

𝑟1,𝑐𝑢𝑡2 = 3.5 Å , 𝑟2,𝑐𝑢𝑡2 = 4.75 Å  and 𝑟3,𝑐𝑢𝑡2 = 6.0 Å ; 𝑁𝑏𝑠1 = 80 ; 𝑁𝑏𝑠2 = 50;  𝜆 = 0.001  for all 

regularization weights; cubic forms for 𝑔 functions. 

✓ 𝑁𝑏𝑠1, 𝑁𝑏𝑠2 test conditions: 9 samples with 𝑁𝑏𝑠 = 10 ~ 100. 

✓ 𝑁𝐸𝐴𝑀 test conditions: 𝑁𝐸𝐴𝑀 = 1 ~ 9 with cubic or quartic shape 𝑔 function. The test was conducted 

by combining functions with various 𝑟𝑛,𝑐𝑢𝑡2 values depending on the number of 𝑁𝐸𝐴𝑀 . 𝑟𝑛,𝑐𝑢𝑡2 

values were 3.5, 3.8125, 4.125, 4.4375, 4.75, 5.0625, 5.375, 5.6875, and 6.0 Å. Table S2 shows 

the number of combinations of embedding energy function. 

✓ 𝜆 test conditions: 11 samples with 𝜆 = 1×10-13 ~ 100. 

The convergence test results are shown in Figure 1 of the main body.  



 

Table S2. The number of combinations of embedding energy function. 

𝑁𝐸𝐴𝑀 1 2 3 4 5 6 7 8 9 

# of 

combination 
9 36 84 126 126 84 36 9 1 

 

 

S4. Effects of the regularization parameters for the Na-O case 

The root mean square error (RMSE) from the DFT reference data increases as the weight of the 

regularization term increases, as shown in Fig. 1(d) of the main body. After performing test calculations 

with various λ values, we decided to use 0.001 for all λ values because a smooth potential shape was realized 

with a reasonably small increase in the RMSE compared to the case without regularization. Figure S1 shows 

the effect of the regularization on the shape of the two-body potential function and the embedding energy 

functions for both the W-H and Na-O cases, complementing Figure 2 in the main text, which shows only 

the W-H case. As can be seen in these figures, training without regularization does not guarantee the 

smoothness of the potential shape at the data points that rarely appear in the fitting reference data, 

demonstrating that regularization significantly improves the smoothness of the potential curve.  

 

 

Figure S1. Effects of regularization on the potential energy curves. 



 

 

S5. Details of the two-body correction (2BC) function for the short-range interaction 

The 2BC function, f2BC, is a linear combination of truncated power functions as 
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In the fitting to the target function generated based on the ZBL potential and DFT calculation results, i.e., 

Eq. 18 of the main body, we adjusted N and optimized {𝑎𝑖, 𝑟𝑐𝑢𝑡,𝑖} by random variation using a Monte Carlo 

method. The model parameters obtained for the W-W pair in this study are listed in Table S3. 

 

Table S3. The 2BC model parameters obtained for the W-W pair. 

𝑖 𝑛𝑖 𝑟𝑐𝑢𝑡,𝑖 (Å) 𝑎𝑖 (eV/Ån) 

1 3 0.60045667414109 -7.6327673159507E+05 

2 4 0.89540888871784 2.4886782455988E+03 

3 3 1.10009310026657 9.1684635791850E+02 

4 4 1.49847881118696 5.6552687174325E+02 

5 3 1.70196644957268 2.9172182782360E+02 

6 4 2.24736917826690 3.3107817596202E+01 

7 3 2.39102821773431 1.3057807293697E+01 

 

 

S6. How to use the LMB-EAM potentials constructed in the present study 

(1) LMB-EAMs 

All LMB-EAMs generated in this study are available in the LAMMPS format in the form of an 

archive file, potential-files.zip, which is also provided as Supplementary Information. They can be used by 

LAMMPS as follows: 

<For the W-H potential> 

pair_style hybrid/overlay  eam/fs eam/fs eam/fs 

 

pair_coeff * * eam/fs 1 LMB-EAM_W-H_01-03.eam.fs    W H 

pair_coeff * * eam/fs 2 LMB-EAM_W-H_02-03.eam.fs    W H 



pair_coeff * * eam/fs 3 LMB-EAM_W-H_03-03.eam.fs    W H 

 

<For the Na-O potential> 

pair_style hybrid/overlay  eam/fs eam/fs eam/fs 

 

pair_coeff * * eam/fs 1 LMB-EAM_Na-O_01-03.eam.fs    Na O 

pair_coeff * * eam/fs 2 LMB-EAM_Na-O_02-03.eam.fs    Na O 

pair_coeff * * eam/fs 3 LMB-EAM_Na-O_03-03.eam.fs    Na O 

 

It should be noted that the H-H interaction and the O-O interaction are not included in these W-H and Na-

O potential models, respectively. Thus, for impurity simulations, these potential models can only be used 

for simulations of a single impurity atom.  

 

The LMB-EAMs for H, N, or I impurity in liquid Na can also be used with the following file. 

✓ Na-H 

o LMB-EAM_Na-H_01-03.eam.fs 

o LMB-EAM_Na-H_02-03.eam.fs 

o LMB-EAM_Na-H_03-03.eam.fs  

✓ Na-N 

o LMB-EAM_Na-N_01-03.eam.fs 

o LMB-EAM_Na-N_02-03.eam.fs 

o LMB-EAM_Na-N_03-03.eam.fs 

✓ Na-I 

o LMB-EAM_Na-I_01-03.eam.fs 

o LMB-EAM_Na-I_02-03.eam.fs 

o LMB-EAM_Na-I_03-03.eam.fs 

As the same with the Na-O potential model, impurity-impurity interactions are not included. 

 

(2) LMB-EAM + 2BC for the W-H case 

For the W-H potential model, we have additionally prepared a short-range correction potential for 

the W-W pair, i.e., 2BC. This can be used together with the LMB-EAM using the hybrid/overlay command 

of LAMMPS as follows. 



pair_style hybrid/overlay   eam/fs eam/fs eam/fs table linear 5000 

 

pair_coeff * * eam/fs 1 LMB-EAM_W-H_01-03.eam.fs    W H 

pair_coeff * * eam/fs 2 LMB-EAM_W-H_02-03.eam.fs    W H 

pair_coeff * * eam/fs 3 LMB-EAM_W-H_03-03.eam.fs    W H 

pair_coeff 1 1  table   2BC_W-W.dat   COR2B_LMBEAM 2.4 
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