Supporting Information

De-Transition-Metallization of Cathode Materials for Constructing High-Performance Solid-State Electrolytes in Potassium-Ion Batteries

Mengqi Wu,^{a,b#} Meitong Liu,^{a#} Xiangyu Yao,^a Chenyang Jing,^a Dongxiao Kan^{c,*}and Ruqian Lian^{a,*} ^aKey Laboratory of Optic-Electronic Information and Materials of Hebei Province, Hebei Research Center of the Basic Discipline for Computational Physics, College of Physics Science and Technology, Hebei University, Baoding 071002, China. ^bKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China. ^cNorthwest Institute for Non-ferrous Metal Research Xi'an 710016, P. R. China. *Corresponding author: kandx@c-nin.com (D. Kan); rqlian@126.com (R. Lian)

[#] These authors contributed equally: Mengqi Wu, Meitong Liu.

Figure S1. The orthogonal KTiOPO₄ (Pna21) structure of the corresponding Li and Na analogues forms a total of five different structures, specifically including (a) LiTiOPO₄-type (Pnma), (b) LiNiPO₄F-type (Pm), (c) LiAlPO₄F-type (P-1), (d) NaAlPO₄F-type (C2/c), and (e) NaTiOPO₄-type (P21). (f) The only isomer with 3D structure of the layered KMO₂ solid electrolyte candidate material.

Figure S2. The relative energies of the five spatial group isomers of the orthogonal KTiOPO₄-type(Pna21) structure and its corresponding Li/Na analogues.

ure S3. Structure of KMPO₄A after molecular dynamics(MD) simulation at 900K for 30*ps*.

Figure S4. Phonon spectra of KMPO₄A and their virtual frequencies.

Figure S5. Three kinds of polyanionic cathode materials affected by 3d orbital peaks, (a)KFeSO₄F(b)LiFePO₄(c)Na₃V₂(PO₄)_{3.}

Chemical Formulation	Energy(eV)
KSiOPO ₄	-56.88
KPO ₃ +SiO ₂	-57.26
$1/4K_{3}PO_{4}+1/4KSi_{2}(PO_{4})_{3}+1/2SiO_{2}$	-56.74
$1/3K_3PO_4 + 1/3SiP_2O_7 + 2/3SiO_2$	-56.63
$1/4K_3PO_4 + 1/4KSiPO_5 + 1/4P_2O_5 + 3/4SiO_2$	-56.42
$1/4K_3PO_4 + 1/8K_2O + 3/8O_5 + 1/2SiO_2$	-55.74
KGeOPO ₄	-52.99
KPO ₃ +GeO ₂	-52.61
1/4K ₃ PO ₄ +1/4KGe ₂ (PO ₄) ₃ +1/2GeO ₂	-52.44
$1/3K_3PO_4 + 1/3GeP_2O_7 + 2/3GeO_2$	-52.18
$1/4K_3PO_4 + 1/4KGePO_5 + 1/4P_2O_5 + 3/4GeO_2$	-51.95
$1/4K_3PO_4 + 1/8K_2O + 3/8P_2O_5 + 1/2GeO_2$	-51.08
KSnOPO ₄	-52.73
KPO ₃ +SnO ₂	-52.49
$1/4K_3PO_4+1/4KSn_2(PO_4)_3+1/2SnO_2$	-52.41
$1/3K_3PO_4 + 1/3SnP_2O_7 + 2/3SnO_2$	-52.08
$1/4K_3PO_4 + 1/4KSnPO_5 + 1/4P_2O_5 + 3/4SnO_2$	-51.80
$1/4K_3PO_4 + 1/8K_2O + 3/8P_2O_5 + 1/2SnO_2$	-50.96
KAIPO ₄ F	-54.81
$1/6K_{3}AlF_{6}+1/6K_{3}PO_{4}+5/6AlPO_{4}$	-54.18
KF+AlPO ₄	-53.96
1/2KF +1/6A1F ₃ +1/6K ₃ PO ₄ +5/6A1PO ₄	-53.88
KPO3+AlOF	-53.42
$1/6K_{3}AlF_{6} + 1/4K_{2}O + 1/12P_{2}O_{5} + 5/6AlPO_{4}$	-53.13
KGaPO₄F	-50.88

Table SI. Possible decomposition broducts of NMPO4A and then energy	Table S1. Possible de	ecomposition products	s of KMPO4A and	l their energy
--	-----------------------	-----------------------	-----------------	----------------

1/6K ₃ GaF ₆ +1/6K ₃ PO ₄ +5/6GaPO ₄	-50.12	
KF+GaPO ₄	-49.95	
$1/2KF + 1/6GaF_3 + 1/6K_3PO_4 + 5/6GaPO_4$	-49.81	
KPO ₃ +GaOF	-49.80	
$1/6K_{3}GaF_{6} + 1/4K_{2}O + 1/12P_{2}O_{5} + 5/6GaPO_{4}$	-49.07	
KInPO ₄ F	-49.78	
1/6K ₃ InF ₆ +1/6K ₃ PO ₄ +5/6InPO ₄	-49.33	
KF+InPO ₄	-49.23	
KPO ₃ +InOF	-49.07	
1/2KF +1/6InF ₃ +1/6K ₃ PO ₄ +5/6InPO ₄	-49.06	
$1/6K_{3}InF_{6}+1/4K_{2}O+1/12P_{2}O_{5}+5/6InPO_{4}$	-48.28	

Table S2. Band gap of $KMPO_4A$.						
	KSiOPO ₄	KGeOPO ₄	KSnOPO ₄	KAlOPO ₄	KGaOPO ₄	KInOPO ₄
Band gap(eV)	5.13	3.19	3.13	5.32	4.13	3.36

MA	SiO	GeO	SnO	AlF	GaF	InF
K	+0.874	+0.868	+0.876	+0.875	+0.875	+0.885
Μ	+3.15	+2.33	+2.31	+2.5	+1.85	+1.78
Р	+3.651	+3.63	+3.616	+3.658	+3.635	+3.63
0	-1.535	-1.35	-1.352	-1.538	-1.413	-1.401
А	-1.533	-1.411	-1.415	-0.875	-0.711	-0.693

Table S3. Bader charge calculation results for different elements in $KMPO_4A$.

Table S4. Band gaps of oxides MOx, fluoride MFx and phosphorus oxides MPO₃/MPO₄ of group IIIA and IVA elements.

Oxides	BandGap	Fluoridese	BandGap	Phosphorus oxides	BandGap
(MOx)	(eV)	(MFx)	(eV)	(MPO ₃ /MPO ₄)	(eV)
			IIIA		
B ₂ O ₃	6.30	BF ₃	8.29	BPO ₄	7.26
Al ₂ O ₃	5.85	AlF ₃	7.58	Al(PO ₃) ₃	5.71
Ga ₂ O ₃	2.01	GaF ₃	4.71	Ga(PO ₃) ₃	4.89
In ₂ O ₃	0.93	InF ₃	4.2	GaPO ₄	4.70
Ti ₂ O ₃	0	TiF ₃	1.27	In(PO ₃) ₃	4.52
				InPO ₄	2.35
				TiPO ₄	0.72
	I		IVA		1
SiO ₂	5.96	SiF ₄	7.76	SiP ₂ O ₇	5.84
GeO ₂	3.25	GeF ₄	5.50	SiP ₆ O ₂₅	5.60
SnO ₂	0.65	SnF ₄	3.11	GeP ₂ O ₇	3.83
PbO ₂	0	PbF ₄	1.9	Ge ₅ P ₆ O ₂₅	3.57
				SnP ₂ O ₇	3.93

K-based cathode	Diffusion Barrier	K-based solid electrolytes	Diffusion Barrier
materials	(eV)		(eV)
K_3CoO_2 (2D)	0.25	K _{0.72} In _{0.72} Sn _{0.28} O ₂ (2D)	0.32
K _{0.3} MnO ₂ (2D)	0.27	$K_2Mg_2TeO_6(2D)$	0.33
K ₂ FeSiO ₄ (3D)	0.30	KBiO ₃ (2D)	0.75
KFeSiO ₄ (1D)	0.32	$K_2MgSiO_4(1D)$	0.81
$K_2Ni_2TeO_6$ (2D)	0.35	$K_3Sc(MoO_4)_3(1D)$	0.91
K ₂ CoNiTeO ₆ (2D)	0.35	KMgPO ₄ (1D)	1.04
KFePO ₄ F (1D)	0.59	K ₂ MgV ₂ O ₇ (2D)	1.05
K ₂ NiO ₂ (3D)	0.80	$K_2Mg_2Si_2O_7(2D)$	1.45
K ₂ CuP ₂ O ₇ (2D)	0.91	K ₂ CaP ₂ O ₇ (1D)	1.69
K ₂ FeSiO ₄ (1D)	0.92	$K_2ZnGeO_4(1D)$	1.86
$KFeSi_2O_6(1D)$	1.13	$K_2Mg_2(MoO_4)_3(1D)$	2.02
KMnPO ₄ (1D)	1.17	K ₄ Mg(WO ₄) ₃ (1D)	2.03
K ₂ FeGeO ₄ (1D)	1.24	$K_2CaPO_4F(1D)$	2.52
KVP ₂ O ₇ (1D)	1.25		

Table S5. Titus Masese summarized 14 kinds of K-based cathode materials and 13 kinds of K-based SSE.