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S1. INTRODUCTION TO LIE GROUP THEORY OF DIFFERENTIAL EQUA-
TIONS

The theory of Lie groups finds diverse application across theoretical physics. It was
originally developed by Sophus Lie as a systematic method for exactly solving nonlinear
differential equations (DEs) by exploiting their symmetry properties; however, this applica-
tion is largely unknown today. Consequently, it is widely believed that nonlinear DEs can
be solved only by a combination of guesswork and ad-hoc methods of individually narrow
applicability. In fact, most such methods may be derived from the Lie group theory of DEs,
which provides a unified and general platform for solving DEs of any kind. Here we give a
brief summary of those parts of Lie group theory of DEs that are utilized in the paper; for

a more in-depth treatment, refs. [1, 2| can be consulted.

A. Continuous transformations

A point transformation maps the independent and dependent variables x and y of the
object being acted upon to T and gy. Point transformations that are indexed by real-valued
parameter s may be written & = Z(z,y,s), § = Z(x,y,s) and are continuous: the extent
of the transformation can be “dialled up” or down arbitrarily by increaseing or decreasing
s. When these are also invertible, contain the identity at s = 0, and obey associativity via
Z(z(z,y,s),y5(x,y,s),t) = T(x,y,s + t), they form a group. Because they are continuous,

the infinitesimal transformation exists and can be accessed by expanding around s = 0:

o5
Bays) = tsloy) o, Say)=5] (s1)
s=0
96
y(z,y,s) =y +sn(z,y)+ ..., n(x,y) = a—z : (52)
s=0

(&(x,y),m(x,y)) define the tangent vector of the transformation. This can alternatively be

expressed as:

F(z,y,8) = v+ sXz+ O(s%), G(x,y,s) =y +sXy+ O(s?), (S3)



where the operator X is the infinitesimal generator of the point transformation, given by:

0 0

Integrating the tangent vector over s will yield a finite transformation.

B. What is a Lie symmetry?

A Lie symmetry of an object is a continuous transformation that leaves the object invari-
ant. A rotational symmetry of a square is not a Lie symmetry, as it is discrete and can only
be performed in multiples of 7/2 (Fig. Sla). However, a rotational symmetry of a circle can
involve any angle, and is thus a Lie symmetry (Fig. S1b). A DE can be viewed as a geo-
metrical object: a manifold consisting of the union of all its possible solutions. They often
possess Lie point symmetries: transformations of the dependent and independent variables
that leave the overall manifold invariant. Applied to a particular solution (that spans a
subspace of the DE manifold) a Lie symmetry of the DE transforms it into another solution
(see Fig. Slc)). By analogy, a rotational Lie symmetry maps a circle to itself but maps a
point on the circle to another point.

The ability to express a continuous point transformation in infinitesimal form also makes
it possible to calculate systematically the Lie point symmetries possessed by a given ob-
ject. For DEs this procedure, although algorithmic, can be extremely long-winded because
derivatives are not transformed in a straightforward way by Lie point symmetries. To avoid
dozens or hundreds of pages of working, it is thus best implemented using computer algebra
systems (CAS). On the other hand, for objects without derivatives the procedure is simple.
For example, the circle in Fig. S1b may be expressed in polar coordinates as F' =r —c¢ = 0.
In these co-ordinates the generator is X = &,.0/0r+&y0/00. Trivially, solving X F' = 0 yields
&, = 0 and arbitrary &: a rotational symmetry. In cartesian co-ordinates F' = 2% + y? — c,

and solving X F' = 0 yields 7 in terms of &, giving the generator as follows:

0= XF = (gle)g- + e ) (0447 ) (55)
X =¢(v,y) (y% - x(%) : (S6)

The arbitrary rotational transformation is recovered in cartesian coordinates as expected.
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FIG. S1: An overview of Lie symmetries. a: Squares have discrete rotational symmetries. These
cannot be reduced to infinitesimal form; therefore, they are not Lie symmetries. b: Circles can be
rotated by any amount; rotation is thus a Lie symmetry of the circle. c: In general, symmetries of
DEs map solutions to other solutions with different boundary conditions. An arbitrary translation
on the y axis is a Lie symmetry of the DE ¢ = 2¢, because this is solved by y = t? + ¢, and the

translation just changes the value of ¢, giving the solution to the DE for new boundary conditions.
C. Approximate symmetries

A more recent development in the field of Lie group analysis of DEs is the discovery
that perturbed DEs can possess “approximate symmetries” [3]. These leave a perturbed DE
invariant only to some finite order in the perturbation parameter . They can be identified
by solving:

(XO 4 XD 4 )V (Fy+eF)|mser—o0 = 0, (S7)

order-by-order [4]. They can often be used to find approximate solutions to perturbed
DEs. However, approximate symmetries of DEs are more difficult to compute than exact

symmetries, and there exist few if any CAS implementations of the procedure.

D. Perturbation symmetries

Lie point symmetries of a DE are traditionally thought of as transformations acting on its
dependent and independent variables. However, there is nothing to stop us pretending that
the perturbation parameter ¢ in a perturbed DE is an independent variable, and searching

for symmetries that act on ¢ as well [5]. Doing so can significantly extend the power of



the Lie group approach. We have previously termed these “perturbation symmetries” (See
ref. [6] for a detailed explanation of these symmetries and this choice of terminology).

Crucially, if a reference solution is known for the perturbation problem with ¢ = 0, this
may be converted using a perturbation symmetry of the general solution into a solution
valid for arbitrary . This is because such a symmetry leaves the space of solutions for all
possible € unchanged. Thus, acting on a solution for a specific € maps it to another solution
with a different e.

Unfortunately, both exact and approximate perturbation symmetries are often extremely
difficult or impossible to compute, due to the high dimensionality of the manifold, which de-
feats most or all CAS implementations. However, we recently developed a method (explained
in detail in [6]) that can compute approximate perturbation symmetries of the solution to

a perturbed DE directly, with far greater ease than earlier methods.

S2. METHOD OF ASYMPTOTIC LIE SYMMMETRIES FOR SOLVING PRO-
TEIN AGGREGATION KINETICS

In the main text we focus on a highly general rate law for protein aggregation kinetics,

which in nondimensional form is given by Egs. (12). We reproduce these here for convenience:

ol S
d_,u - _—ae(m) T
dr Oée(mtot)H( ) o)

As explained in Methods V B, = m/my is the nondimensional monomer concentration,

and II the nondimensional fibril number concentration. The nondimensional time is 7 =

kt where Kk = \/ Qe (Myor )02 (Myor).  Moreover, the functions aq, ag and a, are defined
as the monomer-dependence of the rates of primary nucleation, secondary nucleation and
elongation. Finally, £ = aq(0, Mot ) /2mior e (M0t ), which can be interpreted as the relative
importance of primary nucleation over secondary processes. The initial conditions considered

are {p(0) =1 -6, I1(0) = p = + O(6?)} where § < 1.



A. Exact, approximate and asymptotic Lie symmetries in protein aggregation

The kinetics of pure A342 aggregation at pH 8.0, among other protein aggregation reac-
tions, obey the simplest possible equations of the form of Eqgs. (12), which are:

% = 2ep(7)" + (7)™ (1 — p(7)) (S9a)
P p(rT(r). (S9D)

We will use these equations throughout this subsection as an illustrative example.
Egs. (S9) (and many other instances of Egs. (S8)) can be integrated once analytically [7].
The first step is to divide Eq. (S9a) by Eq. (S9b), giving:

— () (L = p(7))- (510)

Then explicitly integrating over p gives:

1— ne __ ,,n2 1 — no+1 _ , nao+l 1/2
(1=9)m —pm (1= u)‘ (s11)

4e
M(p) = (p*+—(1—0)™ +2 2
(1) (f”nc( )+ - T

The problem is consequently reduced to quadrature by substituting this into the
Eq. (S9b) [7]. However, the second integration cannot be performed analytically. So, an
exact analytic solution for p is not possible. Since all solutions are consequences of Lie
symmetries, Eqs (S9) should therefore not possess any non-trivial exact symmetries other
than those that yield this quadrature. This can be verified explicitly by their computation
using CAS. Surprisingly, moreover, their explicit computation reveals that Eqs (S9) have no
non-trivial approximate symmetries (Fig. S2a) either.

Yet, these equations have several approximate analytical solutions [7-9], implying they
possess some other kind of approximate symmetry property even if they do not possess
formal approximate symmetries as defined in [3] and explained in Sec. S1C. Given that
these approximate solutions all become more accurate in the limit © — 1, we consider the
possibility of Lie symmetries that become exact only asymptotically in a given region of
phase space (Fig. S2b). The concept of exact “asymptotic symmetries” of DEs, involv-
ing dependent and independent variables only, has been investigated in at least two prior
mathematical papers [10, 11]. However, a systematic method for their computation was

not established, and instead they were computed by guesswork from the DE and its exact
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FIG. S2: Illustration of asymptotic symmetries, and asymptotic regions in the kinetics of linear
protein self-assembly. a: Dodecagons are only approximately invariant under infinitesimal rota-
tional transformations (to O(e), where € ~ zcos #, with 6 the external angle and z the side length),
which are therefore an approximate Lie symmetry. b: f = z? + esin(my)z® is asymptotically
invariant to an arbitrary y-translation in the limit  — 0; such a translation is thus an asymptotic
Lie symmetry. c: Numerical solution for normalized fibril end concentration II (rate equation
Eq. (S9a), gray); parameters are the same as in Fig. 6. d: Numerical solution for normalized
fibril mass concentration 1 — u (rate equation Eq. (S9b), black). The u — 0 asymptotic regime,
dominated by simple exponential decay of p, is entered once the fibril number concentration begins

to plateau. The local perturbation series (red, Eq. (15a)) is no longer valid in this regime.

symmetries. Hereafter we adopt the name “asymptotic” proposed in these papers for this
class of symmetries.

Now, we propose asymptotic symmetries of solutions to DEs rather than of DEs them-
selves, and acting on all parameters in the problem, not just the dependent and independent
variables. We also propose a systematic method for their computation. If a local approxi-

mation to the solution of a DE is available (such as a “local perturbation series”, as defined



in Methods Sec. VB and also explored in ref. [6]), then exact or approximate symmetries
of this local approximation will be asymptotic symmetries of the solution to the DE. Since
these approximations do not contain derivatives, computation of their Lie symmetries can
easily be done by hand with no need for the usual computer algebra approaches.
Asymptotic symmetries computed from a local perturbation series are generally only valid
near the initial or boundary conditions C}(0). They are clearly also only valid to the same
order in the perturbation parameter as their parent series. For example, solving Eqs (S9)
perturbatively to first order with initial conditions {(0) =1 — 4, II(0) = & + O(6%)}, and
premultiplying § and € by indexing parameter s, yields the following local perturbation series
for p:
w(t) =p@ 4+ s =1—5 [e(e” + e —2) 4 d¢7]. (S12)

We can then seek from this a zeroth-order approximate p — 1 asymptotic perturbation

symmetry for the exact solution to Eqgs. (S9), acting solely on parameters ¢ and §:

o 9 0

Xg(,oé) =& 9% + £§0)% (S13)
Solving X 5(,05) (1 + spM) = 0 yields the zeroth-order symmetry:
0 0
XxO _ 0 (9 O S14
Q= (el el (s)

where £(0) is an arbitrary function of € and §. Note, although zeroth-order in s, this symmetry

correctly describes the solution manifold to O(s') in the g — 1 asymptotic regime.

B. Conditions for global validity of asymptotic symmetry

Finally, we propose that asymptotic perturbation symmetries may often remain approx-
imately valid throughout the entire phase space of interest. If so, they may in principle be
employed to find global approximate solutions. To evaluate whether a given such symme-
try is indeed globally valid requires an examination of the bifurcations of the DEs it was
calculated for.

By definition, 1 > p(0) and I1(0) > 0. Moreover, «a;, as and a, are never negative in
protein aggregation reactions. Consequently, IT is monotonic increasing, and p is monotonic
decreasing in Eqgs. (S8). The structure of the parameter space relevant to protein aggregation

is therefore simple, featuring only an attractive fixed point at © = m,.. If we make the



approximation of irreversibility, m. = 0 and the parameter space can be partitioned into
two parts: the y — 0 asymptotic region, characterized by linearized kinetics about the fixed
point, and the remainder, the ;4 — 1 asymptotic region. For small ¢ the kinetics described
by Egs. (S8) approximately linearize when cg(myopt) /cva(myey) — 0 such that II(7) — I, =
const., and when a(mioit) /e (Mmioy) becomes linear in u. The p — 0 asymptotic region
thus corresponds to the kinetics becoming dominated by single-step elongation of fibrils,
with nucleation no longer being important. The p value at which this occurs represents the
boundary between these two asymptotic regimes. Often, the dynamics within the p — 1
region are uniform and no meaningful further subdivision of the parameter space exists,
in which case the global dynamics are partitioned into two asymptotic limits: g — 1 and
i — 0 (Fig. S2c-d). The boundary between these regions of phase space is marked by the
linearization of the kinetics.

i — 1 asymptotic perturbation symmetries are then approximately valid globally under
two circumstances. First, if the parameters transformed by the symmetry in response to an
increase in the perturbation parameters drop out of the 1 — 0 kinetics at the order in s
the u — 1 symmetry was calculated at. For example, Egs. (S9) lose memory of the initial
conditions {u(0) = 1 — sd, I1(0) = s§ + O(s?)} in the y — 0 asymptotic region, becoming
independent of 6 at O(s). This is because the initial conditions then enter the dynamics only
via I, = (1 = 0), which from Eq. (S11) can be shown to depend on § only at O(s?). Thus,
although the p — 1 asymptotic symmetry Eq. (S14) in principle transforms ¢ incorrectly
here, this leads only to an O(s?) error in the u — 0 asymptotic region, and so Eq. (S14)
is actually universally valid to O(s). The second circumstance is if the boundary between
asymptotic regions is sufficiently close to = 0, the second region may be neglected. We

consider examples of this in Methods Sec. V D.

C. Special solution for e =d =0

A critical requirement of the method we develop in this section is the knowledge of a
special solution, valid for a specific choice of the constant parameters on which the DE in
question depends and on which the asymptotic perturbation symmetry calculated operates.
It must be uniformly convergent and so valid globally, and consequently nonperturbative.

We derive such a solution in this subsection.

10



When a1, ay and «, are finite constants and ¢ = 0, Eqgs. (S8) reduce to:

O = (L= () (515)
L ) (516)

Integrating once, with boundary conditions p(0) = 1 — 4, I1(0) = p yields for ny > 0:

_ S\n2 _ n2 _ S\not1 no+1Y\ 1/2
0 = (i 20700 ey
Nno ng + 1

(S17)

ne = 0 is also possible and indicates fibril fragmentation rather than secondary nucleation.

In this case, we instead obtain:

1/2
(7)) = (p2 —2In -2((1—-0)— M(T))) . (S18)

1
1—-9¢

At this point, the problem is reduced to quadrature, with:

" dy
t=— [ £ 1
.t o)
If we choose p = po(d) = & + O(6?), where:
1—(1—&)m 11— (1— 8t
o \/ n2 ng + 1 ’ (520)
then Eq. (S19) reduces to:
# d
= —/ o “1 1\ 172 (S21)
0y (oA plstal)

with the first term in the square root replaced by —21n u if no = 0. To evaluate this integral,
it is necessary to find an accurate approximate expression g(u) for the denominator f(u).
We start by investigating f(u) in the interval [0, 1] containing all possible values of . We
find the following basic properties:

fO)=f(1)=0 (522)
f(p) >0, 0<p<l (523)
f(0)=c f(1)=-1 (524)
f'(w) <0, 0<p<1 (S25)

11



If we instead restrict our attention to the interval 0,1 — §], with small positive d, we find

furthermore that:

2n2+4

fA=68)=5+0(7), f(1-6)=-1+ 5+ O(6%). (S26)

Also, there is a single turning point (a maximum) in this interval. When ny = 1 the
maximum value is fra.x = 1/4, occurring at fimax = 1/2. As ng — 00, fuax — ¢, and occurs
at pmax — 1. Taken together, these results indicate that f is a low hill, rising from 0 at
either end of the interval [0, 1] to a value < 1/4. Thus neither f nor f’ have poles.

Such simple behaviour should be adequately captured by the simple functional form:
g(u) = ap™ + e + ez, pa>p1 > 1 (S27)

This is fortunate, because more complicated polynomials in p are unlikely to lead to an
integrable g~!. Now we constrain the parameters in ¢ by matching to the properties of f.
First imposing ¢(0) = f(0) = 0 requires c3 = 0. Imposing g(1 — §) = f(1 —§) = § + O(5?)

then leads to c; = —c¢; and py — py = 1/¢; > 0, so g has the form:

g(p) = cyp?* (1= p/er). (528)

To inherit the property that f’(0) > 0 requires p; = 1. This is also fortunate, since otherwise

g~! would not be integrable. With this form of g we can already evaluate (and invert)

t= [/ 597 du, yielding:
1
S e T e

Our asymptotic symmetry transformation method requires that our special solution have

(529)

the correct p — 1 asymptotic dynamics. Therefore, to choose ¢;, we match ¢'(1 — §) =
f'(1=196) (¢(1) already equals f/(1) = —1), yielding finally ¢; = 3/(2ny + 1).
(If we had instead matched ¢’(0) = f/(0), we would have obtained ¢; = \/2/(na(ng + 1)).

This would give a slightly more accurate solution for ny > 1, because for larger values of ny
secondary nucleation decreases significantly at a larger value of u, and the p — 0 region is
more important to the overall dynamics. However, there is not a great difference between
these choices for ¢;, with the maximum difference of 6% attained as ny — 00.)

Since 0 < 1, Eq. (S29) reduces to:

1
Mo(T, C1, (S) = m, (S30a)
3

12



We will use this as the special solution throughout, taking advantage of its greater simplicity

than the “exact” special solution.

D. Regularizing local perturbation series using asymptotic symmetries

Globally valid perturbation symmetries can in principle be used to regularize a singular
perturbation problem by transforming a known special solution, such as Eq. (S30), which
is valid when e = 0, for arbitrary ¢, and for p as a function of § satisfying p(6 = 0) = 0.
Since ¢; does not enter into the 1 — 1 asymptotic dynamics Eq. (S12), a global solution to
Egs. (S9) for 6 = 0 can be obtained simply by transforming the special solution with the
globally valid asymptotic perturbation symmetry generator Eq. (S14). First, the generator

is integrated to obtain the finite transformation from (0, ) to (e, 0):

de do

%Ze’ﬁz_(e +e7 —2) (S31a)
e=se", =6 =—s(e" +e 7 —2) (S31b)
S0 —e(em+e T —2)/e. (S31c¢)

Then, this finite transformation is substituted into the special solution. Replacing ¢ in

Eq. (S30) accordingly yields:

p(r) = (532)

with ¢; defined as before.

The same special solution is often available for the more complicated Eqgs. (S8) with
arbitrary initial conditions when ¢ = 0 and p = py (with py a function of & given by
Eq. (S20)). This requires that ay, as and «, depend on parameters d in such a way that
d = 0 reduces them to finite constants. An asymptotic perturbation symmetry connecting
(c1,0) with (d, €, p) may then be used to transform the special solution Eq. (S30) to a general
solution to Egs. (S8).

Because this kind of symmetry does not transform the dependent and independent vari-
ables, a shortcut in this procedure may be taken: it is not necessary to explicitly compute
the symmetry and its finite transformations. To see why, suppose such a symmetry connect-

ing (cy,0) with (d, ) has been found. From these, finite transformations taking (,d,0,0)

13



to (¢1,9,d,¢) can be calculated. Whatever they may be, they can always be expressed in
inverse form as 6 = 9s(1,c1,0,d,¢€), &1 = ge,(7,¢1,0,d,¢) where a tilde over a parameter

signifies it is at its pre-transformation value. Our global solution is then pg(7, ¢, d). Now,

since transforming one asymptotic expansion must yield another, g5 and g., must satisfy:

MO,asy(Ta Ela 5) = ,uasy(7_> (1, 57 da 5)7 (833)

where 119 .5y is the asymptotic expansion of the special solution f in this region of phase
space, and sy (T, 1,6, d, €) is the asymptotic limit of the full dynamics in the same region
(e.g. Eq. (15), or a higher-order series). So, the finite transformations can be identified by
inspection of p,sy; a globally valid solution is then obtained by substituting these transfor-

mations into Eq. (S30).

S3. SOLUTION OF GENERAL PROTEIN AGGREGATION RATE EQUATIONS
BY ASYMPTOTIC LIE SYMMETRY

The general equations Eqgs. (S8) can be rewritten for simplicity as:

dIl

T~ 2ccaiy(t. ) + dal)(1 — () (S34a)
P G, (S34b)

1(0) =1 — s, I1(0) = sp (S34c)

where @, (7, 1) = a(t, miott) /e (0,mior), € = a1(0, Myot) /(2myor2(myie)) and s is the

perturbation bookkeeping parameter, the zeroth order perturbation solutions are, as outlined
in the main text, given by:

no—=o0  pxO=1 (S35)

A. Perturbative solution to first order

The first order perturbation equations are given by:

AT
= 2ed (1,1) — pV (S36a)

du@®
Z — o, (S36b)

=
p(0) = =6, TD(0) =p. (S36¢)

14



In the case of ay(t,m) = a1(m), they are solved by:

no=o0  49=1 (S37a)
5
MY =¢(e"—e™™) + 5(67— —e )+ g(eT +e ), (S37D)
5
P = (e e T =) = S+ o) - g(eT —e). (S37¢)

For the remainder, of the section, however, we will not make this assumption. We instead
consider the more general condition, introduced in Methods Sec. V A, that the kinetics are
secondary-dominated such that a; grows less rapidly with 7 than e”. In this case, the
particular integral of u(M will also grow less rapidly than e”. We can then write the first

order perturbation terms as:

MY =g +R, pV=—g" +R (S38a)
g=c.+98/24p/2, (S38b)

where R consists of terms that diverge less rapidly with 7, and c. is a positive constant. In

the case that a;(t,m) = a1(m), c. = e.

B. Perturbative solution to second order

Now, consider the expansion in s of a:

da oa dy
a + S S—IZ—OO(S ) + Sﬁu s S—IZ—OO(S ) (S39a)
=1+ su(l)a—a + O(s?) (S39b)
&u s=0
=1+ suMa/(1) + O(s?), (S39¢c)

where the prime indicates differentiation with respect to . The second order perturbation

equation is then:

A1

—— = 2epa (7, 1) — pa5 (1) — pu® (S40a)
()
dg = —pWa (Ha® — I®, (S40D)
=
1@ (0) =11?(0) = 0. (S40c)

15



These can be combined into:

d’pt? (2) ~1 d 1)) s ™ L5 (1)2
T — 1Y = —al(1) o (pVTTY) = 220 (7, Dt + ay (1), (S41)

Since &; = o(e7), so is &), and consequently the complementary function of p® will be
o(e?7).

We seek the most-divergent terms of the second-order perturbation solution. These will
be the O(e*") components of the particular integral. These can be computed without the
need for retaining the less-divergent parts of the inhomogeneous terms of Eq. (S41). With
this simplification Eq. (S41) becomes:

>

S — 1 =208 (1) + g ay(1)e”. (S42)

Its solution can therefore be written as:

2
u® = %e% (@h(1) + 2&.(1)) + R. (S43)

C. Asymptotic symmetry transformation

To second order in s, the expansion of the special solution Eq. (S30) (where bookkeeping
parameter s has again been introduced to pre-multiply ) is:

. G 1=~
fio = 1 — sde” + 82%52627— + O(6%), (S44)

where we have already made the substitutions § — 6 and ¢; — ¢ required by Eq. (S33).
The first order perturbation solution can therefore be matched with the following finite
transformation:

se” = —puM (1) 4+ O(s). (545)

The expansion of the special solution is then:

C 1
Gy =1 — sp® 4+ 32%;&)2 +O(s%). (S46)
1

We can only in general match to second order the most-divergent terms in 7 (proportional
to €7), if we desire a simple, time-independent c¢;. (There is no great purpose in seeking a

time-dependent c; since the y — 1 kinetics are already captured exactly by the first-order

16



matching, and the asymptotic symmetry loses validity as 7 — 00.) The matching then

requires:
artl_ L) +ea) (S47a)
5 "3 s, a, a
L 2@y +2a 1) -1 (S47b)
C1 3

D. Construction of general solution

To remove some superfluous terminology:

d a;(m) d «;(m)

~/. 1 = —u = ot 75— — _]. 7
aZ( ) dlu“ ai(mtOt) m=mtot . tdm ai(mtOt) m=miot mdm e <m) Mm=mtot
3 dIn a;(m)
(1) = 4
= = | (s19

The general solution is then given by using the substitutions Eq. (S45) and Eq. (S47¢) on
the special solution Eq. (S29). Setting s = 1 and using Eq. (S48), this gives finally the
formula Eq. (16) presented in Methods Sec. (V D):

= (1 - “(l)(T))_Cl (S49a)

(&1
[ 2dIn[oz(m)ae(m)?] -
o = (3 i o) (S49b)

S4. APPLICABILITY OF NONLINEAR TECHNIQUES TO THE SOLUTION OF
PROTEIN AGGREGATION KINETICS

A. Fixed-point theory

In the context of protein aggregation, the fixed-point method is employed by turning the
rate equation for monomer concentration into an integral equation that acts as a fixed-point
operator [12; 13]. So, the first condition for applicability of the fixed-point method is that
this transformation into a closed-form integral equation is possible. This proves to be the
case for the most common forms of @, and is not too restrictive a condition [12-14].

After this transformation, an initial guess is then supplied for the fibril concentration,

and the operator applied to this initial guess to generate an improved approximation for the
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monomer concentration and (by conservation of mass) the fibril concentration. The second
condition for fixed-point applicability is that this integral equation is a contractive mapping
for the right initial guess. This is easiest evaluated by trial-and-error, simply by testing
that the output of the fixed-point iteration is indeed an improved approximation. This has
proven to be the case in most systems studied to date [12-14].

The final condition for applicability is that a sufficiently accurate and simple initial guess
can be provided for the fixed-point iteration to result in an accurate approximate solution
that is still simple enough for insight to be gained from it. This is the hardest condition to
satisfy. Under certain circumstances the unmodified early-time (or first-order perturbative)
solution is a suitable initial guess [12, 13]. Often, however, this is insufficient, with fixed-point
iteration giving a rather inaccurate solution, even for relatively simple rate equations [15, 16].
In such situations accuracy can sometimes be obtained by higher-order iteration. (This
means using the result of a single iteration as an initial guess for a second iteration, etc.)
However, for all but the simplest systems this is analytically intractable. Moreover, even
when tractable the resultant solutions are usually not closed-form and/or are far too complex
for insight to be easily derived from them [15]. (An exception is the kinetics of co-aggregation
with cross-elongation but without any secondary processes, where the second-order self-
consistent solution turns out to be relatively simple in form [16].)

The other potential fix is to use an improved initial guess. However, their identifica-
tion can be extremely difficult and is entirely non-algorithmic. Interestingly, for instance,
higher-order perturbative solutions are not generally better initial guesses; indeed, even-
order perturbative solutions can be easily shown to yield divergent expressions after fixed-
point iteration. The only other type of initial guess that has been identified previously and
that can sometimes be adapted to new systems is a composite solution that interpolates
between the early-time fibril concentration and its late-time limit [15]. This can sometimes
succeed where the early-time solution fails as an initial guess [8, 17]. However, its iteration
leads to expressions that are both more complex (and thus harder to interpret) and less
accurate than the approach we consider here. Moreover, it succeeds only when two condi-
tions are satisfied. First, the late-time limit of the fibril concentration must be possible to
calculate analytically. Second, there must be no other dominant timescales beyond those
that dominate the early-time solution and the fixed point operator for the monomer con-

centration, as otherwise fixed-point iteration to first order cannot introduce these additional
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timescales. (Higher-order iteration may be able to do so, since this involves converting the
other rate equations to fixed-point operators too, not just the monomer concentration rate
equation. However, here we are discussing providing an alternative to iterating to higher
order.)

In the case of coaggregation the latter condition is violated, as outlined in Methods
Sec. V C. This is because mechanistic analysis of protein aggregation requires data from re-
actions featuring multiple starting concentrations [12, 14]. One species therefore always
depletes before the other for at least some of the coaggregation reactions to be mod-
elled. The kinetics of the remaining species subsequently transitions from coaggregation
to self-aggregation, changing the dominant timescales. The transition to self-aggregation-
dominated timescales cannot be captured by first-order fixed-point approaches, at least not

without some very inspired guesswork that has hitherto not been successfully performed.

B. Chen-Goldenfeld-Oono Renormalization Group (CGO RG)

Ref. [9] considered the kinetics of homomolecular amyloid fibril formation featuring either
a fragmentation step, a branching step or an unsaturated secondary nucleation step. The
obligate primary nucleation and elongation steps were also restricted to be unsaturated, and
only unseeded initial conditions were considered (i.e. starting from pure monomeric protein).
Simplified rate equations were written down and nondimensionalized. They were then solved
perturbatively to second order in €, a parameter which had the same definition as in the
present study. This divergent solution was then converted into a globally valid convergent
solution using CGO RG. This would appear to contradict our finding in Methods Sec. VC
that CGO is formally inapplicable to protein aggregation rate equations.

To resolve this apparent contradiction, we look in more detail at the calculation in ref. [9].
A key step in the workflow of CGO RG is the calculation of an “RG equation”, whose sub-
sequent integration can produce the desired convergent solution. Unfortunately, however,
a direct integration of the RG equation identified in ref. [9] instead produces a divergent
expression. To rectify this, it was necessary to make the challenging guess that two terms
in the RG equation are the second-order expansion in ¢ of a very specific function. Substi-
tuting in this specific function finally allowed the integration of the RG equation to produce

a convergent solution. Since this guess was no easier than guessing the convergent solution
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directly from the second-order local perturbation series, in reality CGO RG does not aid in
finding the solution presented in ref. [9]. Instead, this solution was effectively guessed from
the second-order local perturbation series. This is far from the only case in which CGO RG
has required this kind of guesswork to succeed. Such cases stem from a widespread misunder-
standing of the mathematical origins of the method and, consequently, of the circumstances
of its applicability, as discussed extensively in ref. [6].

The solution of ref. [9] can in fact be easily derived using our general solution, Eq. (16).
This is done by simply identifying oy = k,m", a. = 2k, m and ay = kom™. After this,
Egs. (15)-(16) trivially reduce to the solution of ref. [9]. (Although the limit xt > 1 of
Eq. (15) must also be taken to complete the reduction.) The reasons for this are both
the fortunate guesswork of ref. [9] and also because by construction the solutions of both
approaches must be consistent with the second order perturbation series.

In certain other papers the solution of ref. [9] was generalized to account for other mecha-
nisms. A notable example is ref. [18], where it was extended to allow for any of primary nu-
cleation, elongation or secondary nucleation to saturate. (Also, the assumption that st > 1
was dropped.) This was achieved first by calculating the second-order local perturbation
series in ¢ for the rate equations governing this more complicated reaction mechanism. Next,
the parameters in the solution of ref. [9] were modified in such a way that its second order
expansion in € still matched this more complicated perturbation series. This is effectively
the same procedure we used to generate our general solution here. In other words, ref. [1§]
unwittingly applied a p — 1 asymptotic symmetry transformation to the simpler solution to
generalize it for non-infinite dissociation constants. Consequently, given its shared origins,
the solution of ref. [18] can also be derived using our general solution, Eq. (16). We do so

with significantly reduced difficulty compared to the original approach in SI Sec. S5.
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C. Method of asymptotic Lie symmetries and AB42-ABxx coaggregation

As discussed in Methods Sec. VE, Egs. (1) can be nondimensionalized into
Egs. (12)/Egs. (S8) if subscripts , are added to the latter. This gives:

dll,

= e,
dr, Ha”

1+ 1/}Cs(a)n2(a) + 1/Ks(ba)n2(aa)+n2(ab)

na(a)
U1 = ) S (S50)
1 —i—,lLZQ(a)/Ks((l)m(a) —|—MZ2(aa)//Cs(ba)”Q(a“)+n2(ab)

dig

o = — 0 (1) o (70), (S50Db)

€4 = 0 (Mhora) , (S50¢)

2mtot,a052,a(mt0t,a)

where p(t) = ma(t)/Miota, a(t) = 2ki(a)Pu(t)/k, and 7, = K4t, with
kg = \/oze,a(mtot’a)aza(mtot,a).Additionally, we define Kg(a) = Kgs(a)/miora and
Ks(ba) = K S(ba)mt_()?fa(a“)/ (”Q(WH”Z(ab))m;ﬁ(ab)/ (n2(aa)tn2(ab)) o5 the dimensionless average

per-monomer dissociation constants for monomer clusters from secondary nucleation sites
on Af342 fibrils.

Egs. (4) can be nondimensionalized by the same strategy, yielding:

62_13_: = 25bﬂb(Tb)nc(b) + 251,baMa(Ta)nc(ba)ﬂb(Tb)nc(bb)
+ 22 patta (7a)"> (1) (1 = pra(7a)
Mb(T:)’:(l,’)Cir((;)Ct((Z))"ﬂb) (7)™ (1 = (7). (S51a)
Ccll—lz = =) (73), (S51b)
115(0) = 1 — 6, T1,(0) = p, (S51c)

where pp(t) = my(t) /Mo, p(t) = 2k, (0)Py(t)/kp and 7, = Kyt and pp = mp/ Mot p, With

Kp = \/ae’b(mtot,b)ag,b(mtot’b). Moreover, Kg(b) = Kg(b)/myor,p and:

e = 1 pa (Mot a; mtot,b)7 (Sh2a)
thot,baz,b(mmmb)
- mtot7aa2,ba(mtot,a7mtOt,b) (S52b)
2ba =
@ 2mt0t7b0é27b(mt0t,b)
.Y = a1 p(Miotp) (Sh2c)

B 2mtot,b042,b(mtot,b) .
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Importantly, we can identify (Kg(a)™!, Kgs(ba)™!) with parameter d from the Methods;

when set to zero alongside ¢,, Eqgs. (S50) reduce to Egs. (S9) with ¢ = 0 and thus possess

)
the same special solution, i.e. Eq. (S30) (identifying 7 = 7, and ny = na(a)).

Asymptotic symmetries involving Kg(a)™t, Kg(ba)~! and ¢, computed from the local per-
turbation series of Eq. (S50) around p, = 1 — 0, II, = po(d) are valid globally, provided
g, is small (as is the case in unseeded AQ kinetics, and indeed in most protein aggregation
reactions hitherto studied[19]). For large values of Kg(a)™!, this is because secondary nu-
cleation does not now reduce significantly until p, < 1. As a consequence, the p, — 0
asymptotic limit is visited too late during saturating aggregation for its perturbation by the
introduction of non-zero Kg(a)™! and £ to be important for the overall kinetics.

For small values of Kg(a)™! this is because €, and Kg(a)™! then drop out of the u — 0
kinetics at leading order, and such symmetries therefore have no effect in this regime. This
may be seen as follows. Using the approximation 2 = 1, which is reasonable since
inhibiting secondary nucleation affects the kinetics only in the early stages before significant
monomer is depleted, integrating Eqs. (S50) once with II(x = 1) = 1 then yields IT as a
function of u. Next, taking the limit p — 0 yields II(c0):

I4(00) = (2;1—:_(5)11& {1 n g] 4%a

2(A + B) 1 1 B\
- Rl — 24— —— , (SH3
A 1 )
where A = 1+ 1/Kg(ba)"2@+72(@) and B = 1/Kg(a)"2@. In the limit of small Kg(a)™?,
and noting that the first-order Taylor series around z = 0 of 5 Fi[a, b, ¢, 2] is 1 + abz/c, the

hypergeometric becomes:

na(a) +1 2ny(a) +1 B} ) ns(a) +1 B

. I S A —2n3(a)
2L, na(a) = mg(a) T A 2ns(a) +1 A +O(Ks(a) ) (854)

and I1,(c0) reduces to:

2 2 —na(a
I, (c0) = \/ng(a) R + O(Kg(a)™@ g,). (Sh5)

Thus, to leading order, i, — 1 asymptotic symmetries in Kg(a)™"2(®, &, have no effect on
the g, — 0 dynamics.
Since A342 aggregation is complete before AfBxx aggregation begins, the solution to the

kinetics of AB42 aggregation in the presence of constant Afxx monomer concentration,
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Eq. (7), may be substituted for m,(t) and M,(t) (or Eq. (22) when AP42 fibril seeds are
present). Once more, Eq. (S30) is a special solution to Eq. (4) with the right initial conditions
when {e, €1pas €2a, Ks(b)™'} = 0. Because Egs. (S51) are also of the same form as
Egs. (S50), asymptotic symmetries around p, = 1 — 9, II, = po(d) are again valid globally;

the method of solution by asymptotic symmetries can thus again be used.

S5. EXAMPLE APPLICATION: UNSEEDED, SATURATED HOMOGENEOUS
PROTEIN AGGREGATION KINETICS

The kinetics of protein aggregation in which any reaction step can saturate are given

by [18]:
dP knm(t)" kam(t)™?

&= T )/ Ker T T ()R W (S56a)
M 2k.m(t)

i Trmi g Y (S56D)

Mot = m(t) + M(1), (S56¢)

where k,, k. and k; are the rate constants for primary nucleation, elongation and secondary
nucleation respectively. Kp, Kg and Kg are the half-saturation concentrations for the same
reaction steps, or equivalently the geometric mean per-monomer dissociation constants from
the sites at which these steps occur [18]. Finally, n. and ny are the reaction orders for
primary and secondary nucleation with respect to monomers.

We can identify the monomer-dependence of the reaction step rates as:

B k,m(t)™e
ai(m) = T (@) Ko™ (Sh7a)
~ 2kymf(t)
a.(m) = TTm®)/Ks (S57Db)
an(m) kam(1)" (S57¢)

T 1+ (m(t)/Ke)™
In the case of no seed, 6 = p = 0 and the first order term of the perturbation series can

be immediately written down using Eq. (15) of the main text:
pM () = —e(e + e — 2), (S58)

where we identified F = e + e~ — 2 since a; has no explicit t-dependence. As in the main

text, k = \/ag(mtot)ae(mtot). Moreover, € = a;(Myot) /2Mior 2 (Mot -
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Next, we compute In[as(m)a.(m)?]:
In[as(m)ae(m)?] = const. + Inm™** — 21n[1 4+ m(t)/Kg] — In[1 + (m(t)/Ks)"™]. (S59)

Differentiating by Inm:

dIn[as(m)ae(m)?] _ 2m(t)/Kg _ Na (m(t)/Ks)™
dlnm 1+m(t)/Kg 1+ (m(t)/Kg)"™

(S60)

Finally, combining all these results, we can use the general solution formula Eq. (16) in the

main text, which gives:

M) _ (1 L E (et 2)> (S61a)
Miot €1
2k, komP2t!
L _ S61h
\/(1+mt0t/KE)(1+<mtot/KS) ) ( )
3
_ 1
“ 2nh + 1 01

knm?c;t 1 + (mtot/KS>n2

€= - S61d
2k2m?§t+1 1+ (mtot/Kp) © ( )

2 K
) e Mo/ K (S61e)

1+ (Mmior/ Ks)™ 1+ Mot/ Kg

This is none other than the general solution of ref. [18]. Its calculation here using our formula

Eq. (16) involved considerably less difficulty than the original approach in ref. [18].

S6. FIRST-ORDER PERTURBATION SERIES FOR p;, AND ITS SIMPLIFICA-
TION

The differential equations to be solved are Egs. (S51):

dIl
d_Tb - 28b’u’b(Tb>nC(b) + 281,ba,ua(Ta)nC(ba)ub(Tb)nc(bb) + 252,ba/~ba(Ta)HZ(ba)///b(Tb>n2(bb)(1 - Na(Ta))
b
1+ Ks(b)"® (®)
B i S62
) + sy oW Ll ($620)
d
= ) (S62b)
Th

subject to initial conditions 1,(0) = 1, I1,(0) = 0. We pre-multiply the small terms propor-

tional to €5, €14, and €94, by perturbation indexing parameter s (to be later set to 1), as
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before. Substituting in pu, = 1+ suél) and 11, = sH,()l) then gives the following equations at

first order in s:

dH(l)

d;; — 251; -+ 251,ba,ua(7_a)n6(ba) + 252,ba/4La(7—a)n2(ba)(1 - Ma(Ta)) - Ml()l)(Tb), (SGS&)
d,u(l) )

=) (S63b)

In the limits e’ > 1 and § < 1, the low-seed solution for p, (Eq. (22)) becomes: p, —

(14 Ae"t/c,) ¢, where A = e, + /2 + p/2. At this point, Egs. (S63) may be solved for
(1)

py as:
A A
s () = —21.0 (eﬂbt2F1 [—@7 Cane(ba), 1 — =, __] —2h [_@’ Cante(ba), 1 = o ——e”“t}
Kaq Ra Cq Rq Ka Ca
A A
+€_Rbt2Fl [@7 Ca”c(ba)u 1 + @; __:| - 2F1 |:@7 Canc(ba>7 1 + @7 __e’iat:|)
Ka Ka Cq Rgq Rq Cq

A A
— 52,ba (e”‘thFl |:—@, CaTZg(b(l), 1-— @, ——:| — B’ibtgFl |:—@, Ca(l + ng(ba)), 1-— @, ——:|

Ka Ra  Ca Ra Ra  Ca

A A
+e "t By {—Rb , Cana(ba), 1 + —ﬁb, ——} — e Mty {—m’ ,Ca(1+m2(ba)), 1+ —Hb, ——}
K K

Rq Rq Cq a " Ca
A A
+2F1 |i_@7 Ca(l + nQ(ba’))7 1- @7 __eﬁat:| - 2Fl |:_@7 CanZ(ba>7 1— @7 ——e'i“t}
Ka Ka Ca Rq K Cq
A A
+2F1 [@, ca(l 4+ nao(ba)), 1+ @’ __enat] _ LR [@7 cana(ba), 1 + @’ __enat:|>
Ra Ra Cq Kq Ka Cq

— & (e™F et —2), (S64)

where 5 F1[a, b, ¢, z] is the Gaussian hypergeometric function. Since A/¢, < 1 provided seed
concentration is low, and since lim, ,q2F1[a,b,c, 2] = 1, the first four terms proportional

to €25, cancel, and two of the hypergeometrics proportional to €, vanish, simplifying

Eq. (S64) to:

A
Nz(;l)(t) = 1 (6/%15 L F {_ Kp ’ canc(ba), 1— :‘ib’ __enat:|
Kq Ke  Cq4

A
+e Tt — By {@, cane(ba), 1 4+ @, ——e”“t})
K K

a a C(l
A A
— €2.ba <2F1 [—@7 ca(l 4+ no(ba)), 1 — %7 —C—enat} — ol [—%, cano(ba),1 — ?7 —C—eﬁat}
Kp

A A
+o [_7 ca(1 +no(ba)), 1+ @, ——e”“t] —oF [ﬁ, cana(ba), 1 + @, —_e”at}>

a H;(Z Ca a Ha Ca

— &y (e™F et —2) . (S65)
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Bearing in mind the following identity:

oFila,b,c, 2] = ~ oI {a,c— b, c : } , (S66)

(1-—2) Tz —1
and since i—Ze”at > 1 by the time the APxx sigmoid is reached, the remaining hypergeometric

functions can be simplified using the relations:

iy A Kat
Rp Kp A ¢ A t\ " Rp Rp Rp C_e “
Fy|—— xal__a__ =1 —e™ F __71___ 5 > -
2 1{ P PR ] ( +Ca€ e Ka o 1+ Aerat
(S67)
A K/b/ﬁa
~ et (—) JF) {—@,1 S @,1} (S68)
Cq a Rq Ka
_ Kb A _Kat
A A ra e
P [ 14 2 Demat | = (14 Dt ) R4 B 1 B e
Ka Ra Ca Ca Ka Kaq o 1+ : ehal
(S69)
_K’b/'%a
~ —“bt( > QFI{@,H@ nx,1+@,1]
ca a I{/a: a
(S70)

This gives:

ugl)(t) = —& (e’”’t + et — 2)

A Kb/Ka
Cq Ra Ra Ra
A —Kp/Ka
Y (1_ (_) N {@,1+@—canc(ba),1+@,l}>>
Cq Ra Ka Ra

Hb/K,a 1
_ 52,ba (eﬁbt (6_(1) Z(_l)lJrl 2F1 |:_@’ 1— @ _ ca(ng(ba) + Z), 1— @, 1:|
R

C K R,
a i—0 a a a

—kp/ka L
e vt (8—a> Z(—l)iﬂ o Fy [%, 1+ ? — cq(na(ba) +1),1+ @, 1}) . (S71)

Ca i=0 a "ia

These simplifications mean the solution no longer satisfies the initial condition uél) (0) = —4.
We can restore this limiting behaviour by adding and subtracting constant terms and terms
proportional to e *! yielding finally Eq. (23) of the main text. Because the added and
subtracted terms vanish in front of the leading-order terms proportional to e, this does

not appreciably reduce accuracy of the final expression.
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S7. SUPPORTING KINETIC DATA FITTING

Q
=3

Fraction aggregated
Fraction aggregated

0 2 4 6 8 10 12
Time /h Time /h

FIG. S3: Data on APxx and AP42 aggregation in isolation were collected in refs. [20, 21] alongside
the coaggregation data. The catalytic secondary nucleation model, Eq. (10), yields good fits to
these data. a: AB42 at pH 7.4; initial monomer concentrations are m(0) = 10, 5, 3, 2 and 1
pM. Rate parameters are Kg = 1.1 pM, n, = na = 2. b: AB40 at pH 7.4; initial monomer
concentrations are m(0) = 20, 15, 10, 5 and 3 pM. Since Kg < 3 pM, secondary nucleation is
completely saturated at these concentrations and we can only provide this bound on Kg rather

than a precise value. Other rate parameters are n. = 3 and ny = 2.

1.0

°
Y

AB42 seed
concentration:

O 0nM

O 60nM
O 200nM

Relative aggregate concentration
Relative aggregate concentration

0.0

4.0

2 3.0
Time (h) Time (h)

FIG. S4: Full time course for seeded coaggregation reaction displayed in Fig. 3iii. Both kinetic

data and global fits to Eq. (10) displayed.

S8. SUMMARY OF PARAMETERS

k9

In all subsequent tables, an asterisk means “chosen to be arbitrarily small”.
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TABLE S1: Parameter values for AB42 + AB40 aggregation in Fig. 2 and Fig. 8

Values (units of pM, h)

Parameter Ap42
ki ko 10.7
kiky, 0.0203
n9 2
Ne 2
Kg 1.1
Kg(ba) 0.845
na(aa) 1
na(ab) 1

TABLE S2: Parameter values for Fig. 5b and for A$42 4+ AB38 aggregation in Fig. 2

Values (units of pM, h)

Parameter ApB42 AB38
ki ko 19 50
kyky, 0.015 1016
9 2 2
Ne 2 3
Kg 1.1 0.099
na(ba) 0.14

no(bb) 1.5

ko(ba) 1.2 x 1074

na(aa) 1

na(ab) 1

Kg(ba) 1.38
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TABLE S3: Parameter values for AB42 + AB37 aggregation in Fig. 2

Parameter

Values (units of pM, h)
AB42

k. ko
ke kn
n2

Ne

Kg
na(aa)
na(ab)
Kg(ba)

110
0.015
2
2
1.1
1
1
0.82

TABLE S4: Parameter values for Fig. 3b(i)-(ii)

Parameter

Values (units of pM, h)
AB42

AB40

s ko
ks Fon

na

17.2

0.012 8.5
2
2

1.1

1.9 x 1074

0.845

48.8

x 10712%

2
3
0.081
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TABLE S5: Parameter values for Fig. 3b(iii)

Values (units of pM, h)

Parameter AB42 AB40
ki ko 19.2 69.4
kykp 0.025 8.5 x 107 12*
n9 2 2
Ne 2 3
Kg 1.1 0.081
na(ba) 1
na(bb) 1
ko(ba) 1.4 x 1072
na(aa) 1
na(ab) 1
Kg(ba) 0.845

TABLE S6: Parameter values for Fig. 5a

Values (units of pM, h)

Parameter ApB42 AB40
ki ko 20 9.2
kykn 0.0097 8.5 x 107 12*
n9 2 2
Ne 2 3
Kg 1.1 0.081
na(ba) 2.3
no(bb) 0.0
ko(ba) 3.7x 1073
na(aa) 1
na(ab) 1
Kg(ba) 0.845
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