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S1. INTRODUCTION TO LIE GROUP THEORY OF DIFFERENTIAL EQUA-

TIONS

The theory of Lie groups finds diverse application across theoretical physics. It was

originally developed by Sophus Lie as a systematic method for exactly solving nonlinear

differential equations (DEs) by exploiting their symmetry properties; however, this applica-

tion is largely unknown today. Consequently, it is widely believed that nonlinear DEs can

be solved only by a combination of guesswork and ad-hoc methods of individually narrow

applicability. In fact, most such methods may be derived from the Lie group theory of DEs,

which provides a unified and general platform for solving DEs of any kind. Here we give a

brief summary of those parts of Lie group theory of DEs that are utilized in the paper; for

a more in-depth treatment, refs. [1, 2] can be consulted.

A. Continuous transformations

A point transformation maps the independent and dependent variables x and y of the

object being acted upon to x̃ and ỹ. Point transformations that are indexed by real-valued

parameter s may be written x̃ = x̃(x, y, s), ỹ = x̃(x, y, s) and are continuous: the extent

of the transformation can be “dialled up” or down arbitrarily by increaseing or decreasing

s. When these are also invertible, contain the identity at s = 0, and obey associativity via

x̃(x̃(x, y, s), ỹ(x, y, s), t) = x̃(x, y, s + t), they form a group. Because they are continuous,

the infinitesimal transformation exists and can be accessed by expanding around s = 0:

x̃(x, y, s) = x+ sξ(x, y) + . . . , ξ(x, y) =
∂x̃

∂s

∣∣∣∣
s=0

, (S1)

ỹ(x, y, s) = y + sη(x, y) + . . . , η(x, y) =
∂ỹ

∂s

∣∣∣∣
s=0

. (S2)

(ξ(x, y), η(x, y)) define the tangent vector of the transformation. This can alternatively be

expressed as:

x̃(x, y, s) = x+ sXx+O(s2), ỹ(x, y, s) = y + sXy +O(s2), (S3)
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where the operator X is the infinitesimal generator of the point transformation, given by:

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
, (S4)

Integrating the tangent vector over s will yield a finite transformation.

B. What is a Lie symmetry?

A Lie symmetry of an object is a continuous transformation that leaves the object invari-

ant. A rotational symmetry of a square is not a Lie symmetry, as it is discrete and can only

be performed in multiples of π/2 (Fig. S1a). However, a rotational symmetry of a circle can

involve any angle, and is thus a Lie symmetry (Fig. S1b). A DE can be viewed as a geo-

metrical object: a manifold consisting of the union of all its possible solutions. They often

possess Lie point symmetries: transformations of the dependent and independent variables

that leave the overall manifold invariant. Applied to a particular solution (that spans a

subspace of the DE manifold) a Lie symmetry of the DE transforms it into another solution

(see Fig. S1c)). By analogy, a rotational Lie symmetry maps a circle to itself but maps a

point on the circle to another point.

The ability to express a continuous point transformation in infinitesimal form also makes

it possible to calculate systematically the Lie point symmetries possessed by a given ob-

ject. For DEs this procedure, although algorithmic, can be extremely long-winded because

derivatives are not transformed in a straightforward way by Lie point symmetries. To avoid

dozens or hundreds of pages of working, it is thus best implemented using computer algebra

systems (CAS). On the other hand, for objects without derivatives the procedure is simple.

For example, the circle in Fig. S1b may be expressed in polar coordinates as F = r− c = 0.

In these co-ordinates the generator isX = ξr∂/∂r+ξθ∂/∂θ. Trivially, solvingXF = 0 yields

ξr = 0 and arbitrary ξθ: a rotational symmetry. In cartesian co-ordinates F = x2 + y2 − c,

and solving XF = 0 yields η in terms of ξ, giving the generator as follows:

0 = XF =

(
ξ(x, y)

∂

∂x
+ η(x, y)

∂

∂y

)
(x2 + y2 − c) (S5)

∴ X = ξ(x, y)

(
y
∂

∂x
− x

∂

∂y

)
. (S6)

The arbitrary rotational transformation is recovered in cartesian coordinates as expected.
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FIG. S1: An overview of Lie symmetries. a: Squares have discrete rotational symmetries. These

cannot be reduced to infinitesimal form; therefore, they are not Lie symmetries. b: Circles can be

rotated by any amount; rotation is thus a Lie symmetry of the circle. c: In general, symmetries of

DEs map solutions to other solutions with different boundary conditions. An arbitrary translation

on the y axis is a Lie symmetry of the DE ẏ = 2t, because this is solved by y = t2 + c, and the

translation just changes the value of c, giving the solution to the DE for new boundary conditions.

C. Approximate symmetries

A more recent development in the field of Lie group analysis of DEs is the discovery

that perturbed DEs can possess “approximate symmetries” [3]. These leave a perturbed DE

invariant only to some finite order in the perturbation parameter ε. They can be identified

by solving:

(X(0) + ϵX(1) + ...)(F0 + εF1)|F0+ϵF1=0 = 0, (S7)

order-by-order [4]. They can often be used to find approximate solutions to perturbed

DEs. However, approximate symmetries of DEs are more difficult to compute than exact

symmetries, and there exist few if any CAS implementations of the procedure.

D. Perturbation symmetries

Lie point symmetries of a DE are traditionally thought of as transformations acting on its

dependent and independent variables. However, there is nothing to stop us pretending that

the perturbation parameter ε in a perturbed DE is an independent variable, and searching

for symmetries that act on ε as well [5]. Doing so can significantly extend the power of
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the Lie group approach. We have previously termed these “perturbation symmetries” (See

ref. [6] for a detailed explanation of these symmetries and this choice of terminology).

Crucially, if a reference solution is known for the perturbation problem with ε = 0, this

may be converted using a perturbation symmetry of the general solution into a solution

valid for arbitrary ε. This is because such a symmetry leaves the space of solutions for all

possible ε unchanged. Thus, acting on a solution for a specific ε maps it to another solution

with a different ε.

Unfortunately, both exact and approximate perturbation symmetries are often extremely

difficult or impossible to compute, due to the high dimensionality of the manifold, which de-

feats most or all CAS implementations. However, we recently developed a method (explained

in detail in [6]) that can compute approximate perturbation symmetries of the solution to

a perturbed DE directly, with far greater ease than earlier methods.

S2. METHOD OF ASYMPTOTIC LIE SYMMMETRIES FOR SOLVING PRO-

TEIN AGGREGATION KINETICS

In the main text we focus on a highly general rate law for protein aggregation kinetics,

which in nondimensional form is given by Eqs. (12). We reproduce these here for convenience:

dΠ

dτ
= 2ε

α1(t,m)

α1(0,mtot)
+

α2(m)

α2(mtot)
(1− µ(τ)) (S8a)

dµ

dτ
= − αe(m)

αe(mtot)
Π(τ). (S8b)

As explained in Methods VB, µ = m/mtot is the nondimensional monomer concentration,

and Π the nondimensional fibril number concentration. The nondimensional time is τ =

κt where κ =
√
αe(mtot)α2(mtot). Moreover, the functions α1, α2 and αe are defined

as the monomer-dependence of the rates of primary nucleation, secondary nucleation and

elongation. Finally, ε = α1(0,mtot)/2mtotα2(mtot), which can be interpreted as the relative

importance of primary nucleation over secondary processes. The initial conditions considered

are {µ(0) = 1− δ, Π(0) = p = δ +O(δ2)} where δ ≪ 1.
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A. Exact, approximate and asymptotic Lie symmetries in protein aggregation

The kinetics of pure Aβ42 aggregation at pH 8.0, among other protein aggregation reac-

tions, obey the simplest possible equations of the form of Eqs. (12), which are:

dΠ

dτ
= 2εµ(τ)nc + µ(τ)n2(1− µ(τ)) (S9a)

dµ

dτ
= −µ(τ)Π(τ). (S9b)

We will use these equations throughout this subsection as an illustrative example.

Eqs. (S9) (and many other instances of Eqs. (S8)) can be integrated once analytically [7].

The first step is to divide Eq. (S9a) by Eq. (S9b), giving:

Π
dΠ

dµ
= −2εµ(τ)nc−1 − µ(τ)n2−1(1− µ(τ)). (S10)

Then explicitly integrating over µ gives:

Π(µ) =

(
p2 +

4ε

nc

(1− δ)nc + 2
(1− δ)n2 − µn2

n2

− 2
(1− δ)n2+1 − µn2+1

n2 + 1

)1/2

. (S11)

The problem is consequently reduced to quadrature by substituting this into the

Eq. (S9b) [7]. However, the second integration cannot be performed analytically. So, an

exact analytic solution for µ is not possible. Since all solutions are consequences of Lie

symmetries, Eqs (S9) should therefore not possess any non-trivial exact symmetries other

than those that yield this quadrature. This can be verified explicitly by their computation

using CAS. Surprisingly, moreover, their explicit computation reveals that Eqs (S9) have no

non-trivial approximate symmetries (Fig. S2a) either.

Yet, these equations have several approximate analytical solutions [7–9], implying they

possess some other kind of approximate symmetry property even if they do not possess

formal approximate symmetries as defined in [3] and explained in Sec. S1C. Given that

these approximate solutions all become more accurate in the limit µ → 1, we consider the

possibility of Lie symmetries that become exact only asymptotically in a given region of

phase space (Fig. S2b). The concept of exact “asymptotic symmetries” of DEs, involv-

ing dependent and independent variables only, has been investigated in at least two prior

mathematical papers [10, 11]. However, a systematic method for their computation was

not established, and instead they were computed by guesswork from the DE and its exact
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FIG. S2: Illustration of asymptotic symmetries, and asymptotic regions in the kinetics of linear

protein self-assembly. a: Dodecagons are only approximately invariant under infinitesimal rota-

tional transformations (to O(ε), where ε ∼ z cos θ, with θ the external angle and z the side length),

which are therefore an approximate Lie symmetry. b: f = x2 + ε sin(πy)x5 is asymptotically

invariant to an arbitrary y-translation in the limit x → 0; such a translation is thus an asymptotic

Lie symmetry. c: Numerical solution for normalized fibril end concentration Π (rate equation

Eq. (S9a), gray); parameters are the same as in Fig. 6. d: Numerical solution for normalized

fibril mass concentration 1 − µ (rate equation Eq. (S9b), black). The µ → 0 asymptotic regime,

dominated by simple exponential decay of µ, is entered once the fibril number concentration begins

to plateau. The local perturbation series (red, Eq. (15a)) is no longer valid in this regime.

symmetries. Hereafter we adopt the name “asymptotic” proposed in these papers for this

class of symmetries.

Now, we propose asymptotic symmetries of solutions to DEs rather than of DEs them-

selves, and acting on all parameters in the problem, not just the dependent and independent

variables. We also propose a systematic method for their computation. If a local approxi-

mation to the solution of a DE is available (such as a “local perturbation series”, as defined
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in Methods Sec. VB and also explored in ref. [6]), then exact or approximate symmetries

of this local approximation will be asymptotic symmetries of the solution to the DE. Since

these approximations do not contain derivatives, computation of their Lie symmetries can

easily be done by hand with no need for the usual computer algebra approaches.

Asymptotic symmetries computed from a local perturbation series are generally only valid

near the initial or boundary conditions Cj(0). They are clearly also only valid to the same

order in the perturbation parameter as their parent series. For example, solving Eqs (S9)

perturbatively to first order with initial conditions {µ(0) = 1 − δ, Π(0) = δ + O(δ2)}, and

premultiplying δ and ε by indexing parameter s, yields the following local perturbation series

for µ:

µ(τ) = µ(0) + sµ(1) = 1− s
[
ε(eτ + e−τ − 2) + δeτ

]
. (S12)

We can then seek from this a zeroth-order approximate µ → 1 asymptotic perturbation

symmetry for the exact solution to Eqs. (S9), acting solely on parameters ε and δ:

X
(0)
ε,δ = ξ(0)ε

∂

∂ε
+ ξ

(0)
δ

∂

∂δ
(S13)

Solving X
(0)
ε,δ

(
µ(0) + sµ(1)

)
= 0 yields the zeroth-order symmetry:

X
(0)
ε,δ = ξ(0)

(
eτ

∂

∂ε
− (eτ + e−τ − 2)

∂

∂δ

)
, (S14)

where ξ(0) is an arbitrary function of ε and δ. Note, although zeroth-order in s, this symmetry

correctly describes the solution manifold to O(s1) in the µ → 1 asymptotic regime.

B. Conditions for global validity of asymptotic symmetry

Finally, we propose that asymptotic perturbation symmetries may often remain approx-

imately valid throughout the entire phase space of interest. If so, they may in principle be

employed to find global approximate solutions. To evaluate whether a given such symme-

try is indeed globally valid requires an examination of the bifurcations of the DEs it was

calculated for.

By definition, 1 ≥ µ(0) and Π(0) ≥ 0. Moreover, α1, α2 and αe are never negative in

protein aggregation reactions. Consequently, Π is monotonic increasing, and µ is monotonic

decreasing in Eqs. (S8). The structure of the parameter space relevant to protein aggregation

is therefore simple, featuring only an attractive fixed point at µ = mc. If we make the
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approximation of irreversibility, mc = 0 and the parameter space can be partitioned into

two parts: the µ → 0 asymptotic region, characterized by linearized kinetics about the fixed

point, and the remainder, the µ → 1 asymptotic region. For small ε the kinetics described

by Eqs. (S8) approximately linearize when α2(mtotµ)/α2(mtot) → 0 such that Π(τ) → Π∞ =

const., and when αe(mtotµ)/αe(mtot) becomes linear in µ. The µ → 0 asymptotic region

thus corresponds to the kinetics becoming dominated by single-step elongation of fibrils,

with nucleation no longer being important. The µ value at which this occurs represents the

boundary between these two asymptotic regimes. Often, the dynamics within the µ → 1

region are uniform and no meaningful further subdivision of the parameter space exists,

in which case the global dynamics are partitioned into two asymptotic limits: µ → 1 and

µ → 0 (Fig. S2c-d). The boundary between these regions of phase space is marked by the

linearization of the kinetics.

µ → 1 asymptotic perturbation symmetries are then approximately valid globally under

two circumstances. First, if the parameters transformed by the symmetry in response to an

increase in the perturbation parameters drop out of the µ → 0 kinetics at the order in s

the µ → 1 symmetry was calculated at. For example, Eqs. (S9) lose memory of the initial

conditions {µ(0) = 1 − sδ, Π(0) = sδ + O(s2)} in the µ → 0 asymptotic region, becoming

independent of δ at O(s). This is because the initial conditions then enter the dynamics only

via Π∞ = Π(µ = 0), which from Eq. (S11) can be shown to depend on δ only at O(s2). Thus,

although the µ → 1 asymptotic symmetry Eq. (S14) in principle transforms δ incorrectly

here, this leads only to an O(s2) error in the µ → 0 asymptotic region, and so Eq. (S14)

is actually universally valid to O(s). The second circumstance is if the boundary between

asymptotic regions is sufficiently close to µ = 0, the second region may be neglected. We

consider examples of this in Methods Sec. VD.

C. Special solution for ε = d = 0

A critical requirement of the method we develop in this section is the knowledge of a

special solution, valid for a specific choice of the constant parameters on which the DE in

question depends and on which the asymptotic perturbation symmetry calculated operates.

It must be uniformly convergent and so valid globally, and consequently nonperturbative.

We derive such a solution in this subsection.

10



When α1, α2 and αe are finite constants and ε = 0, Eqs. (S8) reduce to:

dΠ

dτ
= µ(τ)n2(1− µ(τ)) (S15)

dµ

dτ
= −µ(τ)Π(τ). (S16)

Integrating once, with boundary conditions µ(0) = 1− δ, Π(0) = p yields for n2 > 0:

Π(τ) =

(
p2 + 2

(1− δ)n2 − µ(τ)n2

n2

− 2
(1− δ)n2+1 − µ(τ)n2+1

n2 + 1

)1/2

. (S17)

n2 = 0 is also possible and indicates fibril fragmentation rather than secondary nucleation.

In this case, we instead obtain:

Π(τ) =

(
p2 − 2 ln

µ

1− δ
− 2 ((1− δ)− µ(τ))

)1/2

. (S18)

At this point, the problem is reduced to quadrature, with:

t = −
∫ µ

1−δ

dµ

µΠ(µ)
. (S19)

If we choose p = p0(δ) = δ +O(δ2), where:

p0 =

√
2
1− (1− δ)n2

n2

− 2
1− (1− δ)n2+1

n2 + 1
, (S20)

then Eq. (S19) reduces to:

t = −
∫ µ

1−δ

dµ

µ
(
21−µn2

n2
−21−µn2+1

n2+1

)1/2 , (S21)

with the first term in the square root replaced by −2 lnµ if n2 = 0. To evaluate this integral,

it is necessary to find an accurate approximate expression g(µ) for the denominator f(µ).

We start by investigating f(µ) in the interval [0, 1] containing all possible values of µ. We

find the following basic properties:

f(0) = f(1) = 0 (S22)

f(µ) > 0, 0 < µ < 1 (S23)

f ′(0) = c, f ′(1) = −1 (S24)

f ′′(µ) ≤ 0, 0 ≤ µ ≤ 1. (S25)
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If we instead restrict our attention to the interval [0, 1 − δ], with small positive δ, we find

furthermore that:

f(1− δ) = δ +O(δ2), f ′(1− δ) = −1 +
2n2 + 4

3
δ +O(δ2). (S26)

Also, there is a single turning point (a maximum) in this interval. When n2 = 1 the

maximum value is fmax = 1/4, occurring at µmax = 1/2. As n2 → ∞, fmax → c, and occurs

at µmax → 1. Taken together, these results indicate that f is a low hill, rising from 0 at

either end of the interval [0, 1] to a value ≤ 1/4. Thus neither f nor f ′ have poles.

Such simple behaviour should be adequately captured by the simple functional form:

g(µ) = c1µ
p1 + c2µ

p2 + c3, p2 > p1 ≥ 1. (S27)

This is fortunate, because more complicated polynomials in µ are unlikely to lead to an

integrable g−1. Now we constrain the parameters in g by matching to the properties of f .

First imposing g(0) = f(0) = 0 requires c3 = 0. Imposing g(1− δ) = f(1− δ) = δ + O(δ2)

then leads to c2 = −c1 and p2 − p1 = 1/c1 > 0, so g has the form:

g(µ) = c1µ
p1
(
1− µ1/c1

)
. (S28)

To inherit the property that f ′(0) > 0 requires p1 = 1. This is also fortunate, since otherwise

g−1 would not be integrable. With this form of g we can already evaluate (and invert)

t =
∫ µ

1−δ
g−1dµ, yielding:

µ(τ) =
1

(1 + et [(1− δ)−1/c1 − 1])
c1 . (S29)

Our asymptotic symmetry transformation method requires that our special solution have

the correct µ → 1 asymptotic dynamics. Therefore, to choose c1, we match g′(1 − δ) =

f ′(1− δ) (g′(1) already equals f ′(1) = −1), yielding finally c1 = 3/(2n2 + 1).

(If we had instead matched g′(0) = f ′(0), we would have obtained c1 =
√
2/(n2(n2 + 1)).

This would give a slightly more accurate solution for n2 > 1, because for larger values of n2

secondary nucleation decreases significantly at a larger value of µ, and the µ → 0 region is

more important to the overall dynamics. However, there is not a great difference between

these choices for c1, with the maximum difference of 6% attained as n2 → ∞.)

Since δ ≪ 1, Eq. (S29) reduces to:

µ0(τ, c1, δ) =
1

(1 + δeτ/c1)
c1 , (S30a)

c1 =
3

2n2 + 1
. (S30b)
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We will use this as the special solution throughout, taking advantage of its greater simplicity

than the “exact” special solution.

D. Regularizing local perturbation series using asymptotic symmetries

Globally valid perturbation symmetries can in principle be used to regularize a singular

perturbation problem by transforming a known special solution, such as Eq. (S30), which

is valid when ε = 0, for arbitrary δ, and for p as a function of δ satisfying p(δ = 0) = 0.

Since c1 does not enter into the µ → 1 asymptotic dynamics Eq. (S12), a global solution to

Eqs. (S9) for δ = 0 can be obtained simply by transforming the special solution with the

globally valid asymptotic perturbation symmetry generator Eq. (S14). First, the generator

is integrated to obtain the finite transformation from (0, δ) to (ε, 0):

dε

ds
= eτ ,

dδ

ds
= −(eτ + e−τ − 2) (S31a)

ε = seτ , −δ = −s(eτ + e−τ − 2) (S31b)

∴ δ → ε(eτ + e−τ − 2)/eτ . (S31c)

Then, this finite transformation is substituted into the special solution. Replacing δ in

Eq. (S30) accordingly yields:

µ(τ) =
1(

1 + ε
c1
(eτ + e−τ − 2)

)c1 , (S32)

with c1 defined as before.

The same special solution is often available for the more complicated Eqs. (S8) with

arbitrary initial conditions when ε = 0 and p = p0 (with p0 a function of δ given by

Eq. (S20)). This requires that α1, α2 and αe depend on parameters d in such a way that

d = 0 reduces them to finite constants. An asymptotic perturbation symmetry connecting

(c1, δ) with (d, ε, p) may then be used to transform the special solution Eq. (S30) to a general

solution to Eqs. (S8).

Because this kind of symmetry does not transform the dependent and independent vari-

ables, a shortcut in this procedure may be taken: it is not necessary to explicitly compute

the symmetry and its finite transformations. To see why, suppose such a symmetry connect-

ing (c1, δ) with (d, ε) has been found. From these, finite transformations taking (c̃1, δ̃, 0, 0)
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to (c1, δ,d, ε) can be calculated. Whatever they may be, they can always be expressed in

inverse form as δ̃ = gδ(τ, c1, δ,d, ε), c̃1 = gc1(τ, c1, δ,d, ε) where a tilde over a parameter

signifies it is at its pre-transformation value. Our global solution is then µ0(τ, c̃1, δ̃). Now,

since transforming one asymptotic expansion must yield another, gδ and gc1 must satisfy:

µ0,asy(τ, c̃1, δ̃) ≡ µasy(τ, c1, δ,d, ε), (S33)

where µ0,asy is the asymptotic expansion of the special solution µ0 in this region of phase

space, and µasy(τ, c1, δ,d, ε) is the asymptotic limit of the full dynamics in the same region

(e.g. Eq. (15), or a higher-order series). So, the finite transformations can be identified by

inspection of µasy; a globally valid solution is then obtained by substituting these transfor-

mations into Eq. (S30).

S3. SOLUTION OF GENERAL PROTEIN AGGREGATION RATE EQUATIONS

BY ASYMPTOTIC LIE SYMMETRY

The general equations Eqs. (S8) can be rewritten for simplicity as:

dΠ

dτ
= 2sεα̃1(t, µ) + α̃2(µ)(1− µ(τ)) (S34a)

dµ

dτ
= −α̃e(µ)Π(τ), (S34b)

µ(0) = 1− sδ, Π(0) = sp (S34c)

where α̃x(τ, µ) = αx(t,mtotµ)/αx(0,mtot), ε = α1(0,mtot)/(2mtotα2(mtot)) and s is the

perturbation bookkeeping parameter, the zeroth order perturbation solutions are, as outlined

in the main text, given by:

Π(0) = 0, µ(0) = 1. (S35)

A. Perturbative solution to first order

The first order perturbation equations are given by:

dΠ(1)

dτ
= 2εα̃1(τ, 1)− µ(1) (S36a)

dµ(1)

dτ
= −Π(1), (S36b)

µ(1)(0) = −δ, Π(1)(0) = p. (S36c)
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In the case of α1(t,m) ≡ α1(m), they are solved by:

Π(0) = 0, µ(0) = 1 (S37a)

Π(1) = ε(eτ − e−τ ) +
δ

2
(eτ − e−τ ) +

p

2
(eτ + e−τ ), (S37b)

µ(1) = −ε(eτ + e−τ − 2)− δ

2
(eτ + e−τ )− p

2
(eτ − e−τ ). (S37c)

For the remainder, of the section, however, we will not make this assumption. We instead

consider the more general condition, introduced in Methods Sec. VA, that the kinetics are

secondary-dominated such that α1 grows less rapidly with τ than eτ . In this case, the

particular integral of µ(1) will also grow less rapidly than eτ . We can then write the first

order perturbation terms as:

Π(1) = qeτ +R, µ(1) = −qeτ +R (S38a)

q = cε + δ/2 + p/2, (S38b)

where R consists of terms that diverge less rapidly with τ , and cε is a positive constant. In

the case that α1(t,m) ≡ α1(m), cε = ε.

B. Perturbative solution to second order

Now, consider the expansion in s of α̃:

α̃ = 1 + s
dα̃

ds

∣∣∣∣
s=0

+O(s2) = 1 + s
∂α̃

∂µ

dµ

ds

∣∣∣∣
s=0

+O(s2) (S39a)

= 1 + sµ(1)∂α̃

∂µ

∣∣∣∣
s=0

+O(s2) (S39b)

= 1 + sµ(1)α̃′(1) +O(s2), (S39c)

where the prime indicates differentiation with respect to µ. The second order perturbation

equation is then:

dΠ(2)

dτ
= 2εµ(1)α̃′

1(τ, 1)− µ(1)2α̃′
2(1)− µ(2) (S40a)

dµ(2)

dτ
= −µ(1)α̃′

e(1)Π
(1) − Π(2), (S40b)

µ(2)(0) = Π(2)(0) = 0. (S40c)
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These can be combined into:

d2µ(2)

dτ 2
− µ(2) = −α̃′

e(1)
d

dτ

(
µ(1)Π(1)

)
− 2εα̃′

1(τ, 1)µ
(1) + α̃′

2(1)µ
(1)2. (S41)

Since α̃1 = o(eτ ), so is α̃′
1, and consequently the complementary function of µ(2) will be

o(e2τ ).

We seek the most-divergent terms of the second-order perturbation solution. These will

be the O(e2τ ) components of the particular integral. These can be computed without the

need for retaining the less-divergent parts of the inhomogeneous terms of Eq. (S41). With

this simplification Eq. (S41) becomes:

d2µ(2)

dτ 2
− µ(2) = 2q2α̃′

e(1)e
2τ + q2α̃′

2(1)e
2τ . (S42)

Its solution can therefore be written as:

µ(2) =
q2

3
e2τ (α̃′

2(1) + 2α̃′
e(1)) +R. (S43)

C. Asymptotic symmetry transformation

To second order in s, the expansion of the special solution Eq. (S30) (where bookkeeping

parameter s has again been introduced to pre-multiply δ) is:

µ̃2 = 1− sδ̃eτ + s2
c̃1 + 1

2c̃1
δ̃2e2τ +O(δ3), (S44)

where we have already made the substitutions δ → δ̃ and c1 → c̃1 required by Eq. (S33).

The first order perturbation solution can therefore be matched with the following finite

transformation:

δ̃eτ = −µ(1)(τ) +O(s). (S45)

The expansion of the special solution is then:

µ̃2 = 1− sµ(1) + s2
c̃1 + 1

2c̃1
µ(1)2 +O(s3). (S46)

We can only in general match to second order the most-divergent terms in τ (proportional

to e2τ ), if we desire a simple, time-independent c1. (There is no great purpose in seeking a

time-dependent c1 since the µ → 1 kinetics are already captured exactly by the first-order
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matching, and the asymptotic symmetry loses validity as τ → ∞.) The matching then

requires:

c̃1 + 1

2c̃1
=

1

3
(α̃′

2(1) + 2α̃′
e(1)) (S47a)

1

c̃1
=

2

3
(α̃′

2(1) + 2α̃′
e(1))− 1 (S47b)

⇒ c̃1 =
3

2 (α̃′
2(1) + 2α̃′

e(1))− 3
. (S47c)

D. Construction of general solution

To remove some superfluous terminology:

α̃′
i(1) =

d

dµ

αi(m)

αi(mtot)

∣∣∣∣
m=mtot

= mtot
d

dm

αi(m)

αi(mtot)

∣∣∣∣
m=mtot

= m
d

dm
lnαi(m)

∣∣∣∣
m=mtot

⇒ α̃′
i(1) =

d lnαi(m)

d lnm

∣∣∣∣
m=mtot

. (S48)

The general solution is then given by using the substitutions Eq. (S45) and Eq. (S47c) on

the special solution Eq. (S29). Setting s = 1 and using Eq. (S48), this gives finally the

formula Eq. (16) presented in Methods Sec. (VD):

µ =

(
1− µ(1)(τ)

c1

)−c1

(S49a)

c1 =

(
2

3

d ln[α2(m)αe(m)2]

d lnm

∣∣∣∣
m=mtot

− 1

)−1

. (S49b)

S4. APPLICABILITY OF NONLINEAR TECHNIQUES TO THE SOLUTION OF

PROTEIN AGGREGATION KINETICS

A. Fixed-point theory

In the context of protein aggregation, the fixed-point method is employed by turning the

rate equation for monomer concentration into an integral equation that acts as a fixed-point

operator [12, 13]. So, the first condition for applicability of the fixed-point method is that

this transformation into a closed-form integral equation is possible. This proves to be the

case for the most common forms of αe and is not too restrictive a condition [12–14].

After this transformation, an initial guess is then supplied for the fibril concentration,

and the operator applied to this initial guess to generate an improved approximation for the
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monomer concentration and (by conservation of mass) the fibril concentration. The second

condition for fixed-point applicability is that this integral equation is a contractive mapping

for the right initial guess. This is easiest evaluated by trial-and-error, simply by testing

that the output of the fixed-point iteration is indeed an improved approximation. This has

proven to be the case in most systems studied to date [12–14].

The final condition for applicability is that a sufficiently accurate and simple initial guess

can be provided for the fixed-point iteration to result in an accurate approximate solution

that is still simple enough for insight to be gained from it. This is the hardest condition to

satisfy. Under certain circumstances the unmodified early-time (or first-order perturbative)

solution is a suitable initial guess [12, 13]. Often, however, this is insufficient, with fixed-point

iteration giving a rather inaccurate solution, even for relatively simple rate equations [15, 16].

In such situations accuracy can sometimes be obtained by higher-order iteration. (This

means using the result of a single iteration as an initial guess for a second iteration, etc.)

However, for all but the simplest systems this is analytically intractable. Moreover, even

when tractable the resultant solutions are usually not closed-form and/or are far too complex

for insight to be easily derived from them [15]. (An exception is the kinetics of co-aggregation

with cross-elongation but without any secondary processes, where the second-order self-

consistent solution turns out to be relatively simple in form [16].)

The other potential fix is to use an improved initial guess. However, their identifica-

tion can be extremely difficult and is entirely non-algorithmic. Interestingly, for instance,

higher-order perturbative solutions are not generally better initial guesses; indeed, even-

order perturbative solutions can be easily shown to yield divergent expressions after fixed-

point iteration. The only other type of initial guess that has been identified previously and

that can sometimes be adapted to new systems is a composite solution that interpolates

between the early-time fibril concentration and its late-time limit [15]. This can sometimes

succeed where the early-time solution fails as an initial guess [8, 17]. However, its iteration

leads to expressions that are both more complex (and thus harder to interpret) and less

accurate than the approach we consider here. Moreover, it succeeds only when two condi-

tions are satisfied. First, the late-time limit of the fibril concentration must be possible to

calculate analytically. Second, there must be no other dominant timescales beyond those

that dominate the early-time solution and the fixed point operator for the monomer con-

centration, as otherwise fixed-point iteration to first order cannot introduce these additional
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timescales. (Higher-order iteration may be able to do so, since this involves converting the

other rate equations to fixed-point operators too, not just the monomer concentration rate

equation. However, here we are discussing providing an alternative to iterating to higher

order.)

In the case of coaggregation the latter condition is violated, as outlined in Methods

Sec. VC. This is because mechanistic analysis of protein aggregation requires data from re-

actions featuring multiple starting concentrations [12, 14]. One species therefore always

depletes before the other for at least some of the coaggregation reactions to be mod-

elled. The kinetics of the remaining species subsequently transitions from coaggregation

to self-aggregation, changing the dominant timescales. The transition to self-aggregation-

dominated timescales cannot be captured by first-order fixed-point approaches, at least not

without some very inspired guesswork that has hitherto not been successfully performed.

B. Chen-Goldenfeld-Oono Renormalization Group (CGO RG)

Ref. [9] considered the kinetics of homomolecular amyloid fibril formation featuring either

a fragmentation step, a branching step or an unsaturated secondary nucleation step. The

obligate primary nucleation and elongation steps were also restricted to be unsaturated, and

only unseeded initial conditions were considered (i.e. starting from pure monomeric protein).

Simplified rate equations were written down and nondimensionalized. They were then solved

perturbatively to second order in ε, a parameter which had the same definition as in the

present study. This divergent solution was then converted into a globally valid convergent

solution using CGO RG. This would appear to contradict our finding in Methods Sec. VC

that CGO is formally inapplicable to protein aggregation rate equations.

To resolve this apparent contradiction, we look in more detail at the calculation in ref. [9].

A key step in the workflow of CGO RG is the calculation of an “RG equation”, whose sub-

sequent integration can produce the desired convergent solution. Unfortunately, however,

a direct integration of the RG equation identified in ref. [9] instead produces a divergent

expression. To rectify this, it was necessary to make the challenging guess that two terms

in the RG equation are the second-order expansion in ε of a very specific function. Substi-

tuting in this specific function finally allowed the integration of the RG equation to produce

a convergent solution. Since this guess was no easier than guessing the convergent solution
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directly from the second-order local perturbation series, in reality CGO RG does not aid in

finding the solution presented in ref. [9]. Instead, this solution was effectively guessed from

the second-order local perturbation series. This is far from the only case in which CGO RG

has required this kind of guesswork to succeed. Such cases stem from a widespread misunder-

standing of the mathematical origins of the method and, consequently, of the circumstances

of its applicability, as discussed extensively in ref. [6].

The solution of ref. [9] can in fact be easily derived using our general solution, Eq. (16).

This is done by simply identifying α1 = knm
nc , αe = 2k+m and α2 = k2m

n2 . After this,

Eqs. (15)-(16) trivially reduce to the solution of ref. [9]. (Although the limit κt ≫ 1 of

Eq. (15) must also be taken to complete the reduction.) The reasons for this are both

the fortunate guesswork of ref. [9] and also because by construction the solutions of both

approaches must be consistent with the second order perturbation series.

In certain other papers the solution of ref. [9] was generalized to account for other mecha-

nisms. A notable example is ref. [18], where it was extended to allow for any of primary nu-

cleation, elongation or secondary nucleation to saturate. (Also, the assumption that κt ≫ 1

was dropped.) This was achieved first by calculating the second-order local perturbation

series in ε for the rate equations governing this more complicated reaction mechanism. Next,

the parameters in the solution of ref. [9] were modified in such a way that its second order

expansion in ε still matched this more complicated perturbation series. This is effectively

the same procedure we used to generate our general solution here. In other words, ref. [18]

unwittingly applied a µ → 1 asymptotic symmetry transformation to the simpler solution to

generalize it for non-infinite dissociation constants. Consequently, given its shared origins,

the solution of ref. [18] can also be derived using our general solution, Eq. (16). We do so

with significantly reduced difficulty compared to the original approach in SI Sec. S5.
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C. Method of asymptotic Lie symmetries and Aβ42-Aβxx coaggregation

As discussed in Methods Sec. VE, Eqs. (1) can be nondimensionalized into

Eqs. (12)/Eqs. (S8) if subscripts a are added to the latter. This gives:

dΠa

dτa
= 2εaµ

nc(a)
a +

µn2(a)
a (1− µa)

1 + 1/KS(a)
n2(a) + 1/KS(ba)

n2(aa)+n2(ab)

1 + µ
n2(a)
a /KS(a)n2(a) + µ

n2(aa)
a /KS(ba)n2(aa)+n2(ab)

, (S50a)

dµa

dτa
= −µa(τa)Πa(τa), (S50b)

εa =
α1,a(mtot,a)

2mtot,aα2,a(mtot,a)
, (S50c)

where µa(t) = ma(t)/mtot,a, Πa(t) = 2k+(a)Pa(t)/κa and τa = κat, with

κa =
√
αe,a(mtot,a)α2,a(mtot,a).Additionally, we define KS(a) = KS(a)/mtot,a and

KS(ba) = KS(ba)m
−n2(aa)/(n2(aa)+n2(ab))
tot,a m

−n2(ab)/(n2(aa)+n2(ab))
tot,b as the dimensionless average

per-monomer dissociation constants for monomer clusters from secondary nucleation sites

on Aβ42 fibrils.

Eqs. (4) can be nondimensionalized by the same strategy, yielding:

dΠb

dτb
= 2εbµb(τb)

nc(b) + 2ε1,baµa(τa)
nc(ba)µb(τb)

nc(bb)

+ 2ε2,baµa(τa)
n2(ba)µb(τb)

n2(bb)(1− µa(τa))

+
1 +KS(b)

n2(b)

µb(τb)n2(b) +KS(b)n2(b)
µb(τb)

n2(b)
(
1− µb(τb)

)
, (S51a)

dµb

dτb
= −µb(τb)Πb(τb), (S51b)

µb(0) = 1− δ, Πb(0) = p, (S51c)

where µb(t) = mb(t)/mtot,b, Πb(t) = 2k+(b)Pb(t)/κb and τb = κbt and µb = mb/mtot,b, with

κb =
√
αe,b(mtot,b)α2,b(mtot,b). Moreover, KS(b) = KS(b)/mtot,b and:

ε1,ba =
α1,ba(mtot,a,mtot,b)

2mtot,bα2,b(mtot,b)
, (S52a)

ε2,ba =
mtot,aα2,ba(mtot,a,mtot,b)

2mtot,bα2,b(mtot,b)
, (S52b)

εb =
α1,b(mtot,b)

2mtot,bα2,b(mtot,b)
. (S52c)
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Importantly, we can identify (KS(a)
−1,KS(ba)

−1) with parameter d from the Methods;

when set to zero alongside εa, Eqs. (S50) reduce to Eqs. (S9) with ε = 0 and thus possess

the same special solution, i.e. Eq. (S30) (identifying τ = τa and n2 = n2(a)).

Asymptotic symmetries involving KS(a)
−1,KS(ba)

−1 and εa computed from the local per-

turbation series of Eq. (S50) around µa = 1 − δ, Πa = p0(δ) are valid globally, provided

εa is small (as is the case in unseeded Aβ kinetics, and indeed in most protein aggregation

reactions hitherto studied[19]). For large values of KS(a)
−1, this is because secondary nu-

cleation does not now reduce significantly until µa ≪ 1. As a consequence, the µa → 0

asymptotic limit is visited too late during saturating aggregation for its perturbation by the

introduction of non-zero KS(a)
−1 and ε to be important for the overall kinetics.

For small values of KS(a)
−1 this is because εa and KS(a)

−1 then drop out of the µ → 0

kinetics at leading order, and such symmetries therefore have no effect in this regime. This

may be seen as follows. Using the approximation µ
n2(aa)
a = 1, which is reasonable since

inhibiting secondary nucleation affects the kinetics only in the early stages before significant

monomer is depleted, integrating Eqs. (S50) once with Π(µ = 1) = 1 then yields Π as a

function of µ. Next, taking the limit µ → 0 yields Π(∞):

Πa(∞) =

(
2(A+B)

Bn2(a)
ln

[
1 +

B

A

]
+ 4

εa
nc

− 2(A+B)

A(1 + n2(a))
2F1

[
1, 1 +

1

n2(a)
, 2 +

1

n2(a)
,−B

A

])1/2

, (S53)

where A = 1 + 1/KS(ba)
n2(aa)+n2(ab), and B = 1/KS(a)

n2(a). In the limit of small KS(a)
−1,

and noting that the first-order Taylor series around z = 0 of 2F1[a, b, c, z] is 1 + abz/c, the

hypergeometric becomes:

2F1

[
1,

n2(a) + 1

n2(a)
,
2n2(a) + 1

n2(a)
,−B

A

]
→ 1− n2(a) + 1

2n2(a) + 1

B

A
+O(KS(a)

−2n2(a)), (S54)

and Πa(∞) reduces to:

Πa(∞) =

√
2

n2(a)
− 2

n2(a) + 1
+O(KS(a)

−n2(a), εa). (S55)

Thus, to leading order, µa → 1 asymptotic symmetries in KS(a)
−n2(a), εa have no effect on

the µa → 0 dynamics.

Since Aβ42 aggregation is complete before Aβxx aggregation begins, the solution to the

kinetics of Aβ42 aggregation in the presence of constant Aβxx monomer concentration,
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Eq. (7), may be substituted for ma(t) and Ma(t) (or Eq. (22) when Aβ42 fibril seeds are

present). Once more, Eq. (S30) is a special solution to Eq. (4) with the right initial conditions

when {εb, ε1,ba, ε2,ba, KS(b)
−1} = 0. Because Eqs. (S51) are also of the same form as

Eqs. (S50), asymptotic symmetries around µb = 1− δ, Πa = p0(δ) are again valid globally;

the method of solution by asymptotic symmetries can thus again be used.

S5. EXAMPLE APPLICATION: UNSEEDED, SATURATED HOMOGENEOUS

PROTEIN AGGREGATION KINETICS

The kinetics of protein aggregation in which any reaction step can saturate are given

by [18]:
dP

dt
=

knm(t)nc

1 + (m(t)/KP )
nc

+
k2m(t)n2

1 + (m(t)/KS)
n2
M(t) (S56a)

dM

dt
=

2k+m(t)

1 +m(t)/KE

P (t) (S56b)

mtot = m(t) +M(t), (S56c)

where kn, k+ and k2 are the rate constants for primary nucleation, elongation and secondary

nucleation respectively. KP , KE and KS are the half-saturation concentrations for the same

reaction steps, or equivalently the geometric mean per-monomer dissociation constants from

the sites at which these steps occur [18]. Finally, nc and n2 are the reaction orders for

primary and secondary nucleation with respect to monomers.

We can identify the monomer-dependence of the reaction step rates as:

α1(m) =
knm(t)nc

1 + (m(t)/KP )
nc

(S57a)

αe(m) =
2k+m(t)

1 +m(t)/KE

(S57b)

α2(m) =
k2m(t)n2

1 + (m(t)/KS)
n2
. (S57c)

In the case of no seed, δ = p = 0 and the first order term of the perturbation series can

be immediately written down using Eq. (15) of the main text:

µ(1)(t) = −ε(eκt + e−κt − 2), (S58)

where we identified F = eκt+ e−κt−2 since α1 has no explicit t-dependence. As in the main

text, κ =
√

α2(mtot)αe(mtot). Moreover, ε = α1(mtot)/2mtotα2(mtot).
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Next, we compute ln[α2(m)αe(m)2]:

ln
[
α2(m)αe(m)2

]
= const. + lnmn2+2 − 2 ln[1 +m(t)/KE]− ln[1 + (m(t)/KS)

n2 ] . (S59)

Differentiating by lnm:

d ln[α2(m)αe(m)2]

d lnm
= n2 + 2− 2m(t)/KE

1 +m(t)/KE

− n2 (m(t)/KS)
n2

1 + (m(t)/KS)
n2
. (S60)

Finally, combining all these results, we can use the general solution formula Eq. (16) in the

main text, which gives:

M(t)

mtot

= 1−
(
1− ε

c1
(eκt + e−κt − 2)

)−c1

(S61a)

κ =

√
2k+k2m

n2+1
tot

(1 +mtot/KE)(1 + (mtot/KS)
n2)

(S61b)

c1 =
3

2n′
2 + 1

(S61c)

ε =
knm

nc
tot

2k2m
n2+1
tot

1 + (mtot/KS)
n2

1 + (mtot/KP )
nc

(S61d)

n′
2 =

n2

1 + (mtot/KS)
n2

− 2mtot/KE

1 +mtot/KE

. (S61e)

This is none other than the general solution of ref. [18]. Its calculation here using our formula

Eq. (16) involved considerably less difficulty than the original approach in ref. [18].

S6. FIRST-ORDER PERTURBATION SERIES FOR µb AND ITS SIMPLIFICA-

TION

The differential equations to be solved are Eqs. (S51):

dΠb

dτb
= 2εbµb(τb)

nc(b) + 2ε1,baµa(τa)
nc(ba)µb(τb)

nc(bb) + 2ε2,baµa(τa)
n2(ba)µb(τb)

n2(bb)(1− µa(τa))

+
1 +KS(b)

n2(b)

µb(τb)n2(b) +KS(b)n2(b)
µb(τb)

n2(b)
[
1− µb(τb)

]
, (S62a)

dµb

dτb
= −µb(τb)Πb(τb), (S62b)

subject to initial conditions µb(0) = 1, Πb(0) = 0. We pre-multiply the small terms propor-

tional to εb, ε1,ba and ε2,ba by perturbation indexing parameter s (to be later set to 1), as
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before. Substituting in µb = 1 + sµ
(1)
b and Πb = sΠ

(1)
b then gives the following equations at

first order in s:

dΠ
(1)
b

dτb
= 2εb + 2ε1,baµa(τa)

nc(ba) + 2ε2,baµa(τa)
n2(ba)(1− µa(τa))− µ

(1)
b (τb), (S63a)

dµ
(1)
b

dτb
= −Π

(1)
b (τb). (S63b)

In the limits eκat ≫ 1 and δ ≪ 1, the low-seed solution for µa (Eq. (22)) becomes: µa →

(1 + Aeκat/ca)
−ca , where A = εa + δ/2 + p/2. At this point, Eqs. (S63) may be solved for

µ
(1)
b as:

µ
(1)
b (t) = −ε1,ba

(
eκbt

2F1

[
−κb

κa

, canc(ba), 1−
κb

κa

,−A

ca

]
− 2F1

[
−κb

κa

, canc(ba), 1−
κb

κa

,−A

ca
eκat

]
+e−κbt

2F1

[
κb

κa

, canc(ba), 1 +
κb

κa

,−A

ca

]
− 2F1

[
κb

κa

, canc(ba), 1 +
κb

κa

,−A

ca
eκat

])
− ε2,ba

(
eκbt

2F1

[
−κb

κa

, can2(ba), 1−
κb

κa

,−A

ca

]
− eκbt

2F1

[
−κb

κa

, ca(1 + n2(ba)), 1−
κb

κa

,−A

ca

]
+e−κbt

2F1

[
κb

κa

, can2(ba), 1 +
κb

κa

,−A

ca

]
− e−κbt

2F1

[
κb

κa

, ca(1 + n2(ba)), 1 +
κb

κa

,−A

ca

]
+2F1

[
−κb

κa

, ca(1 + n2(ba)), 1−
κb

κa

,−A

ca
eκat

]
− 2F1

[
−κb

κa

, can2(ba), 1−
κb
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where 2F1[a, b, c, z] is the Gaussian hypergeometric function. Since A/ca ≪ 1 provided seed

concentration is low, and since limz→0 2F1[a, b, c, z] = 1, the first four terms proportional

to ε2,ba cancel, and two of the hypergeometrics proportional to ε1,ba vanish, simplifying

Eq. (S64) to:

µ
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. (S65)
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Bearing in mind the following identity:

2F1[a, b, c, z] ≡
1

(1− z)a
2F1

[
a, c− b, c,

z

z − 1

]
, (S66)

and since εa
ca
eκat ≫ 1 by the time the Aβxx sigmoid is reached, the remaining hypergeometric

functions can be simplified using the relations:
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≃ eκbt
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This gives:
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. (S71)

These simplifications mean the solution no longer satisfies the initial condition µ
(1)
b (0) = −δ.

We can restore this limiting behaviour by adding and subtracting constant terms and terms

proportional to e−κbt, yielding finally Eq. (23) of the main text. Because the added and

subtracted terms vanish in front of the leading-order terms proportional to eκbt, this does

not appreciably reduce accuracy of the final expression.
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S7. SUPPORTING KINETIC DATA FITTING
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FIG. S3: Data on Aβxx and Aβ42 aggregation in isolation were collected in refs. [20, 21] alongside

the coaggregation data. The catalytic secondary nucleation model, Eq. (10), yields good fits to

these data. a: Aβ42 at pH 7.4; initial monomer concentrations are m(0) = 10, 5, 3, 2 and 1

µM. Rate parameters are KS = 1.1 µM, nc = n2 = 2. b: Aβ40 at pH 7.4; initial monomer

concentrations are m(0) = 20, 15, 10, 5 and 3 µM. Since KS ≪ 3 µM, secondary nucleation is

completely saturated at these concentrations and we can only provide this bound on KS rather

than a precise value. Other rate parameters are nc = 3 and n2 = 2.

a b

0 nM

200 nM
60 nM

Aβ42 seed 
concentration:

FIG. S4: Full time course for seeded coaggregation reaction displayed in Fig. 3iii. Both kinetic

data and global fits to Eq. (10) displayed.

S8. SUMMARY OF PARAMETERS

In all subsequent tables, an asterisk “*” means “chosen to be arbitrarily small”.
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TABLE S1: Parameter values for Aβ42 + Aβ40 aggregation in Fig. 2 and Fig. 8

Values (units of µM, h)

Parameter Aβ42

k+k2 10.7

k+kn 0.0203

n2 2

nc 2

KS 1.1

KS(ba) 0.845

n2(aa) 1

n2(ab) 1

TABLE S2: Parameter values for Fig. 5b and for Aβ42 + Aβ38 aggregation in Fig. 2

Values (units of µM, h)

Parameter Aβ42 Aβ38

k+k2 19 50

k+kn 0.015 10−16*

n2 2 2

nc 2 3

KS 1.1 0.099

n2(ba) 0.14

n2(bb) 1.5

k2(ba) 1.2× 10−4

n2(aa) 1

n2(ab) 1

KS(ba) 1.38
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TABLE S3: Parameter values for Aβ42 + Aβ37 aggregation in Fig. 2

Values (units of µM, h)

Parameter Aβ42

k+k2 110

k+kn 0.015

n2 2

nc 2

KS 1.1

n2(aa) 1

n2(ab) 1

KS(ba) 0.82

TABLE S4: Parameter values for Fig. 3b(i)-(ii)

Values (units of µM, h)

Parameter Aβ42 Aβ40

k+k2 17.2 48.8

k+kn 0.012 8.5× 10−12*

n2 2 2

nc 2 3

KS 1.1 0.081

n2(ba) 1

n2(bb) 1

k2(ba) 1.9× 10−4

n2(aa) 1

n2(ab) 1

KS(ba) 0.845
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TABLE S5: Parameter values for Fig. 3b(iii)

Values (units of µM, h)

Parameter Aβ42 Aβ40

k+k2 19.2 69.4

k+kn 0.025 8.5× 10−12*

n2 2 2

nc 2 3

KS 1.1 0.081

n2(ba) 1

n2(bb) 1

k2(ba) 1.4× 10−2

n2(aa) 1

n2(ab) 1

KS(ba) 0.845

TABLE S6: Parameter values for Fig. 5a

Values (units of µM, h)

Parameter Aβ42 Aβ40

k+k2 20 9.2

k+kn 0.0097 8.5× 10−12*

n2 2 2

nc 2 3

KS 1.1 0.081

n2(ba) 2.3

n2(bb) 0.0

k2(ba) 3.7× 10−3

n2(aa) 1

n2(ab) 1

KS(ba) 0.845

30



[1] H. Stephani, Differential Equations: Their Solution Using Symmetries (Cambridge University

Press, 1990).

[2] P. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics

(Springer New York, 2000), ISBN 9780387950006, URL https://books.google.com/books?

id=sI2bAxgLMXYC.

[3] V. A. Baikov, R. K. Gazizov, and N. H. Ibragimov, Matematicheskii Sbornik 178, 435 (1988).

[4] N. Ibragimov and V. Kovalev, Approximate and Renormgroup Symmetries, Nonlinear Physical

Science (Springer Berlin Heidelberg, 2009), ISBN 9783642002281.

[5] V. F. Kovalev, V. V. Pustovalov, and D. V. Shirkov, J. Math. Phys. 39, 1170 (1998).

[6] A. J. Dear and L. Mahadevan, Proc. R. Soc. A. 481, 20240103 (2025), URL https:

//royalsocietypublishing.org/doi/abs/10.1098/rspa.2024.0103.

[7] T. C. T. Michaels, S. I. A. Cohen, M. Vendruscolo, C. M. Dobson, and T. P. J. Knowles,

Phys. Rev. Lett. 116, 038101 (2016).

[8] S. I. A. Cohen, S. Linse, L. M. Luheshi, E. Hellstrand, D. A. White, L. Rajah, D. E. Otzen,

M. Vendruscolo, C. M. Dobson, and T. P. J. Knowles, Proc. Natl. Acad. Sci. U.S.A. 110, 9758

(2013).

[9] T. C. T. Michaels, A. J. Dear, and T. P. J. Knowles, Phys. Rev. E 99, 062415 (2019).

[10] G. Gaeta, Journal of Physics A: Mathematical and General 27, 437 (1994).
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