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S1 Computational Details

S1.1 Model Description

Coarse-grained bead-spring models have been extensively used to study polymer conforma-

tions and properties. Previous studies by Karuth et al.1 and Chremos et al.2 successfully

employed this model to predict the glass transition temperature and unentangled diffusion

behavior of polymers. In this work, we adopt the same model to compute the four key

properties of graft polymers: the glass transition temperature (Tg), self-diffusion coefficient

(D), radius of gyration (Rg), and density (ρ).

The total potential energy of the system is given by:

U(r) =
∑
i,j

kb,ij(rij − r0)
2 +

∑
i,j,k

kθ,ijk(1 + cos θijk) +
∑
i,j

4ϵ

[(rij
σ

)12

−
(rij
σ

)6
]

(S.1)

where r0 = 0.99σ is the equilibrium bond length, and kb = 2500ϵ/σ2 is the bond force

constant. The chain stiffness is controlled by kθ, which governs the flexibility of both the

backbone and side chains. In this study, we use a fixed kθ = 15ϵ. The parameters ϵ and σ

denote the depth of the Lennard-Jones (LJ) potential well and the characteristic distance at

which the LJ potential is zero, respectively. The cutoff distance for nonbonded interactions

is set to rc = 2.5σ.

S1.2 Simulation Details

Molecular dynamics simulations were performed using the LAMMPS package.3 All simula-

tions were conducted in the isothermal-isobaric (NPT) ensemble. Temperature and pressure

were controlled using the Nose-Hoover thermostat and barostat, respectively. The equations

of motion were integrated using the velocity-Verlet algorithm with a timestep of 0.005τ .

Periodic boundary conditions were applied in all three spatial directions.
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All simulations were conducted using reduced units, where energy (ϵ), length (σ), and

mass (m) are set as fundamental units.4 The temperature is expressed in reduced form as

T ∗ = kBT/ϵ, and time is scaled as τ ∗ = τ(mσ2/ϵ)1/2. The self-diffusion coefficient is reported

in reduced units of σ2/τ , and density is given in σ−3. These reduced units ensure generality

and allow comparison across different polymer systems. The simulation trajectories were

analyzed to compute the target properties as detailed below.

S1.3 Glass Transition Temperature, Tg

The methodology for computing the glass transition temperature follows the approach de-

scribed in ref.1 We briefly summarize the procedure here.

Figure S1: The Density versus temperature for calculation of the Tg of a representative graft
polymer is shown here. The black and red dashed lines represent the linear fitting at the
low-T and high-T regimes, respectively. The R2 scores for the linear fitting are as high as
0.997 and 0.994. The Tg is at which these two fitted lines cross, 0.83 ϵ/kB.
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A total of 500 polymers were randomly placed in a cubic simulation box with an initial

length of 300σ and subsequently compressed under high pressure to achieve a density in the

range of 0.5–1.0, consistent with previous studies.1 The polymer melt was equilibrated at a

high temperature of 2.0 ϵ/kB and a pressure of 0 in the NPT ensemble before being cooled

at a rate of 1.3 × 10−6 ϵ/kB. NPT simulations were performed across a temperature range

of 0.5–2.0 ϵ/kB in increments of 0.1.

The glass transition temperature was determined by analyzing the density as a function

of temperature. The density data were divided into two blocks, each fitted with a linear

regression function. To determine the optimal transition point, a brute-force approach was

conceptualized and employed by us to optimize the partition maximizing the sum of the R2

scores from the two regression fits. The temperature at which the two linear regression lines

intersect was identified as the glass transition temperature, Tg. A representative figure is

provided here to demonstrate the result, as shown below (see Fig. S1).

S1.4 Self-Diffusion Coefficient in the Melt State, D

The self-diffusion coefficient (D) of polymers in the melt state was computed at a reduced

temperature of T = 2.0ϵ/kB using the mean squared displacement (MSD) and the Einstein

relation:

D = lim
∆τ→∞

1

6∆τ
⟨|r⃗t+∆τ − r⃗t|2⟩, (S.2)

where r⃗ is the position of the center of mass of a tagged polymer chain, and ⟨· · · ⟩ denotes

an ensemble average. The term |r⃗t+∆τ − r⃗t|2 represents the MSD of the polymer’s center of

mass. The diffusion coefficient was extracted from the linear regime of the MSD curve, which

was computed over the last 4 million steps of the MD simulations, ensuring the simulation

is long enough to reach the diffusive regime.5
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S2 Effect of Backbone and Side-Chain Rigidity on Glass

Transition Temperature

Figure S2: Effect of angular stiffness kθ on the Tg is shown here for a representative graft
polymer (Nbb = 11, side chains are attached at backbone beads 4, 6, 8, and 10 with Nsc of
1, 3, 3, and 3, respectively).

To assess the influence of polymer rigidity on glass formation, we performed molecular

dynamics simulations of a representative graft polymer with parameters Nbb =11, Nsc =5,

and grafting density f =0.45. The rigidity was modulated by varying the angular force

constant kθ, applied identically to both backbone and side-chain segments to represent the

flexible–flexible (F–F) and stiff–stiff (S–S) limits.6

As shown in Fig. S2, the Tg increases monotonically from 0.576 to 0.914 ϵ/kB as kθ

increases from 5 to 20 ϵ, indicating enhanced resistance to conformational rearrangement

with increasing chain stiffness. This trend is in agreement with theoretical predictions and

simulation results from generalized entropy theory studies.7,8
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S3 Machine learning (ML) models

S3.1 Featurization of graft polymers

Physical descriptors: Each polymer is represented by six physical descriptors as list below:

• the number of beads in the backbone: Nbb

• the total number of beads: Ntot

• the grafting density: f

• the average number of beads in the side chains: Nsc,ave

• the maximum number of beads in the side chains: Nsc,max

• the minimum number of beads in the side chains: Nsc,min

Graphical descriptors: Each polymer is represented as an undirected graph where

beads are nodes, and bonds are edges. We adopted the eleven graphical descriptors from the

ref9

• Number of nodes: Nnodes

• Number of edges: Nedges

• Algebraic connectivity: λalg

• Diameter: ϕdiam

• Radius: ϕrad

• Average degree: d̄

• Average neighbor degree: d̄nb

• Network density: δ
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• Mean degree centrality: Cdeg

• Mean betweenness centrality: Cbet

• Degree assortativity coefficient: rdeg

Spearman’s Rank Correlation CoefficientAmong the six physical descriptors, four—backbone

length (Nbb), total number of beads (Ntot), average side-chain length (Nsc,ave), and maximum

side-chain length (Nsc,max)—showed strong correlations (coefficient ≥ 0.8 or ≤ -0.8) with all

target properties, whereas the remaining two exhibited negligible correlations. Among the

eleven graphical descriptors, most were strongly correlated with the target properties, except

for average neighbor degree (d̄nb) and Degree assortativity coefficient (rdeg), which showed

weak correlation.

Figure S3: The Spearman’s rank correlation coefficients (a) between 6 physical descriptors
with four properties and (b) between 11 graphical descriptors with the four properties.
Representations of descriptor symbols are defined in Section S2 of SI.

Images

The graft polymer structures were represented as 26×60 pixels grayscale images as input into

the convolutional neural network (CNN). The rationale behind choosing such an image is
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based directly on the structural characteristics of the polymer dataset. The dataset comprises

branched polymers with a maximum backbone length of 60 beads and sidechain lengths of

up to 25 beads. To encode this structure, each input image is constructed to explicitly

represent these parameters: the first row encodes the presence of backbone beads, while

each subsequent row represents sidechain units attached to the corresponding backbone

node indexed by column position. Therefore, it follows:

• The first row encodes the presence of backbone beads, where each column index cor-

responds to a specific backbone position.

• The next 25 rows encode the side-chain units. In these rows, each column reflects the

number of side-chain beads attached to the corresponding backbone bead.

Furthermore, pixels in the matrix indicated different types of polymer beads: black

pixels (grayscale value = 0) denoted backbone beads, gray pixels (grayscale value = 127)

represented sidechain beads, and white pixels (grayscale value = 255) indicated the absence

of beads.

Figure S4: A representative image for a bottlebrush polymer (grafting density f = 1.0) with
a bakcbone length of 58. The side-chain length varies randomly from 1 to 26. Black pixels
represent the backbone, while gray pixels are for the side chains.

S3.2 DNN models

We developed Dense Neural Network (DNN) models using the TensorFlow library, and op-

timized them through a series of techniques, including feature scaling, output transforma-
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tion and normalization, K-fold cross-validation, dropout regularization, learning rate adjust-

ments, and early stopping. The activation function used was ReLU, and the Adam optimizer

was employed for gradient descent. Various model configurations were tested to identify the

architecture that maximized predictive accuracy. For example, the number of hidden layers

and hidden nodes in the first layer are optimized (Figure S6 (a)).

The dataset comprising 500 graft polymer structures was randomly partitioned into train-

ing, validation, and test sets with a ratio of 60:20:20. This partitioning ensures a balanced

and unbiased evaluation of model performance. A statistical overview of the four target

properties, glass transition temperature (Tg), packing density (ρ), radius of gyration (Rg),

and diffusion coefficient (D), is provided in Fig. S5. Both Tg and ρ exhibit unimodal distri-

butions, indicating relatively uniform variation across the dataset. In contrast, Rg displays

a bimodal distribution, reflecting structural diversity in polymer conformations. The distri-

bution of D is notably skewed toward lower values, suggesting that slower-diffusing polymer

configurations are more prevalent in the dataset.

Figure S5: The kernel density estimation of the four properties across all 500 polymers.

The final optimized DNN architecture consisted of four fully connected dense layers with

512 1024, 512, and 32 nodes, respectively, all activated by the ReLU function. A dropout

9



rate of 40% was applied during training to enhance generalization, with all neurons activated

during inference. Input features were scaled using the Min-Max scaler, and the model was

trained with a batch size of 64. Model performance was evaluated based on the average R2

score and root mean squared error (RMSE) across all folds, demonstrating consistent and

reliable predictive accuracy.

Figure S6: (a) The R2 scores of the DNN models with different number of hidden layers and
hidden nodes (first layer) for predicting the D. (b)The R2 scores of the CNN models (for
predicting D) at different batch sizes and learning rates.

Convergence Behavior

To evaluate the convergence behavior and potential overfitting of the DNN model, we

monitored the training and validation loss across epochs for all model architectures consid-

ered. In Fig. S7, we plotted the training loss (black) and validation loss (red) curve for

DNN. From the figure, we can see that both of these curves steadily decrease and approach

minimal values. The convergence behavior confirms that the models are trained in a stable

regime and achieve consistent optimization across properties.

Prediction Performance of DNN Models

To evaluate the predictive accuracy of DNN models trained on black-and-white polymer

representations, we compare the predicted and true values of Tg, Rg, D, and ρ. Fig. S8
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Figure S7: The training and validation loss curves for DNN models predicting (a) density
(ρ), (b) diffusivity (D), (c) radius of gyration (Rg), and (d) glass transition temperature (Tg).
The main figures show the evolution of loss (in log scale) over a set of training epochs. Black
curves represent training loss, and red curves represent validation loss. All models exhibit
rapid convergence and stable training behavior, with no signs of significant overfitting.

presents these comparisons, where the red dashed line represents the ideal scenario where

predicted values perfectly match MD simulation results.

In Fig. S8(a), we showed how the DNN model accurately predicts Tg, with most data

points closely following the diagonal reference line. Despite an R2 score slightly lower than

other properties, the RMSE of 0.025 indicates a relatively small prediction error, confirming

the model’s reliability within the variability of MD simulations. Similarly, the predicted Rg

values (see Fig. S8(b)) exhibit strong agreement with the true values, with an RMSE of 0.34,

indicating the DNN model’s effectiveness in capturing polymer conformations.

The self-diffusion coefficient, D (see Fig. S8(c)) spans several orders of magnitude, yet the
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Figure S8: Performance of the DNN models in predicting key properties of graft polymers.
Each subplot shows the correlation between predicted and true values for (a) glass transition
temperature (Tg), (b) radius of gyration (Rg), (c) self-diffusion coefficient (D), and (d)
packing density. The red dashed line represents the ideal perfect prediction (y = x), and blue
points indicate individual data samples with error bars. The root mean square error (RMSE)
for each property is displayed in the respective plots, quantifying the model’s predictive
accuracy.
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DNN model successfully follows the expected trend. The RMSE is only 7 × 10−4, the data

distribution aligns well with the diagonal reference, demonstrating the model’s capability in

predicting polymer diffusion. Although R2 score of the DNN model is slightly small, 0.88

in predicting ρ (Fig. S8(d)), it achieves an RMSE of 0.004, comparable to the standard

deviation of MD simulation results. The predicted values exhibit minimal deviation from

the true values, highlighting the robustness of DNN-based predictions for packing density.

It is important to note that two data points in Fig. S8(a) and (d) lie significantly outside the

range of the rest of the dataset. These points correspond to linear polymers with Nbb =13.

They were excluded from the analysis to maintain a coherent training set that accurately

reflects the structural characteristics of the grafted polymer class under investigation.

These results confirm that DNN models effectively capture the nonlinear structure-

property relationships of graft polymers. The high predictive accuracy for Rg, D, and ρ,

along with reasonable agreement for Tg, underscores the potential of deep learning models in

polymer informatics. The strong performance of DNNs in predicting ρ further supports the

use of image-based representations as an alternative approach to traditional descriptor-based

methods in machine learning-driven polymer design.

S3.3 CNN models

We developed CNN models using image representations as input to predict the four prop-

erties. Two types of convolutional layers were compared: traditional convolutional layers

(CLs) and spatially separable convolutional layers (SCLs). SCLs break down 2D convolu-

tions into simpler 1D operations, reducing computational complexity. Testing revealed CLs

as optimal for predicting D and ρ, whereas SCLs were optimal for Rg and Tg. The CNN

model was also trained using the same 60:20:20 train-validation-test split, with the same

statistical distribution of target properties as shown in Fig. S5.

All CNN models are composed of three convolutional layers with 64, 128, and 256 filters

(kernel size: 5 × 5, padding=’same’), each followed by max pooling layers (pool and stride
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size: 2 × 2). A flattening layer connected to dense layers with 256, 512 neurons (ReLU

activation), and a single linear output neuron. One example showing the optimization of the

learning rate and batch size is in the figure below (Figure S6 (b)). Besides the learning rate

and batch size, we also optimized the number of filters, stride size, and pooling.

Filters: The number of filters was systematically varied from 32 to 512 by increasing the

filter count in each convolutional layer. The model performed best when the number of filters

was doubled progressively from the first to the third layer.

Strides: Both rectangular and square strides were evaluated, with square strides yielding

significantly better performance. Among the square strides tested, ranging from (2×2) to

(7×7), a stride size of (5×5) produced the best results.

Pooling: Three types of pooling-global pooling, average pooling, and max pooling-were

investigated. Max pooling consistently delivered the best predictive performance across all

outputs. Regarding pool size and stride, configurations of (1×1), (2×2), and (3×3) were

tested, with the (2×2) pool size and stride providing optimal results.

Convergence Behavior

Similar to the DNN models, we also tested the convergence behavior of the CNN models

(see Fig. S9). The CNN models exhibit rapid and stable convergence within the first few

hundred epochs, with both the training loss (black) and validation loss (red) decreasing con-

sistently. Notably, the validation loss remains consistently below the training loss, indicating

strong generalization ability and no signs of overfitting. This consistent convergence across

all four predicted properties highlights the robustness of the image-based representation in

capturing key structural features of graft polymers.

These loss curves, in conjunction with the high R2 values reported in the main manuscript,

validate that both ML architectures (CNN and DNN) are well-tuned and generalize effec-

tively to unseen data. It is also important to note that the total number of training epochs

varies across different models. This is due to the use of early stopping, where training stops

if no improvement in validation loss is observed over a set interval. In our case, the interval
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Figure S9: The training and validation loss curves for convolutional neural network models
predicting (a) density, ρ (m/σ−3), (b) diffusivity, D(σ2/τ), (c) radius of gyration, Rg (σ),
and (d) glass transition temperature, Tg (ϵ/kB). The figures show the evolution of loss (in
log scale) over training epochs. Black curves represent training loss, and red curves represent
validation loss. All models exhibit rapid convergence and stable training behavior, with no
signs of significant overfitting. It is to note that the loss values are computed after applying
a transformation on output properties, followed by min-max scaling and normalization.

is set to 100 epochs, meaning the model was allowed to continue training until validation loss

failed to improve for 100 consecutive epochs. This approach ensures efficient convergence

while preventing overfitting.

Prediction Performance of CNN Models

Understanding the prediction accuracy is essential for evaluating the performance of

any ML model. Here, we compare the predicted and true values of ρ, Rg, D, and Tg to

compute the predictive accuracy of our CNN models trained on black-and-white polymer
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representations (see Fig. S8). In this figure, we plotted the comparisons, where the red dashed

line represents the ideal scenario where predicted values perfectly match MD simulation

results.

Figure S10: Comparison of predicted and actual values for the four polymer properties using
CNN models: (a) density, ρ (m/σ−3), (b) diffusivity, D(σ2/τ), (c) radius of gyration, Rg (σ),
and (d) glass transition temperature, Tg (ϵ/kB). Each point represents sample data, and the
red diagonal line indicates the ideal prediction (y = x). The close clustering of data points
along the diagonal demonstrates the strong predictive performance of the CNN models.

In Fig. S10(a), we first plotted the prediction for ρ. Here, we can see that the CNN

model accurately predicts it, with most data points closely aligned along the diagonal refer-

ence line. The predicted values exhibit minimal scatter, indicating strong performance and

robustness of the image-based model in capturing packing density. Similarly, the predicted

diffusion coefficient D (Fig. SS10(b)) follows the expected trend, although with slightly more

variance across the range of values. Despite the increased spread, especially at higher D, the

overall alignment suggests that the CNN model effectively captures the key dynamic features
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related to polymer mobility. The predictions for Rg (Fig. S10(c)) also demonstrate excellent

agreement with actual values across a broad range, further confirming the CNN model’s abil-

ity to extract conformational information from the image representation. Finally, the glass

transition temperature Tg (Fig. S10(d)) is reasonably well-predicted, with points generally

distributed around the diagonal, despite some deviations at the higher end. These results

collectively confirm that CNN models trained on 2D image representations can achieve high

predictive accuracy across diverse polymer properties.

The strong predictive performance for all the physical variables—particularly ρ, Rg, and

D—as well as reasonable accuracy for Tg, highlights the utility of such ML models in polymer

physics.

S4 Interpreting ML Predictions: Saliency Maps and

SHAP Values

To address the interpretability of our machine learning models, we employed saliency map-

ping and SHAP analysis. These techniques allow us to visualize and quantify the input

regions most influential in predicting polymer properties. By analyzing feature attributions,

we uncover mechanistic insights that link specific architectural elements to key properties

such as Tg, Rg, D, and ρ.

• For Tg, the saliency maps reveal that regions with the highest contributions are clus-

tered around the backbone (rows: 0, columns: 0-30) and the side chains (rows: 1-13).

This indicates that backbone beads (row: 0-30) and side-chain beads (1-13) are signif-

icant to the Tg prediction. However, Tg is saturated when Nbb exceeds 40 regardless

of Nsc (see Figure 1(c)), consistent with the low-contribution values in the rows 40-60

and columns 5-26 of the saliency map.

• In contrast, the saliency map for Rg shows high-contribution regions at both the top
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and bottom across almost all columns. This pattern suggests that the terminal regions

of long side chains and the backbone are key drivers of high Rg, consistent with intuitive

and theoretical expectations for polymer size scaling.

• For D and ρ, the saliency maps consistently highlight the backbone as the most in-

fluential factor, underscoring its role in determining steric hindrance and free volume

within the polymer structure.

To further interpret the DNN models trained on physical descriptors, we computed the

mean absolute SHAP values for each of the six input features across the four predicted

properties (Tg, Rg, D, and ρ). The results shown in Figure S11 indicate that the average

side-chain length (Nsc,ave) has the most significant impact on the DNN model for predicting

Tg highlighting the role of side chains in the thermodynamic properties of graft polymers. In

predicting Rg, the top two important descriptors are Nbb and Ntot, suggesting that backbone

and overall degree of polymerization governs the size of the graft polymer. For diffusivity

(D) and packing density (ρ), Nbb is the most important feature. These insights demon-

strate how specific architectural features govern different physical properties and enhance

interpretability of the learned structure–property relationships.

Figure S11: The summary of the mean |SHAP value| of all the 6 physical descriptors for
predicting (a) Tg, (b) Rg, (c) D, and (d) ρ by the DNN models.

Finally, to evaluate the interpretability of DNN models trained on graphical descriptors,

we computed the mean absolute SHAP values for all 11 input features across the predicted
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Figure S12: The summary of the mean |SHAP value| of all the 11 graphical descriptors for
predicting (a) Tg, (b) Rg, (c) D, and (d) ρ by the DNN models.

properties (Tg, Rg, D, and ρ). As shown in Figure S12, the average neighbor degree (d̄nb)

ranks the highest, highlighting the importance of more branches and long backbone and side-

chain length. In the case of Rg, the mean betweenness centrality (Cbet) is the most influential

feature, reflecting the spatial distribution of polymer segments. The diffusion coefficient D

and packing density ρ are similarly affected by global topological measures such as diameter

(ϕdiam) and average degree (d̄), emphasizing how global size/shapes influence dynamic and

thermodynamic behavior. Compared to physical descriptors, graphical features offer a more

nuanced representation of architectural variation, which aids in capturing complex structure-

property relationships.

S5 General Design Rules for Material Discovery

This section summarizes how the observed structure-property relationships can guide poly-

mer design and how the developed framework accelerates material discovery. Based on the
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systematic dataset of graft and bottlebrush polymers, and supported by model interpretabil-

ity tools (Shapley values and saliency maps), we identify the following general design prin-

ciples that govern the physical and dynamic properties of these systems:

• Side-chain positioning: The spatial location of side chains along the backbone crit-

ically affects both polymer conformation and dynamics. When side chains are po-

sitioned near the termini of the backbone—particularly at low grafting density—the

polymer adopts a more extended configuration, resulting in a higher radius of gyra-

tion (Rg) and a reduced diffusion coefficient (D) due to increased segmental crowding.

Conversely, central placement of side chains at high grafting density leads to more

compact structures with lower Rg. Importantly, the glass transition temperature (Tg)

is only weakly influenced by side-chain positioning and shows stronger dependence

on backbone length. These observations indicate that D and Tg can be modulated

independently through architectural design.

• Backbone and side-chain length: The backbone length and the maximum side-

chain length (Nsc,max) exert a strong influence on all four target properties (Tg, Rg,

D, and ρ), whereas the minimum side-chain length (Nsc,min) contributes negligibly.

This conclusion is supported by both the low Shapley value of Nsc,min in the DNN

model and its weak Spearman correlation with the predicted properties. These findings

suggest that topological features such as backbone length and Nsc,max serve as effective

and interpretable design parameters for tuning the thermal, structural, and dynamic

behavior of graft polymer systems.

These design guidelines offer a rational strategy to optimize both thermal and dynamic

properties of graft polymers.
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