Supplementary Information to

Nanoscale island manipulation and construction of heterojunction by mechanical collision of 2D materials

Xiongbai Cao^{1, #}, Liangguang Jia^{1, #}, Huixia Yang^{1, #}, Zhenru Zhou¹, Tingting Wang¹, Haolong Fan¹, Yan Li¹, Xiaoyu Hao¹, Lingtao Zhan¹, Qinze Yu¹, Liwei Liu¹, Teng Zhang¹, Quanzhen Zhang^{1, *}, and Yeliang Wang^{1, *}

Corresponding Author:

E-mail: quanzhen.zhang@bit.edu.cn; yeliang.wang@bit.edu.cn.

1. STM images of H-NbSe₂ islands on BLG/SiC

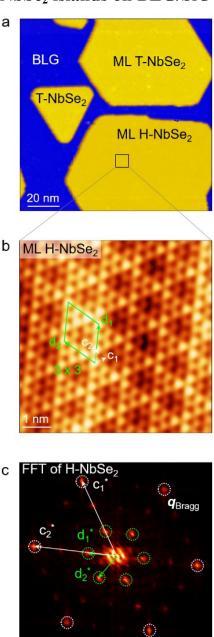


Figure S1: Atomic-resolution STM images of monolayer H-NbSe₂ islands. (a) STM image of monolayer H-phase and T-phase NbSe₂ islands epitaxially grown on a bilayer graphene (BLG)/SiC(0001) substrate. (b) Zoom-in STM image of the region marked by the black square in (a), revealing the typical ³ × ³ charge density wave (CDW) pattern and the atomic-resolution structure of monolayer H-NbSe₂. (c) FFT image corresponding to (b), highlighting the periodic CDW modulation and the underlying atomic lattice of the H-phase.

2. Coexistence of T- and H-phase on one NbSe2 island

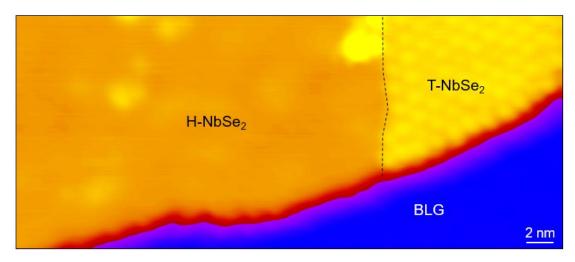


Figure S2: STM image of coexistence of T- and H-phase on one NbSe₂ island.

3. STM tip manipulation to cause translation of T-NbSe₂ islands laterally and collide with H-NbSe₂

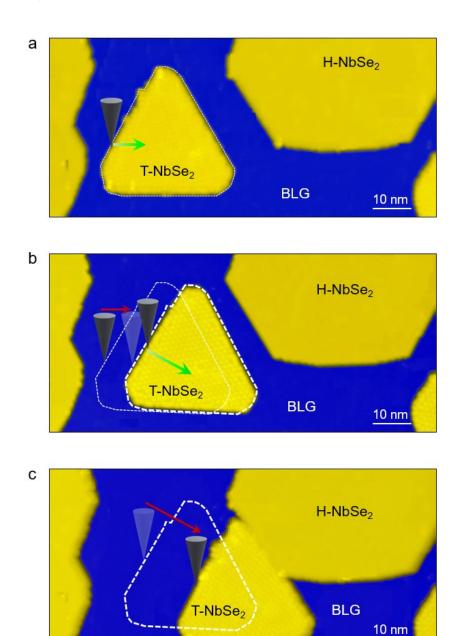


Figure S3: Translation of T-NbSe2 islands laterally and collision with H-NbSe2.

(a) Initial configuration of T-phase NbSe₂ and H-phase NbSe₂ islands before STM tip manipulation. The green arrow indicates the starting position of the STM tip and its movement trajectory during manipulation. (b) STM topographic image after the first tip manipulation. The white dashed box marks the original position of the T-phase NbSe₂ island. The green arrow shows the lateral movement path of the tip during the

second translational manipulation. (c) STM image following the second translational manipulation. A collision between the T-phase NbSe₂ and H-phase NbSe₂ islands is observed, but no structural and phase transition is detected. These results demonstrate that, in contrast to rotational manipulation, the translational displacement cannot induce a phase transition in the NbSe₂ system.

4. Atomic-resolution STM images at the edge of monolayer $T\text{-NbSe}_2$ and $H\text{-NbSe}_2$ islands

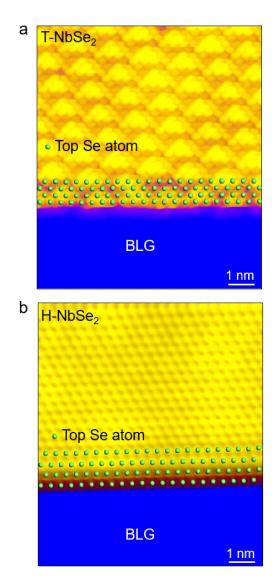
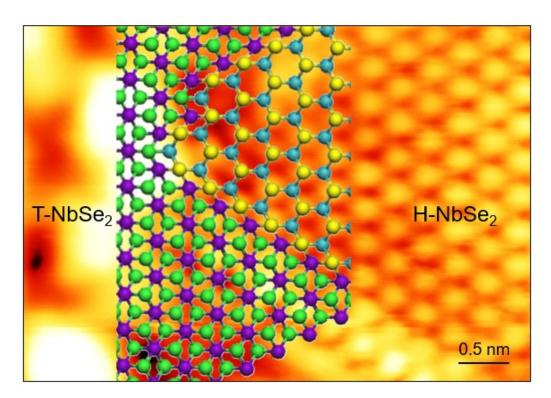



Figure S4. Atomic-resolution STM images at the edge of monolayer (a) T-NbSe₂ and (b) H-NbSe₂ islands. The atomic structures of the top Se atoms are superposed on the image, demonstrating that the edge of T- and H-NbSe₂ exhibits a well-ordered Se-terminated zigzag configuration.

5. Schematic model of the heterojunction

Figure S5: Schematic model of the heterojunction after phase transition. In T-NbSe₂, the Nb and Se atoms are represented by the purple and green balls respectively. In H-NbSe₂, the Nb and Se atoms are represented by the blue and yellow balls, respectively.