Supporting information for: Influence of Lipid Bilayer Head Group Polarity on

Micelle Behavior and Surfactant Transfer: A

Molecular Dynamics Simulation Study

Yeonho Song^{†,¶} and Hyonseok Hwang*,‡

Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea, and Department of Chemistry and Institute for Molecular Science and Fusion Technology and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea

E-mail: hhwang@kangwon.ac.kr

^{*}To whom correspondence should be addressed

[†]Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea

[‡]Department of Chemistry and Institute for Molecular Science and Fusion Technology and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea

[¶]Present address: Department of Chemistry and Nanoscience, Ewha Woman's University, Seoul, 03760, Republic of Korea

Table of Contents

List of Tables	S3
List of Figures	S4
Bibliography	S14

List of Tables

S 1	Calculated values of the average area per lipid (APL) and bilayer thickness for the
	DMPC and Cer240 bilayers at 313.15 K and 350.15 K under a pressure of 1 bar
	from molecular dynamics (MD) simulations

List of Figures

S 1	(a) A one-dimensional (1D) potential of mean force (PMF) profile for an SLE2S
	micelle in bulk water as a function of ξ_2 . (b)-(d) Representative micellar struc-
	tures corresponding to $\xi_2 = -4.0$, 0.0, and 4.0 Å, illustrating lower hemispherical,
	spherical, and upper hemispherical shapes, respectively. A series of MD simula-
	tions for the PMF calculation were performed at 313.15 K and 1 bar using the US
	sampling method under the NPT ensemble. The system contained 13858 water
	molecules and a micelle composed of 16 SLE2S surfactants
S2	(a) A two-dimensional (2D) PMF profile for a micelle on the DMPC bilayer as a
	function of ξ_1 and ξ_2 and (b)-(f) snapshots for a typical micellar structure at a given
	ξ_1 and ξ_2 position. The vertical dashed line in (a) represents the bilayer-micelle
	contact distance, $d_{bmc}^{\rm DMPC}$ at $\xi_1=33.6$ Å for the micelle on the DMPC bilayer. For
	the definition of d_{bmc} , see the text
S 3	(a) A 2D PMF profile for a micelle on the Cer240 bilayer as a function of ξ_1 and
	ξ_2 and (b)-(g) snapshots for a typical micellar structure at a given ξ_1 and ξ_2 posi-
	tion. The vertical dashed line in (a) represents the bilayer-micelle contact distance,
	d_{bmc}^{Cer240} at $\xi_1 = 40.6$ Å for the SLE2S micelle on the Cer240 bilayer S9
S4	Definitions of the head and tail groups for (a) the SLE2S surfactant, (b) DMPC and
	(c) Cer240 lipid molecules
S 5	Definition of a cylinder that is centered at the CoM of the SLE2S micelle and
	aligned along the z axis with a radius of l in the lateral direction

S6	Representative snapshots from 400 ns cf-SMD simulation trajectories showing the
	interaction of a 16-mer SLE2S micelle with (a) and (b) a DMPC lipid bilayer at
	313.15 K and 350.15 K and (c) and (d) a Cer240 bilayer at 313.15 K and 350.15 K.
	The cf-SMD simulations were conducted using the NPT ensemble under a pressure
	of 1 bar and two temperatures of 313.15 and 350.15 K. Graphical representations
	and atomic colors are the same as those in Figure 1. (a) and (d) Reprinted from
	Ref. S1
S 7	(a) Illustration of the direct contact area between the SLE2S micelle and the lipid
	head group region of the Cer240 bilayer and representative snapshots from the
	MD simulations showing the interaction of the SLE2S micelle with the Cer240
	lipid bilayer at (c) 313.15 K and (c) 350.15 K, respectively. In (b) and (c), the
	direct contact areas are highlighted in yellow. In (c), an opening is observed at
	the direct contact area. In both (b) and (c), sulfur atoms in the SLE2S micelle are
	shown as orange spheres, with other atoms depicted as orange tubes. Only the
	nitrogen (N) and oxygen (O1) of the Cer240 head groups are shown in blue and
	red, respectively, while water molecules are rendered in transparent blue S13

Table S1: Calculated values of the average area per lipid (APL) and bilayer thickness for the DMPC and Cer240 bilayers at 313.15 K and 350.15 K under a pressure of 1 bar from molecular dynamics (MD) simulations.

Properties	DMPC bilayer ^a		Cer240 bilayer ^b	
Troperties	313.15 K ^c	350.15 K^c	313.15 K^d	350.15 K^d
APL (\mathring{A}^2)	61.54	66.72	42.81	51.70
Thickness (Å) ^e	35.63	34.32	48.10	42.94

^a Composed of 200 DMPC lipids and 23000 water molecules.

^b Composed of 256 Cer240 lipids and 23000 water molecules

^c A total run time of 200 ns with a production run of last 50 ns.

^d A total run time of 300 ns with a production run of last 50 ns.

 $[^]e$ Defined as the average distance between P atoms (N atoms) at the upper and lower leaflets in the DMPC (Cer240) bilayer.

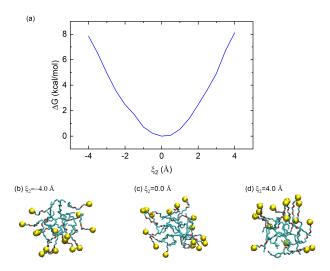


Figure S1: (a) A one-dimensional (1D) potential of mean force (PMF) profile for an SLE2S micelle in bulk water as a function of ξ_2 . (b)-(d) Representative micellar structures corresponding to $\xi_2 = -4.0$, 0.0, and 4.0 Å, illustrating lower hemispherical, spherical, and upper hemispherical shapes, respectively. A series of MD simulations for the PMF calculation were performed at 313.15 K and 1 bar using the US sampling method under the NPT ensemble. The system contained 13858 water molecules and a micelle composed of 16 SLE2S surfactants.

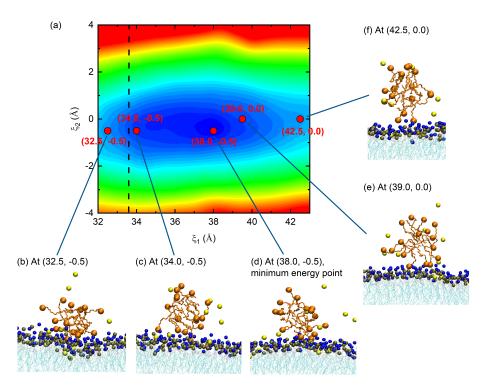


Figure S2: (a) A two-dimensional (2D) PMF profile for a micelle on the DMPC bilayer as a function of ξ_1 and ξ_2 and (b)-(f) snapshots for a typical micellar structure at a given ξ_1 and ξ_2 position. The vertical dashed line in (a) represents the bilayer-micelle contact distance, $d_{bmc}^{\rm DMPC}$ at $\xi_1=33.6$ Å for the micelle on the DMPC bilayer. For the definition of d_{bmc} , see the text.

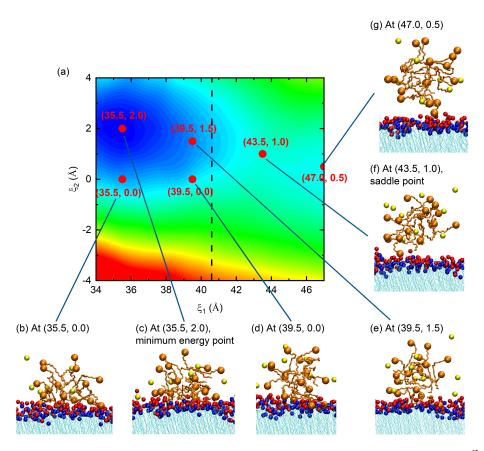


Figure S3: (a) A 2D PMF profile for a micelle on the Cer240 bilayer as a function of ξ_1 and ξ_2 and (b)-(g) snapshots for a typical micellar structure at a given ξ_1 and ξ_2 position. The vertical dashed line in (a) represents the bilayer-micelle contact distance, d_{bmc}^{Cer240} at $\xi_1 = 40.6$ Å for the SLE2S micelle on the Cer240 bilayer.

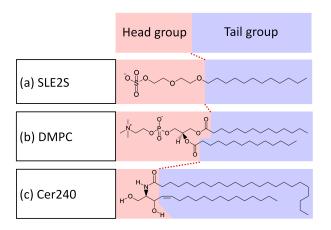


Figure S4: Definitions of the head and tail groups for (a) the SLE2S surfactant, (b) DMPC and (c) Cer240 lipid molecules.

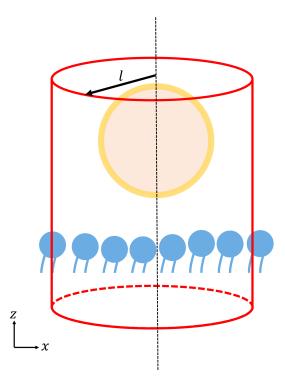


Figure S5: Definition of a cylinder that is centered at the CoM of the SLE2S micelle and aligned along the z axis with a radius of l in the lateral direction.

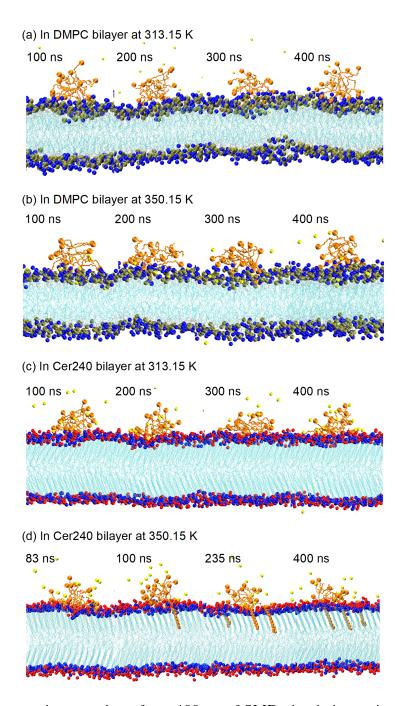


Figure S6: Representative snapshots from 400 ns cf-SMD simulation trajectories showing the interaction of a 16-mer SLE2S micelle with (a) and (b) a DMPC lipid bilayer at 313.15 K and 350.15 K and (c) and (d) a Cer240 bilayer at 313.15 K and 350.15 K. The cf-SMD simulations were conducted using the NPT ensemble under a pressure of 1 bar and two temperatures of 313.15 and 350.15 K. Graphical representations and atomic colors are the same as those in Figure 1. (a) and (d) Reprinted from Ref. S1.

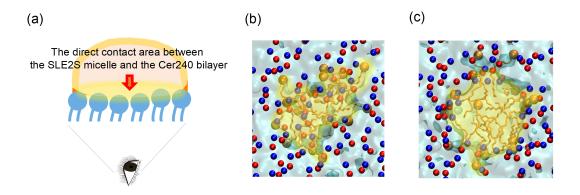


Figure S7: (a) Illustration of the direct contact area between the SLE2S micelle and the lipid head group region of the Cer240 bilayer and representative snapshots from the MD simulations showing the interaction of the SLE2S micelle with the Cer240 lipid bilayer at (c) 313.15 K and (c) 350.15 K, respectively. In (b) and (c), the direct contact areas are highlighted in yellow. In (c), an opening is observed at the direct contact area. In both (b) and (c), sulfur atoms in the SLE2S micelle are shown as orange spheres, with other atoms depicted as orange tubes. Only the nitrogen (N) and oxygen (O1) of the Cer240 head groups are shown in blue and red, respectively, while water molecules are rendered in transparent blue.

Bibliography

(S1) Song, Y.; Lee, J. H.; Jung, I.; Seo, B.; Hwang, H. Molecular Dynamics Simulations of Micelle Properties and Behaviors of Sodium Lauryl Ether Sulfate Penetrating Ceramide and Phospholipid Bilayers. *J. Phys. Chem. B* **2020**, *124*, 5919–5929.