Supporting Information

Harnessing Electrochemical CO₂ Reduction and Assisted Water Electrolysis via Constrained Thermodynamic Modeling

Jinuk Choi^{†,a}, Hyojung Lim^{†,a}, Subramani Surendran^a, Seonghyeon Park^a, Junho Shim^a, Gyoung Hwa Jeong^{a,b}, and Uk Sim^{*,a,b,c}

^a Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology

(KENTECH), 58330 Naju, Republic of Korea. *E-mail: usim@kentech.ac.kr (U. Sim)

^b Research Institute, NEEL Sciences, INC., Naju, Rep. of Korea.

^c College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-

Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China.

^{*} These authors contributed equally to this work.

Fig. S1 Pourbaix diagrams of hydrocarbons including (a) CO, (b) CH₄, (c) C₂H₄, and (d) C₂H₆ using CO₂(g) as a function of temperature from 25 to 100 °C.

Fig. S2 Gibbs free energy and enthalpy of Fischer-Tropsch process as a function of temperature from 0 to 1,000 °C.

Fig. S3 Pourbaix diagrams of organic acid including (a) formic acid and (b) acetic acid using $CO_2(g)$ as a function of temperature from 25 to 100 °C.

Fig. S4 Pourbaix diagrams of the liquid-phase oxidation of (a) methanol, (b) ethanol, and (c) ethylene glycol as a function of temperature from 25 to 100 °C.

Fig. S5 Theoretical potentials (V_{TN} and V_{RE}) of assisted water splitting using alcohols including methanol (MOR), ethanol (EOR), propanol (POR), and butanol (BOR) as a function of temperature from 0 to 1,000 °C.

Fig. S6. $T\Delta S$ of the reaction.

Species	ΔG_{f}^{0} (kJ)								
	25 °C	50 °C	60 °C	70 °C	80 °C	90 °C	100 °C		
CH ₄ (g)	-50.801	-48.751	-47.914	-47.068	-46.213	-45.350	-44.478		
$C_2H_4(g)$	68.388	69.756	70.320	70.894	71.476	72.067	72.667		
$C_2H_6(g)$	-32.896	-28.502	-26.716	-24.916	-23.101	-21.273	-19.432		
CO(g)	-137.147	-139.385	-140.283	-141.183	-142.083	-142.985	-143.888		
CO ₂ (g)	-394.422	-394.496	-394.526	-394.555	-394.584	-394.614	-394.642		
CH₃OH(g)	-162.497	-159.217	-157.885	-156.542	-155.189	-153.826	-152.452		
CH ₃ CH ₂ OH(-168.717	-162.942	-160.607	-158.260	-155.901	-153.531	-151.149		
g)									
HCOOH(g)	-350.998	-348.662	-347.715	-346.763	-345.805	-344.842	-343.873		
CH₃COOH(-383.216	-377.096	-374.629	-372.151	-369.663	-367.165	-364.658		
g)									
(CH ₂ OH) ₂ (I)	-323.231	-312.215	-307.817	-303.423	-299.033	-294.647	-290.263		
CH ₄ (aq)	-34.498	-30.147	-28.507	-26.910	-25.350	-23.826	-22.337		
$C_2H_4(aq)$	81.215	85.053	86.630	88.231	89.854	91.499	93.167		
$C_2H_6(aq)$	-17.181	-9.955	-7.007	-4.027	-1.015	2.027	5.099		
CO(aq)	-119.868	-119.753	-119.693	-119.627	-119.553	-119.472	-119.384		
CO ₂ (aq)	-386.008	-383.639	-382.670	-381.689	-380.697	-379.693	-378.679		

Table S1. Thermodynamic data used for calculations at 1 atm, obtained from theFactPS database.

8

CO32-	-674.066	-514.821	-509.386	-503.830	-498.161	-492.385	-486.505
CH₃OH(aq)	-175.478	-169.488	-167.047	-164.581	-162.091	-159.577	-157.040
CH ₃ CH ₂ OH(-181.785	-172.734	-169.048	-165.325	-161.567	-157.774	-153.947
aq)							
HCOO-	-351.184	-344.893	-342.343	-339.772	-337.180	-334.568	-331.935
HCOOH(aq)	-372.391	-367.999	-366.272	-364.560	-362.864	-361.186	-359.529
CH₃COO-	-369.589	-359.701	-355.681	-351.624	-347.528	-343.394	-339.223
CH ₃ COOH(a	-396.615	-389.178	-386.219	-383.269	-380.330	-377.404	-374.495
q)							
HCO ₃ -	-586.773	-577.884	-574.285	-570.661	-567.010	-563.333	-559.630
H ₂ (g)	0.000	0.000	0.000	0.000	0.000	0.000	0.000
H ₂ (g) O ₂ (g)	0.000 0.000						
H ₂ (g) O ₂ (g) H ₂ O(g)	0.000 0.000 -228.607	0.000 0.000 -227.487	0.000 0.000 -227.034	0.000 0.000 -226.578	0.000 0.000 -226.119	0.000 0.000 -225.657	0.000 0.000 -225.192
$H_2(g)$ $O_2(g)$ $H_2O(g)$ $H_2O(l)$	0.000 0.000 -228.607 -237.190	0.000 0.000 -227.487 -233.144	0.000 0.000 -227.034 -231.543	0.000 0.000 -226.578 -229.951	0.000 0.000 -226.119 -228.369	0.000 0.000 -225.657 -226.795	0.000 0.000 -225.192 -225.231
$H_2(g)$ $O_2(g)$ $H_2O(g)$ $H_2O(l)$ H^+	0.000 0.000 -228.607 -237.190 0.000	0.000 0.000 -227.487 -233.144 0.006	0.000 0.000 -227.034 -231.543 0.011	0.000 0.000 -226.578 -229.951 0.018	0.000 0.000 -226.119 -228.369 0.026	0.000 0.000 -225.657 -226.795 0.036	0.000 0.000 -225.192 -225.231 0.047
$H_2(g)$ $O_2(g)$ $H_2O(g)$ $H_2O(l)$ H^+ $H_2(aq)$	0.000 0.000 -228.607 -237.190 0.000 17.531	0.000 0.000 -227.487 -233.144 0.006 19.191	0.000 0.000 -227.034 -231.543 0.011 19.775	0.000 0.000 -226.578 -229.951 0.018 20.319	0.000 0.000 -226.119 -228.369 0.026 20.826	0.000 0.000 -225.657 -226.795 0.036 21.300	0.000 0.000 -225.192 -225.231 0.047 21.742
$H_2(g)$ $O_2(g)$ $H_2O(g)$ $H_2O(l)$ H^+ $H_2(aq)$ $O_2(aq)$	0.000 0.000 -228.607 -237.190 0.000 17.531 16.359	0.000 0.000 -227.487 -233.144 0.006 19.191 18.533	0.000 0.000 -227.034 -231.543 0.011 19.775 19.307	0.000 0.000 -226.578 -229.951 0.018 20.319 20.029	0.000 0.000 -226.119 -228.369 0.026 20.826 20.702	0.000 0.000 -225.657 -226.795 0.036 21.300 21.326	0.000 0.000 -225.192 -225.231 0.047 21.742 21.904
$H_{2}(g)$ $O_{2}(g)$ $H_{2}O(g)$ $H_{2}O(l)$ H^{+} $H_{2}(aq)$ $O_{2}(aq)$ OH^{-}	0.000 0.000 -228.607 -237.190 0.000 17.531 16.359 -157.248	0.000 0.000 -227.487 -233.144 0.006 19.191 18.533 -150.990	0.000 0.000 -227.034 -231.543 0.011 19.775 19.307 -148.403	0.000 0.000 -226.578 -229.951 0.018 20.319 20.029 -145.773	0.000 0.000 -226.119 -228.369 0.026 20.826 20.702 -143.099	0.000 0.000 -225.657 -226.795 0.036 21.300 21.326 -140.384	0.000 0.000 -225.192 -225.231 0.047 21.742 21.904 -137.628
$H_2(g)$ $O_2(g)$ $H_2O(g)$ $H_2O(l)$ H^+ $H_2(aq)$ $O_2(aq)$ OH^- $e^-(aq)$	0.000 0.000 -228.607 -237.190 0.000 17.531 16.359 -157.248 0.000	0.000 0.000 -227.487 -233.144 0.006 19.191 18.533 -150.990 0.000	0.000 0.000 -227.034 -231.543 0.011 19.775 19.307 -148.403 0.000	0.000 0.000 -226.578 -229.951 0.018 20.319 20.029 -145.773 0.000	0.000 0.000 -226.119 -228.369 0.026 20.826 20.702 -143.099 0.000	0.000 0.000 -225.657 -226.795 0.036 21.300 21.326 -140.384 0.000	0.000 0.000 -225.192 -225.231 0.047 21.742 21.904 -137.628 0.000

Efficiency Calculations for Electrochemical CO₂RR and Assisted Water Electrolysis

1. Faradaic efficiency (FE)

$$FE_{Product} (\%) = \frac{Q_{Product}}{Q} = \frac{n_{Product} \times V \times c_{Product} \times F}{Q}$$
(E§.1)

2. Voltage efficiency (VE)

$$VE_{Cell} (\%) = \frac{E_{Oxidation}^{0} - E_{Reduction}^{0}}{E_{Oxidation} - E_{Reduction}}$$
(Eq. S2)

3. Energy efficiency (EE)

$$EE_{Product} (\%) = VE_{Product} \times FE_{Product}$$
(Eq. S3)
$$EE of half - cell (\%) = \frac{\left(E_{Oxidation}^{0} - E_{Reduction}^{0}\right) \times FE}{E_{Oxidation} - E_{Reduction}}$$
(Eq. S4)

$$EE of full - cell (\%) = \frac{\left(E_{Oxidation}^{0} - E_{Reduction}^{0}\right) \times FE}{E_{Cell}}$$

(Eq. S5)

Where *Q* represents the total applied charge (C), and $Q_{Product}$ denotes the charge required to synthesize the desired product. *n* is the number of electrons transferred per reaction, *V* is the volume of the catholyte, $c_{Product}$ is the product concentration in the catholyte, and *F* is the Faraday constant (96,485 C mol⁻¹). $E_{Product}^{0}$ and E_{OER}^{0}

represent the theoretical potentials for electrochemical CO_2RR and the OER, respectively, while $E_{Product}$ and E_{OER} are the applied potentials for CO_2RR and OER, respectively. EE is defined as the product of FE and VE. The EE of a half-cell considers only the reduction reaction, whereas the EE of a full-cell accounts for both the reduction and oxidation reactions.

Specific Energy Consumption Calculations

The specific energy consumption (SEC) is a key parameter used to evaluate and compare the energy requirements of different CO₂RR-to-product pathways. It represents the amount of energy input required per kilogram of the desired product and is calculated using the following equation:

SEC (kWh kg⁻¹) =
$$\frac{n \times F \times E_{cell}}{T \times FE \times M_P}$$

where *n* denotes the number of electrons transferred per reaction, *F* is the Faraday constant (96,485 C mol⁻¹), E_{cell} is the applied cell voltage, *T* is the operating time, FE is the Faradaic efficiency, and *M*_P represents the molar mass of the product. This metric facilitates a direct comparison of energy efficiency among different ammonia

production methods and aids in optimizing operating conditions for a more sustainable and cost-effective electrochemical CO₂RR process.