Supporting Information for

## Theoretical prediction of pressure-stabilized all-nitrogen $N_{12}$ molecular crystal with $\pi$ - $\pi$ stacking

Lei Zhao<sup>1\*</sup>, Zelin Ma<sup>1</sup>, Daoling Peng<sup>2</sup>, Fenglong Gu<sup>2</sup>, Wencai Yi<sup>3\*</sup>

<sup>1</sup> College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, P. R. China.

 <sup>2</sup> Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Environment, South China Normal University, Guangzhou 510006, China
<sup>3</sup> Laboratory of High Pressure Physics and Material Science, School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China

\*Corresponding author: Lei Zhao: <u>leizhao@swpu.edu.cn</u> Wencai Yi:<u>yiwc@qfnu.edu.cn</u>

| Space group       | Lattice parameters   | Wyckoff positions |          |          |          |  |
|-------------------|----------------------|-------------------|----------|----------|----------|--|
|                   | <i>a</i> = 4.86960 Å | 2i                | -0.95168 | 1.05881  | -0.25366 |  |
|                   | <i>b</i> = 5.75300 Å | 2i                | -0.73668 | 0.20806  | -0.36727 |  |
| D1                | c = 5.99200 Å        | 2i                | -0.85002 | 0.42199  | -0.33588 |  |
| <i>P</i> 1        | $\alpha = 105.9756$  | 2i                | 0.86510  | 0.40412  | -1.20257 |  |
|                   | $\beta = 66.1524$    | 2i                | 0.80150  | 0.18119  | -1.15149 |  |
|                   | $\gamma = 102.0559$  | 2i                | 0.51155  | 1.10829  | -1.00804 |  |
|                   |                      | 1a                | 0.81710  | 0.71178  | 0.28116  |  |
|                   |                      | 1a                | 0.24864  | 0.68788  | 0.49593  |  |
| Р1                |                      | 1a                | 0.25415  | 0.91310  | 0.37584  |  |
|                   | a = 4.44600 Å        | la                | -0.01115 | -0.07078 | 0.24756  |  |
|                   | <i>b</i> = 5.30643 Å | 1a                | 0.97620  | 0.56519  | 0.43438  |  |
|                   | c = 6.89640 Å        | la                | 0.86141  | 0.31063  | 0.50237  |  |
|                   | $\alpha = 77.8501$   | la                | 0.03708  | 0.22472  | 0.65727  |  |
|                   | $\beta = 99.0162$    | 1a                | 0.93975  | 0.97548  | 0.74664  |  |
|                   | $\gamma = 97.4007$   | la                | 0.18362  | 0.87888  | 0.84066  |  |
|                   |                      | la                | 0.11237  | 0.63080  | 0.93450  |  |
|                   |                      | 1a                | 0.34333  | 0.50296  | 0.96830  |  |
|                   |                      | la                | 0.51156  | 0.35077  | -0.00077 |  |
|                   | <i>a</i> = 7.49320 Å | 3f                | 0.18025  | 0.00000  | 0.00000  |  |
| $P\overline{6}2m$ | c = 3.36100  Å       | 3f                | 0.65286  | 0.00000  | 0.00000  |  |
|                   |                      | 6j                | 0.82644  | 0.17907  | 0.00000  |  |

**Table S1**. Structural parameters including the space group, lattice constants, and atomicpositions of predicted  $N_{12}$  crystal at 0 GPa.

Table S2. Harmonic vibrational analysis of N<sub>12</sub> molecule.

| Mode | Frequency | Infrared | Mode | Frequency | Infrared |
|------|-----------|----------|------|-----------|----------|
| 1    | 38.88     | 0.0671   | 16   | 808.99    | 0.0002   |
| 2    | 81.58     | 3.7899   | 17   | 875.19    | 0.0000   |

| 3  | 107.01 | 3.3787   | 18 | 1024.84 | 61.6352  |
|----|--------|----------|----|---------|----------|
| 4  | 145.16 | 0.0000   | 19 | 1059.72 | 0.0000   |
| 5  | 245.96 | 0.0000   | 20 | 1065.61 | 65.2366  |
| 6  | 266.62 | 0.0000   | 21 | 1079.32 | 0.0000   |
| 7  | 372.39 | 0.0000   | 22 | 1125.85 | 2.5366   |
| 8  | 433.01 | 0.0191   | 23 | 1186.45 | 0.0000   |
| 9  | 537.57 | 64.3590  | 24 | 1242.75 | 0.0001   |
| 10 | 672.61 | 0.0005   | 25 | 1259.49 | 200.7659 |
| 11 | 689.08 | 0.0153   | 26 | 1360.94 | 0.0000   |
| 12 | 741.48 | 0.0176   | 27 | 1391.45 | 37.6633  |
| 13 | 741.55 | 0.0010   | 28 | 1453.03 | 0.0004   |
| 14 | 748.83 | 129.1706 | 29 | 1455.86 | 11.4283  |
| 15 | 765.14 | 318.6450 | 30 | 1595.81 | 0.0000   |

Table S3. Geometries of  $N_{12}\xspace$  in gas phase and solid state.

|                       |        | Bond (Å)  | Angle (°)   |
|-----------------------|--------|-----------|-------------|
| Gas Phase             | 0-9 5  | B12 1.375 | A123 104.28 |
|                       |        | B15 1.375 | A234 109.61 |
|                       |        | B23 1.375 | A345 109.23 |
|                       |        | B34 1.383 | A451 104.75 |
|                       |        | B45 1.281 | A512 112.13 |
|                       |        | B16 1.370 | A516 118.87 |
|                       |        | B67 1.247 | A216 129.00 |
|                       |        |           | A167 111.20 |
| Solid State           | . 5    | B12 1.345 | A123 104.92 |
| 9 8 7 5 4<br>10 6 2 3 | Ser So | B15 1.354 | A234 109.11 |
|                       | 500    | B23 1.288 | A345 109.50 |
|                       |        | B34 1.387 | A451 104.36 |
|                       |        | B45 1.289 | A512 112.11 |

| B16 1.367 | A516 128.95 |
|-----------|-------------|
| B67 1.254 | A216 118.93 |
|           | A167 110.65 |

Table S4. The energy level of 34 delocalized electrons.

|                | ,,        |           |      |                   |
|----------------|-----------|-----------|------|-------------------|
| Orbital number | Energy/au | Energy/eV | Type | Molecular Orbital |
| 42             | -0.34232  | -9.315    | LP   |                   |
| 41             | -0.35392  | -9.631    | π    |                   |
| 40             | -0.36246  | -9.863    | LP   |                   |
| 39             | -0.36538  | -9.942    | LP   |                   |
| 38             | -0.36717  | -9.991    | LP   |                   |
| 37             | -0.38932  | -10.594   | LP   |                   |
| 36             | -0.39737  | -10.813   | LP   | <b>\$</b>         |
| 35             | -0.40108  | -10.914   | π    | ۲ ال              |
| 34             | -0.40127  | -10.919   | π    |                   |
| 33             | -0.40948  | -11.142   | LP   |                   |
| 32             | -0.41760  | -11.363   | π    |                   |
| 31             | -0.48497  | -13.197   | LP   |                   |

| LP | -13.221 | -0.48588 | 30 |
|----|---------|----------|----|
| π  | -13.789 | -0.50673 | 29 |
| LP | -14.945 | -0.54922 | 28 |
| π  | -15.894 | -0.58408 | 27 |
| π  | -16.607 | -0.61030 | 26 |

Table S5. Formation enthalpy of  $N_{12}$  crystal under different pressures, where the  $N_2$  crystal was chosen as precursor.

| Pressure (GPa) | Formation enthalpy (eV/atom) |  |  |
|----------------|------------------------------|--|--|
| 0              | 0.80                         |  |  |
| 20             | 0.39                         |  |  |
| 40             | 0.18                         |  |  |
| 60             | 0.03                         |  |  |
| 80             | -0.09                        |  |  |
| 100            | -0.19                        |  |  |

**Table S6.** The enthalpy of  $N_{10}$  and  $N_{12}$  under different pressures, unit is eV atom<sup>-1</sup>.

|                      | 0 GPa  | 20 GPa | 40 GPa | 60 GPa | 80 GPa | 100 GPa |
|----------------------|--------|--------|--------|--------|--------|---------|
| N <sub>10</sub> -VIP | -7.580 | -6.365 | -5.400 | -4.534 | -3.734 | -2.986  |
| N10-P21              | -7.605 | -6.379 | -5.355 | -4.477 | -3.670 | -2.917  |
| N <sub>12</sub>      | -7.578 | -6.367 | -5.403 | -4.537 | -3.735 | -2.982  |



**Figure S1.** Crystal structures of predicted  $N_{12}$  crystal with (a)  $P\overline{1}$ , (b) P1 and (c)  $P\overline{6}2m$  symmetry.



Figure S2. The enthalpy changes of different crystalline  $N_{12}$  with increasing of pressure.



Figure S3. Phonon dispersion calculation for crystalline N<sub>12</sub> crystal at 0 and 10 GPa.



Figure S4. The calculated diffusion coefficient of the N atom in  $N_{12}$  crystal at the temperatures of 300 K.



**Figure S5.** The enthalpy changes of nitrogen with  $\alpha$ -,  $\gamma$ - and  $\epsilon$ - phase under different pressures.



Figure S6. (a) The energy of  $N_{10}$ ,  $N_{12}$ ,  $N_{16}$  and lollipop-N<sub>8</sub> at 0 GPa; (b) the energy changes of  $N_{12}$  compared with cg-N and  $\epsilon$ -N<sub>2</sub>.



Figure S7. MD snapshots of the final configurations under different temperatures.



**Figure S8.** LOLIPOP interface of two pentazole rings in  $N_{12}$  molecule. The definite integral of LOL- $\pi$  from a distance of 0.5 Å away from the molecular plane, and integration radius is 1.94 Å.