Supporting Information

Insights into the Nanostructuring and Phase Behaviour of an All-Aromatic Prototypical Nematic Liquid Crystal

Henry Adenusi^{1*}, Luca Muccioli², Matteo Lanciotti¹, Maruti Hegde³, Theo J. Dingemans³, Edward T. Samulski³, Francesco Vita¹, Oriano Francescangeli^{1*}

¹Department of Science and Engineering of Materials, Environment and Urban Planning, Marche Polytechnic University, Via Brecce Bianche, 60131, Ancona, Italy

²Department of Industrial Chemistry, University of Bologna, Via Gobetti 85, 40129, Bologna, Italy

³Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Murray Hall, 121 South Road, Chapel Hill, NC 27599-3050, USA.

TOPOLOGY FILE (CHARMM FORMAT)

AUTOgenerate ANGLES DIHEDRAL

MASS 1 CA 12.0110 CA MASS 2 CP 12.0110 CP MASS 3 HA 1.0079 HA

RESIDUE PNP 0.0

b3lyp/6-311++g(d,p) Pop=Espdipole charges, symmetrized

group

atom	C1	CA	-0.160075
atom	H2	HA	+0.130800
atom	C3	CA	-0.126375
atom	H4	HA	+0.128200
atom	C5	CA	-0.139550
atom	H6	HA	+0.131100
atom	C7	CA	-0.126375
atom	H8	HA	+0.128200
atom	C9	CA	-0.160075
atom	H10	HA	+0.130800
atom	C11	CP	+0.050100
atom	C12	CP	+0.084400
atom	C13	CA	-0.199800
atom	C14	CA	-0.094600
atom	H15	HA	+0.121100
atom	H16	HA	+0.135550
atom	C17	CA	-0.199800
atom	H18	HA	+0.135550
atom	C19	CA	-0.094600
atom	H20	HA	+0.121100
atom	C21	CP	-0.015050
atom	C22	CP	+0.073900
atom	C23	CA	-0.312050
atom	H24	HA	+0.166000
atom	C25	CA	-0.140650
atom	H26	HA	+0.138800
atom	C27	CA	-0.329000
atom	H28	HA	+0.180100
atom	C29	CA	+0.242300
atom	C30	CA	-0.312050
atom	H31	HA	+0.166000
atom	C32	CA	+0.242300
atom	C33	CA	-0.329000
atom	H34	HA	+0.180100
atom	C35	CA	-0.140650
atom	H36	HA	+0.138800
atom	C37	CP	+0.073900
atom	C38	CP	-0.015050

atom C20	$C\Lambda$	0.004600
atom C10		-0.094000
atom C40		-0.199800
atom H41	HA	+0.135550
atom H42	HA	+0.121100
atom C43	CA	-0.094600
atom H44	HA	+0.121100
atom C45	CA	-0.199800
atom H46	HA	+0.135550
atom C47	CP	+0.084400
atom C48	CP	+0.050100
atom C49	CA	-0.160075
atom H50	HA	+0.130800
atom C51	CA	-0.126375
atom H52	HA	+0.128200
atom C53	CA	-0.139550
atom H54	НА	+0.131100
atom C55		-0.126375
atom U56		± 0.120373
atom C57		0.120200
atom C5/		-0.1000/3
atom H58	HA	+0.130800
1 1 0 1		
bond CI	H2	
bond C1	C3	
bond C1	C11	
bond C3	H4	
bond C3	C5	
bond C5	H6	
bond C5	C7	
bond C7	H8	
bond C7	С9	
bond C9	H10	
bond C9	C11	
bond C11	C12	
bond C12	C12	
bond C12	C13	
bond C12	C1/	
bond $C13$	U14	
bond CI3	HIO	
bond CI4	H15	
bond C14	C21	
bond C17	H18	
bond C17	C19	
bond C19	H20	
bond C19	C21	
bond C21	C22	
bond C22	C23	
bond C22	C25	
bond C23	H24	
bond C23	C32	
bond C25	H26	
bond C25	C27	

Supporting Information

bond C27	H28
bond C27	C29
bond C29	C30
bond C29	C32
bond C30	H31
bond C30	C37
bond C32	C33
bond C33	H34
bond C33	C35
bond C35	H36
bond C35	C37
bond C37	C38
bond C38	C39
bond C38	C43
bond C39	C40
bond C39	H42
bond C40	H41
bond C40	C47
bond C43	H44
bond C43	C45
bond C45	H46
bond C45	C47
bond C47	C48
bond C48	C49
bond C48	C57
bond C49	H50
bond C49	C51
bond C51	H52
bond C51	C53
bond C53	H54
bond C53	C55
bond C55	H56
bond C55	C57
bond C57	H58

ADDITIONAL DATA

Figure S1: DSC data collected on the 2nd cycle (heating-cooling rate: 20 K/min).

Figure S2: Azimuthal intensity profiles of the XRD wide-angle features at different temperatures across the nematic phase (empty circles) and best fit curves computed using the model described in the article (solid lines).

Supporting Information

Figure S3: Simulated mass density as a function of temperature for PPNPP. The vertical dashed lines indicate the calculated transition temperatures from the MD simulations.

Figure S4: Simulated enthalpies *H* as a function of temperature *T* for PPNPP (purple squares) with the determined $T_{\text{SmA-N}}$ transition at 692.5 K (yellow line). The green and blue lines show the different linear trend of *H*(*T*) in the nematic and smectic A temperature range, respectively.

Figure S5. (a) ε values, obtained by fitting the orientational energies with the model $U(\cos \theta) = U_0 - \varepsilon [\langle P_2 \rangle P_2(\cos \theta) + \lambda \langle P_4 \rangle P_4(\cos \theta)]$, reported as a function of the temperature and their best fit with a power law curve; (b) the same values of ε reported as a function of the molar volume *V* and their fit with a power law curve. The values of *V* are computed from the density data in Figure S2. The value of ε at 695 K has been omitted in the fits because too close to the transition. The fit results are reported in the paper.